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Channel-based Langevin approach for the stochastic Hodgkin-Huxley neuron
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Stochasticity in ion channel gating is the major source of intrinsic neuronal noise, which can induce many
important effects in neuronal dynamics. Several numerical implementations of the Langevin approach have been
proposed to approximate the Markovian dynamics of the Hodgkin-Huxley neuronal model. In this work an
improved channel-based Langevin approach is proposed by introducing a truncation procedure to limit the state
fractions in the range of [0, 1]. The truncated fractions are put back into the state fractions in the next time
step for channel noise calculation. Our simulations show that the bounded Langevin approaches combined with
the restored process give better approximations to the statistics of action potentials with the Markovian method.
As a result, in our approach the channel state fractions are disturbed by two terms of noise: an uncorrelated
Gaussian noise and a time-correlated noise obtained from the truncated fractions. We suggest that the restoration
of truncated fractions is a critical process for a bounded Langevin method.
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I. INTRODUCTION

Neuronal excitability and information transfer are deter-
mined by the currents through ion channels on the neuronal
membrane. Hodgkin and Huxley first described the nerve
membrane ion currents deterministically and established what
is now called the Hodgkin-Huxley (HH) model [1]. The HH
model is expressed by a set of differential equations to provide
a deterministic description of the mean behavior of ion channel
states. Later, from patch-clamp studies, the stochasticity of the
opening and closing of ion channels, known as channel noise,
has been observed [2].

With the stochastic HH model, many effects of channel
noise on action potentials were studied, such as sponta-
neous action potentials [3,4], interspike interval statistics
[5], stochastic resonance [6,7], and entropically enhanced
excitability [8]. Beyond the basic HH model, the contribu-
tion of channel noise to neuronal dynamics has also been
addressed with biophysically detailed model neurons, such as
the entorhinal cortex neuron [9] and the cerebellar granule
cell [10]. The critical roles of channel noise in the generation,
propagation, and integration of neuronal signals have been
investigated in a morphologically detailed neuronal model
with extensive dendritic or axonal arborizations, such as in
retinal ganglion cell [11], hippocampal neuron [12,13], and
unmyelinated axon [14,15]. Besides intrinsic channel noise,
external noise also exists in neural networks and is significant
for neuronal activities [16]. The contribution of channel noise
has become of interest also in many other systems or cells, such
as intracellular calcium signaling system [17,18] and barnacle
giant muscle fiber [19].

Besides the discussion of the effects of channel noise,
a fundamental question is how to characterize the channel
noise accurately. During the last 30 years, fractal ion-channel
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behavior and history-dependent ionic current signals have been
captured in experiment through analyzing the patch-clamp
data [20–25]. Moreover, the analysis of the power spectra
of nanochannel currents showed that such currents have
the properties of the so-called 1/f (flicker) noise [26–28].
Actually, a biologically realistic neuronal system is complex
with composite axon and dendritic structures, having a non-
Markovian channel dynamics, and is affected by internal
fluctuation of ion concentration and external noises. However,
in this paper we focus only on the intrinsic Markovian noise
described within a standard stochastic HH model.

By the HH model, all subunits in a channel are independent
and each subunit has two discrete configuration states, i.e., the
open and the closed states. Thus the channel dynamics can be
simulated by a two-state Markovian process, which is termed
the Markovian method [7,8,17,18,29,30]. In this paper the two-
state Markovian method is considered as the standard method
for comparison. For small channel numbers, a Markovian
process can also be exactly simulated via a Gillespie-type
algorithm [4,31–33]. However, these Markovian methods are
computationally demanding in the case of many channels,
leaving approximate methods more favorable [34].

Several approximate methods have been suggested to
account for the Markovian channel noise. In the framework
of Fox and Lu’s work, two classes of approximations, termed
subunit-based approaches and channel-based approaches,
were proposed to represent the Markovian channel noise
[17,35–37]. They are different essentially in the place where
channel noise is added to the stochastic differential equations
(SDEs). In detail, subunit-based Fox-Lu approaches add
Gaussian noise to the equations that describe the fractions
of subunit states of channels, while channel-based Fox-Lu
approaches introduce Gaussian noise directly into the fractions
of channel states. Subunit-based approaches are simpler and
require less computational resources, which is why they have
been applied extensively to stochastic neuron models [6], as
well as calcium signaling models with stochastic IP3 receptors
[17,18]. However, in comparison with the standard Markov
method, subunit-based approaches could not capture correctly
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YANDONG HUANG, STEN RÜDIGER, AND JIANWEI SHUAI PHYSICAL REVIEW E 87, 012716 (2013)

the microscopic statistical properties of channel gating and the
accuracy could not be improved with increasing numbers of
channels [37–42].

On the other hand, the channel-based Fox-Lu approach was
demonstrated to better replicate the statistical properties of the
Markovian HH neuron [42]. However, there is an unreasonable
treatment of channel state fractions in the channel-based
Fox-Lu approach. Due to the addition of Gaussian noise
to the SDEs, the fractions of channel states may be out of
the range of [0, 1], which will lack biological meaning. The
original channel-based Fox-Lu approach does not consider
confinement within [0, 1] for the fractions of the eight states
for Na+ channels and five states for K+ channels, but rather, the
approach lets these fractions evolve freely without boundary
limitation [42]. In the channel-based approach, two diffusion
matrices have to be defined to calculate the state fractions
for Na+ and K+ channels, respectively. The diffusion matrix
has to be positive semidefinite in order to obtain real valued
matrix square roots. Once a state fraction is out of [0, 1],
the diffusion matrices will no longer be guaranteed to be
positive semidefinite. To avoid this problem, the equilibrium
state fractions, rather than the real-time state fractions, of the
channel are applied for the calculation of the diffusion matrices
in the channel-based approach [42].

Another Langevin approach was developed recently based
on the realization of an Ornstein-Uhlenbeck process [43].
However, this approach rests on the assumption that the
channel number is large. At small channel number, this
approach also generates negative open fractions for Na+ and
K+ channels. Moreover, it has been found that this approach
fails to track the Markov chain variance during the spikes even
at large channel number [44]. More recently, a method with
reflection was applied to the channel-based approach to make
sure that the state fractions stay in the region of [0, 1]. However,
it has also been pointed out that this reflected approach fails at
small channel numbers [45]. In this paper we will show that
the reflected approach could not give a satisfying estimate of
the interspike interval even at large channel numbers.

Thus currently, although the Langevin approaches of the
Markovian process are widely applied for the study of
stochastic channel dynamics, none of them guarantees a
precise description of channel noise in the neuronal system.
In consequence, the use of the oversimplified channel noise in
Langevin approaches may thereby lead to qualitatively correct
but quantitatively incorrect conclusions. Thus, an important
question is how to construct a better Langevin approach in
order to correctly describe the Markovian channel dynamics.

In this paper we introduce an efficient Langevin method
based on the channel-based Fox-Lu approach. In order to
overcome the boundary-free problem, we consider a truncating
method to hold the state fraction in the range of [0, 1].
Rather than simply cutting off the state fraction to [0, 1],
we feed the extra state fraction back into the system in
the next time step for numerical calculation. Simulation
results show that such a bounded channel-based approach
can give a better approximation of the Markovian dynamics.
Furthermore, we show that the restoring method, which is
a key part in our bounded approach, can also be applied to
the reflected Langevin approach to induce a better numerical
result.

II. SIMULATION METHODS

In this section, we briefly review the HH model [1] and
the corresponding Markov method. Then after introducing the
original channel-based Langevin approach proposed by Fox
and Lu [35,42] and the reflected SDEs approach proposed
in [45], we present our improved bounded approach with
the restoration process of truncated fractions. In the end, the
restoration process is incorporated into the reflected SDEs
approach.

A. HH model with subunit-based expression

We consider a single-compartment HH model [46], in
which the neuronal membrane voltage evolution is governed
by [1]

−C
dV

dt
= INa + IK + IL − IStim (1)

where V is the membrane potential in millivolts; C =
1 μF/cm2 the membrane capacitance, and IStim is the stimulus
current added to the neuron in μA/cm2. INa, IK, and IL are
the currents of the sodium channels, potassium channels, and
leakage channels, respectively, given by

INa = gNahm3(V − ENa), (2)

IK = gKn4(V − EK), (3)

IL = gL(V − EL), (4)

where ENa = 50 mV, EK = −77 mV, and EL = −54.3 mV are
the reversal potential of sodium channels, potassium channels,
and leakage channels, respectively, and gNa = 120ms/cm2,
gK = 36ms/cm2, and gL = 0.3ms/cm2 are the total conduc-
tance of sodium channels, potassium channels, and leakage
channels, respectively.

The currents given by Eqs. (2) and (3) indicate that there are
four identical and independent n subunits for each K+ channel
and three m subunits and one h subunit for each Na+ channel.
The original derivation of the HH equations was based on
subunits, where the open probability w = {m,h,n} of each
subunit is described by the relaxation equations:

dw

dt
= αw(1 − w) − βww. (5)

Here αw and βw are subunit opening and closing rates with
the unit of m s−1 and depend on the membrane potential V

according to the following formulas:

αm = 0.1(V + 40)

1 − exp[−(V + 40)/10]
, (6)

βm = 4 exp[−(V + 65)/18], (7)

αh = 0.07 exp[−(V + 65)/20], (8)

βh = 1

1 + exp[−(V + 35)/10]
, (9)
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FIG. 1. Transition diagrams of channel states for K+ (a) and Na+

(b) channels. The code indicates how many subunits in the channel
are in open state. In (a) code 4 represents four open n subunits for an
open K+ channel. In (b) code 3,1 represents three open m subunits
and one open h subunit for an open Na+ channel.

for m and h subunits of sodium channels, and

αn = 0.01(V + 55)

1 − exp[−(V + 55)/10]
, (10)

βn = 0.125 exp[−(V + 65)/80], (11)

for n subunits of potassium channels.

B. HH model with channel-based expression

An equivalent expression of the deterministic subunit-based
HH model is based on the dynamics of channel states. For the
K+ channel the four n subunits define a transition diagram
of five channel states, as shown in Fig. 1(a). While for the
Na+ channel the three m subunits and one h subunit define a
transition diagram of eight channel states, as given in Fig. 1(b).
Denoting the channel state fractions xi [i = 0,1,2,3,4 in
Fig. 1(a)] for K+ channels and yjk [j = 0,1,2,3 and k = 0,1 in
Fig. 1(b)] for Na+ channels, we introduce two fraction vectors
of channel state

⇀

X = {xi} and
⇀

Y = {yj+2k ≡ yjk}, respectively.
By considering the mass action kinetics with the transition

diagram of channel states, the equations to describe the channel
state fractions are written

d
⇀

X

dt
= AK

⇀

X, (12)

d
⇀

Y

dt
= ANa

⇀

Y , (13)

where AK and ANa are transition matrices of channel states,
which can be found in Ref. [42].

Note that, among the 13 fractions of channel states, 11 states
are independent due to the two constrains:

4∑
i=0

xi = 1, (14)

3∑
j=0

1∑
k=0

yjk = 1. (15)

Here fraction x4 and y31 are the open probabilities of K+
channels and Na+ channels, respectively. Then the chan-
nel currents are given by IK = gKx4(V − EK) and INa =
gNay31(V − ENa).

C. Markovian method of stochastic HH model

For the stochastic HH model, we directly simulate the
stochastic dynamics for each single subunit by a two-state
Markov process. In detail, all the subunits of the channels in the
system are traced and updated for every small time step �t . If
a subunit is closed at time t , then the probability that it remains
closed at time t + �t is exp(−α�t) ≈ 1 − α�t with open rate
α defined in Eqs. (6)–(11), giving an open probability α�t . If
a subunit is open at time t , then the probability that it remains
open at time t + �t is exp(−β�t) ≈ 1 − β�t with closing
rate β defined in Eqs. (6)–(11), giving a closing probability
β�t . Random numbers homogeneously distributed in [0, 1]
are generated at each time step and compared with these
transition probabilities in order to determine the state of the
channel subunit at each time step.

With the knowledge of open channel numbers N
Open
Na and

N
Open
K among the total numbers NNa and NK for Na+ and K+

channels, respectively, the channel currents are then given by
INa = gNaN

Open
Na /NNa(V − ENa) and IK = gKN

Open
K /NK(V −

EK).
In the model, we keep the distribution densities of both

the Na+ and K+ channels fixed with the density of the Na+
channel three times as big as that of the K+ channel [7]. By
changing the membrane area, both the sodium and potassium
channel numbers are changed.

Assuming all potassium channels identical and independent
statistically, the distribution of the total open channel number at
any given time will be a binomial distribution with population
parameter NK and bias parameter x̄4. Then one can derive the
analytical mean fraction 〈PK〉 and the corresponding standard
deviation DPK of open K+ channels [42]:

〈PK〉 = x̄4, DPK =
√

〈P K〉(1 − 〈PK〉)/NK, (16)

where 〈· · ·〉 denotes the average operation. Similar results can
be obtained for the Na+ channels.

D. Langevin model (A): Unbounded approach

The Langevin approach based on channel state expression
of the HH model was introduced originally by Fox and Lu [35]
and has been recently discussed in [42]. After considering the
channel noise the channel state fractions are governed by the
master equations, given as [35]

d
⇀

X

dt
= AK

⇀

X + SK
⇀

ξK, (17)

d
⇀

Y

dt
= ANa

⇀

Y + SNa
⇀

ξNa, (18)

where
⇀

ξK and
⇀

ξNa are noise vectors with each element an
uncorrelated Gaussian white noise with zero mean and unit
variance [47], and SK and SNa are the matrix square root of
the diffusion matrices DK and DNa, respectively. The diffusion
matrices DK and DNa can be found in Ref. [42].

In order to obtain real values of SK and SNa, the diffusion
matrices should be positive semidefinite. Thus, instead of real-
time values of xi and yjk which may be negative due to the
Gaussian noise in Eqs. (12) and (13), the equilibrium fractions
of xi and yjk are used in the diffusion matrices DK and DNa,
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given by

x̄i =
(

4

i

)
αi

nβ
4−i
n

(α + β)4 , (19)

ȳjk =
(

3

j

)
α

j
mβ

3−j
m αk

hβ
1−k
h

(αm + βm)3(αh + βh)
. (20)

For numerical simulation, Eq. (17) will be rewritten as the
following difference iteration equation:

⇀

Xt+�t = ⇀

Xt + �tAK
⇀

Xt +
√

�tSK
⇀

ξ t (21)

In the simulation, each Gaussian noise is calculated by two
white noises homogeneously distributed from 0 to 1. There
is a similar difference equation for the fraction vector

⇀

Y in
Eq. (18).

Numerically, although the normalization condition given by
Eqs. (14) and (15) can be always satisfied with the difference
equation Eq. (21), the large enough Gaussian noises may drive
the state fractions xi and yjk out of range [0, 1]. Thus in the
rest of this paper we call this original channel-based Langevin
approach the unbounded method.

In the deterministic HH model, the open fractions x4 and
y31 of sodium and potassium channels change in the ranges
of [0, 0.35) and [0, 0.25) during an action potential. With
the unbounded Langevin approach we did not observe the
situation of x4 and y31 larger than 1; however, x4 and y31 are
frequently found to be negative. The probabilities for the open
fractions x4 and y31 to be negative are calculated, showing that
even for a channel number as large as N = 10 000, the open
fraction y31 can become negative with a probability of 5%. At
small channel number, the state fractions xi and yjk violate
the physical constraint [0, 1] seriously, which will cause the
overflow and breakdown of the simulation program.

E. Langevin model (B): Reflected approach

The reflected approach was proposed in [45] to bound the
solutions of the channel state fractions by incorporating the
reflecting process with an orthogonal projection method (for
more detail see [48]). Besides, an equivalent representation
of the noise term is adopted so as to avoid the calculation of
the square root of the diffusion matrix. The following is the
corresponding formulations used in the numerical simulation
of the reflected approach.

⇀

Xt+�t = ⇀

Xt + AK
⇀

X�t + 1√
NK

LKJK
⇀

ξK

√
�t + �

⇀

RK,

(22)

⇀

Y t+�t = ⇀

Y t + ANa
⇀

Y�t + 1√
NNa

LNaJNa
⇀

ξNa

√
�t + �

⇀

RNa,

(23)

where the matrices LK, LNa, JK, JNa as well as the definition
of the reflecting processes

⇀

RK and
⇀

RNa can be obtained in
Ref. [45].

F. Langevin model (C): Truncated and restored approach

Since the fractions of channel states should not be out of the
range [0, 1] we here introduce another scheme to confine the

state fractions xi and yjk within [0, 1]. In this method, we first
cut off the state fractions that are out of the range [0, 1]. Before
the cutting off, the state fractions obey the normalization
condition. After cutting off, the normalization condition is
broken. Thus a second step in our method is to consider a
renormalization process for the state fractions. Thirdly, instead
of simply throwing away the truncated values, we propose in
our approach to store the truncated values for inclusion in the
next time step.

Taking the K+ channels as an example, we introduce a
residue vector

⇀

E = {ei} in the numerical iteration function of
Eq. (21),

κt+�t
i = xt

i +
∑

j

AKij x
t
j�t +

∑
j

SKij ξj

√
�t + et

i . (24)

Compared to Eq. (21), a term et
i which is obtained from κt

i is
added at the right-hand side of Eq. (24). Then we split κt+�t

i

into the following two terms: κt+�t
i ≡ xt+�t

i + et+�t
i , where

the residue vector
⇀

E = {ei} is the truncated value from the
unbound vector

⇀

K = {κi}.
The truncation procedure is as follows: If all elements κt+�t

i

in the unbounded vector
⇀

K = {κi} are in the range of [0, 1], then
xt+�t

i = κt+�t
i and et+�t

i = 0, and we go directly to the next
iteration with Eq. (24). If any element κt+�t

i is out of the range
of [0, 1], we consider the following truncating procedure:

If there is an element κt+�t
i > 1, then we define xt+�t

i = 1
and et+�t

i = κt+�t
i − 1. In order to preserve the normalization

condition, we define xt+�t
j = 0 and et+�t

j = κt+�t
j for other

elements j �= i.
Otherwise, if there is a term κt+�t

i < 0, then we de-
fine xt+�t

i = 0 and et+�t
i = κt+�t

i . In order to preserve
the normalization condition, we define xt+�t

j = κt+�t
j /sum

and et+�t
j = κt+�t

j − κt+�t
j /sum with sum = ∑

j �=i κt+�t
j for

other elements j �= i.
By this truncating procedure, the unbounded vector

⇀

K =
{κi} is split into two parts: the bounded vector

⇀

X and the
residue vector

⇀

E. Then we put
⇀

Xt+�t into the iteration equation
of Eq. (24) to calculate the state fractions at the next step. At the
same time the residue vector

⇀

Et+�t is restored to the fractions
⇀

Xt+�t by directly adding it to the right-hand side of Eq. (24)
to obtain

⇀

Kt+2�t .
As a result, the bounded approach defines the following two

vector equations:

⇀

Kt+�t = ⇀

Xt + AK
⇀

Xt�t + SK
⇀

ξ t
K

√
�t + ⇀

Et ,
(25)⇀

Xt+�t = ⇀

Kt+�t − ⇀

Et+�t .

We repeat such truncating procedure at each time step with
ei = 0 at the beginning t = 0. Similar iteration equations can
be written for Na+ channels. With the above procedure, all
the elements of vector

⇀

X and
⇀

Y are bounded within [0, 1].
Thus, instead of using the equilibrium state fractions given by
Eqs. (19) and (20), the instantaneous state fractions xi and yjk

are directly applied for the calculation of the diffusion matrices
of DK and DNa in the bounded approach.

Obviously, since
∑4

i=0 xi = 1 is always maintained, we
have

∑4
i=0 ei = 0.0. Putting two equations in Eq. (25) together,
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we have the following equation:
⇀

Xt+�t = ⇀

Xt + AK
⇀

Xt�t + (SK
⇀

ξ t
K − ⇀

ηt
K)

√
�t,

(26)
⇀

ηt
K = (

⇀

Et+�t − ⇀

Et )/
√

�t,

where vector ⇀
η

t

K = {υt
i } with element υi (i = 0,1,2,3,4).

Similar as ⇀
ηK = {υi} for K+ channels, vector ⇀

ηNa = {ωjk} can
also be defined for Na+ channels. By comparing the difference
iteration equations of Eqs. (21) and (26), one can see that
the vectors ⇀

ηK and ⇀
ηNa in our Langevin approach can be

considered as correlated or memory noise with zero mean,
i.e., 〈υt

i 〉 = 〈ωt
jk〉 = 0.0.

G. Langevin model (D): Simple truncated approach

Alternatively, one may consider a simpler approach by
applying Eq. (24) with the truncating and renormalizing
procedures, but throwing away the residue vector

⇀

E, i.e.,
⇀

Kt = ⇀

Xt + AK
⇀

Xt�t + SK
⇀

ξ t
K

√
�t,

(27)⇀

Xt+�t = ⇀

Kt − ⇀

Et+�t .

However, our simulation results show that this approach could
not reproduce the channel noise correctly for N < 2000 (data
not shown). Thus in our paper we will not consider this
approach.

H. Langevin model (E): Reflected and restored approach

The reflected approach applies the projection process to
limit the fractions of channel states into the region of [0, 1], and
simply ignore the residue values which are also important in
replicating correctly the stochastic channel dynamics. Here, we
introduce the restoration operation into the original reflected
approach. Taking Eq. (22) for the potassium channel as an
example, the numerical iteration equation becomes

⇀

Kt+�t = ⇀

Xt + AK
⇀

X�t + 1√
NK

LKJK
⇀

ζ K

√
�t + ⇀

Et (28)

With the reflected procedure, we have
⇀

Xt+�t = ⇀

Kt+�t +
�

⇀

Rt+�t
K . Here

⇀

Xt+�t is the channel state fraction after the
reflected procedure. We then define the truncated fraction
⇀

Et+�t = −�
⇀

Rt+�t . This residue will be restored back in
Eq. (28) for calculation in the next time step.

III. RESULTS

In this section, different Langevin approaches with diffu-
sion matrices are discussed and compared with the two-state
Markovian chain method (Markov). The original channel-
based Fox-Lu approach will be called the unbounded approach
(Unbound), the reflected Langevin approach suggested in
Ref. [45] will be called the reflected approach (Reflected), the
channel-based Langevin approach with truncated and restored
state fractions is termed the truncated and restored approach
(Truncated-Restored), and the reflected Langevin approach
with restored state fractions is called the reflected and restored
approach (Reflected-Restored). In all the following figures, we
use a set of fixed symbols to represent the results obtained with
the four methods. In detail, the black open squares are for the
Markov method, the green plus symbols for the unbounded

approach, the purple cross symbols for the reflected approach,
the red (gray) open squares for the reflected and restored
approach, and the blue stars for the truncated and restored
approach.

If not specified otherwise, we denote the K+ channel
number by N (i.e., N ≡ NK) in the following, and the cor-
responding Na+ channel number is then three times as large as
N , (i.e. NNa = 3N ). Two typical stimulus currents are studied,
i.e., IStim = 0 and 15 μA/cm2, deterministically yielding a
stable fixed point and a periodic oscillation, respectively.

A. Correlated noise for the truncated and restored approach

First, we discuss the equilibrium state which simulates the
voltage-clamp experiments with a fixed membrane voltage V .
Here we discuss the statistical properties of the memory noise
defined in Eq. (26) for the truncated and restored approach and
the memory noise for the reflected and restored approach.

As illustrated in Fig. 2(a), the standard deviations δ(υ4) and
δ(ω31) of memory noise υ4 and ω31 [see Eq. (26) for definition]
decrease with increasing channel number. In Fig. 2(b) we
discuss the characteristic times of autocorrelation functions
for υ4 and ω31, which are defined as

τυ4 (N ) =
∫ ∞

τ=0

∣∣∣∣ 〈υ4(N,t)υ4(N,t + τ )〉
〈υ4(5,t)υ4(5,t)〉

∣∣∣∣dτ, (29)

τω31 (N ) =
∫ ∞

τ=0

∣∣∣∣ 〈ω31(N,t)ω31(N,t + τ )〉
〈ω31(5,t)ω31(5,t)〉

∣∣∣∣dτ, (30)

where 〈· · ·〉 denotes the average over time t . Here the autocor-
relation function is rescaled by the variance of memory noise at
N = 5. One can see in Fig. 2(b) that a large characteristic time
is found for the time series of υ4 and ω31 at a small channel
number system, indicating a strong autocorrelation. Although

FIG. 2. (Color online) Statistical properties of memory noises
defined in Eq. (26) at equilibrium states via channel number. (a)
The standard deviation and (b) characteristic time of autocorrelation
function of memory noises υ4 of K+ channels and ω31 of Na+

channels as a function of channel number N for the truncated and
restored approach and the reflected and restored approach. In the
simulation the stimulus IStim = 0 μA/cm2 and the voltage is fixed to
V = −65 mV.
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FIG. 3. (Color online) Statistical properties of the open fraction
of K+ channels at equilibrium states. The mean (a) and the standard
deviation (b) of the open fractions of K+ channel via the channel
number at constant voltage V = −65 mV. In the simulation IStim =
0 μA/cm2.

the added Gaussian noises
⇀

ξK and
⇀

ξNa are time independent,
the memory noises ⇀

ηK or ⇀
ηNa are autocorrelated.

B. Statistical properties of open fraction at constant voltage

Now we discuss the statistical properties of open fractions
of channels at constant membrane voltage V . The mean and
standard deviation of the open fraction can be analytically
obtained by Eqs. (19) and (16) for K+ channels, respectively.
As shown in Fig. 3 by the analytical calculations (the gray
lines) and the Markovian simulations, the mean of the fraction
of open channels is independent of channel number [Fig. 3(a)],
whereas the standard deviation inversely depends on N

[Fig. 3(b)].
The numerical results with the four Langevin approaches

are also given in Fig. 3. One can see that the unbounded
approach generally gives a better approximation to the Marko-
vian method than the three bound approaches. At large channel
number all four approaches show satisfying agreement with
the analytic results. The reflected approach exhibits the largest
mean of the open fraction at small channel number.

C. The averaged maximal and minimal voltages via
stimulus current

The channel noise generates the stochastic action potential
with varying amplitude. The maximal and minimal membrane
voltages are recorded during each time window of 0.1 s, during
which several action potentials will typically be observed.
Then the averaged maximal and minimal voltages can be
calculated.

The averaged maximal and minimal voltages via constant
stimulus current are plotted in Fig. 4 with different stochastic
methods. Although all three Langevin approaches keep close
agreement with the Markovian method at N = 100 [see
Fig. 4(b)], the maximal voltages are evidently overestimated
at N = 10 with the unbounded approach [Fig. 4(a)].

D. The moments of membrane voltage

Now we compare the moments of the membrane voltage
with different Langevin approaches. In Fig. 5, the mean
〈V 〉 and the standard deviation DV of membrane volt-
age are calculated as a function of N at IStim = 0.0 and
15 μA/cm2.

FIG. 4. (Color online) Bifurcation diagram of the membrane
voltage as a function of stimulus current. The averaged maximal
(upper symbols) and minimal voltages (lower symbols) as a function
of stimulus current for stochastic neuron model at (a) N = 10 and
(b) N = 100.

Our simulation shows that the unbounded approach can per-
form well on 〈V 〉 and DV with large enough channel number
at N > 100. In the range of 10 < N < 100, the unbounded
approach underestimates 〈V 〉. The reflected approach gives
a worse estimation of 〈V 〉 at N < 1000. The failure of the
reflected approach indicates that the truncated fractions play
an important role in the channel dynamics. One can see that
the truncated and restored approach and the reflected and
restored approach both can give a reasonable estimation for
the mean and the standard deviation of membrane voltage
at N > 50.

FIG. 5. (Color online) Statistical properties of membrane voltage.
The mean (a), (b) and the standard deviation (c), (d) of the membrane
voltage are plotted as a function of channel number N . Here IStim =
0.0 μA/cm2 is for the left column and IStim = 15.0 μA/cm2 for the
right column.
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FIG. 6. (Color online) Comparison of the mean period of inter-
spike intervals at large channel number. The difference of mean period
of stochastic spikes obtained between the Markovian method and the
Langevin approaches at large channel number (N > 1000). Here,
IStim = 0.0 μA/cm2.

E. The interspike interval of stochastic
action potentials

Next, we study the statistical properties of the stochastic
action potentials. For neuronal functions, the important prop-
erties of the action potential are spike period, spike amplitude,
and spike lifetime. In the deterministic HH neuron, once the
voltage is beyond a critical threshold VT , an action potential is
triggered, giving a spike. For a stochastic channel dynamics,
the membrane voltage shows a strongly fluctuating behavior,
and a spike is defined as the action potential with voltage
larger than the deterministic critical threshold VT . The spike
amplitude is defined as the difference in membrane potential
from the peak voltage to the threshold. The stochastic channel
dynamics can also cause the abortion of an action potential
right after the voltage goes beyond the threshold. Thus, a
fully developed spike is defined as having a minimal spike
amplitude H0. In this paper, H0 = 30 mV is considered. The
spike lifetime is the duration measured at the half-of-spike
amplitude. The interspike interval is defined as the time interval
between two succeeding spike peaks.

The spike period 〈T 〉 is the mean of the interspike intervals.
In Fig. 6 we show the difference of mean period obtained
for Markovian and Langevin approaches at large channel
number (N > 1000) with IStim = 0.0 μA/cm2. It can be
seen that the unbounded approach gives a shorter mean
period of spontaneous action potential than the Markovian
method, which has also been pointed out in Ref. [42]. These
results indicate that the unbounded approach generates an
unrealistically large channel noise to trigger spontaneous
spikes at large N . Figure 6 also indicates that the re-
flected approach gives a longer mean period of sponta-
neous action potential compared to the Markovian method.
However, the two Langevin approaches with restoration
process can give a correct mean period at large channel
number.

The spike period and its standard deviation DT obtained
with the four methods are plotted in Fig. 7 at small channel
number (N < 1000). Overall, the two Langevin approaches
with restoration process show better approximation to those
with the Markovian method. The reflected approach gives
a short mean period of spikes at small channel number,
indicating overestimation of the channel noise.

FIG. 7. (Color online) The mean period and standard deviation
of the interspike intervals. The mean period 〈T 〉 (a), (b) and standard
deviation DT (c), (d) of interspike intervals via channel number N

(<1000). Here IStim = 0.0 μA/cm2 is for the left column and IStim =
15.0 μA/cm2 for the right column.

F. The amplitude of stochastic action potentials

The simulation results of mean amplitude 〈H 〉 and its
standard deviation DH are given in Fig. 8. The unbounded
approach gives overestimated 〈H 〉 for N < 200, while the
reflected approach gives underestimated 〈H 〉 for N < 500.
However, the two Langevin approaches with restoration
process show similar results for 〈H 〉 and DH as those derived
by the Markovian method.

G. The lifetime of stochastic action potentials

The simulation results of mean lifetime 〈W 〉 of the spikes
and its standard deviation DW are given in Fig. 9. It can be
seen that all four Langevin approaches show similar results for

FIG. 8. (Color online) The mean amplitude and standard de-
viation of spike amplitude. The mean 〈H 〉 (a), (b) and standard
deviation DH (c), (d) of spike amplitude as a function of N . Here
IStim = 0.0 μA/cm2 is for the left column and IStim = 15.0 μA/cm2

for the right column.
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FIG. 9. (Color online) The mean lifetime and standard deviation
of spike lifetime. The mean 〈W 〉 (a), (b) and standard deviation
DW (c), (d) of spike lifetime as a function of N . Here IStim =
0.0 μA/cm2 is for the left column and IStim = 15.0 μA/cm2 for
the right column.

〈W 〉 as those derived by the Markovian method. However, the
reflected approach underestimates 〈W 〉 a little for N < 200.

IV. DISCUSSION

In this paper, we study improved computational approxi-
mations of noisy spike dynamics in the HH neuronal model.
We use the Langevin approach with diffusion matrices, which
was originally proposed by Fox and Lu to simulate the state
fractions as continuous variables subjected to channel noise.
Because of the Gaussian noise, the fractions of channel states
in this approximation can in principle depart the interval [0, 1].
To amend this problem, we propose a bounded Langevin
approach by introducing a truncation procedure to limit the
state fractions in the range of [0, 1] and then a renormalization
procedure to satisfy the normalization condition for the state
fractions. One unique process in our approach is that instead
of simply neglecting the truncated values of state fraction, we
feed the truncated fractions back into the state fractions during
the next time step. The restoration procedure is also applied in
the reflected Langevin approach [45].

Thus in this paper, the four Langevin approaches with
diffusion matrices, including the original unbounded approach,
the reflected Langevin approach [45], the truncated and
restored approach, and the reflected and restored approach,
are discussed and compared with the two-state Markovian
chain method. By comparing the mean period of spikes and
other parameters we show that for the original Langevin
approach a satisfying approximation is obtained for potassium
channel numbers in the range of 200–3000 and for the reflected
Langevin approach in the range of 1000–3000, while for both
the truncated and restored approach and the reflected and
restored approach the numbers are in the range of >50.

For the neuron at equilibrium state with constant membrane
voltage, we show that all four Langevin approaches can
provide a satisfying approximation to the Markovian method.
Especially, for the neuron at a dynamical situation, the two

bounded approaches with restoration process give a better
approximation to the Markovian method than the unbounded
approach.

The original unbounded Langevin approach proposed by
Fox and Lu assumes that Markovian channel dynamics can
be approximated by uncorrelated, zero-mean Gaussian noise.
However, our simulation and previous studies clearly show that
the simple consideration of Gaussian noise cannot adequately
describe the Markovian channel dynamics, and the inaccuracy
occurs even at large channel numbers. Thus, an important
question is how to construct a correct noise term in the
Langevin approach in order to appropriately describe the
Markovian channel dynamics. Bruce suggests that a correlated
and non-Gaussian noise with a nonzero mean should be
considered [39].

In this paper, based on our bounded method, we give
another answer to this question. On the one hand our method
still applies the uncorrelated, zero-mean Gaussian noise to
represent the channel noise. As a fact, in the HH neuron model
the channel noise is basically a Markovian process, naturally
calling for an uncorrelated Gaussian noise for Langevin
approximation. On the other hand, with a Langevin approach
such a Gaussian noise is considered to add upon the state
fractions which have a limited range of [0, 1]. Driven by
the Gaussian noise, the state fractions may be pushed out of
that range. Thus we suggest that the question to construct a
correct noise term in the Langevin approach then turns into the
problem to construct a procedure to limit the unlimited state
fractions.

In the original channel-based Langevin approach proposed
by Fox and Lu, the state fractions just evolve freely, without
any specific treatment on the extra value of state fractions.
We think that such a free evolution of state fraction raises
at least two issues: the frequently negative open fraction of
K+ channels at small channel number generates an unrealistic
inward K+ current, and the use of the equilibrium state
fractions in the diffusion matrix could not correctly reflect
the instantaneous strength of channel noise.

In our truncated and restored approach, we still assume
that the Markovian channel dynamics can be simulated by
uncorrelated Gaussian noise. Furthermore, the strength of the
channel noise is determined by the instantaneous state fractions
of channels. A unique process suggested in our approach
is that we do not throw away the truncated extra values of
state fractions. By putting the truncated fractions back into the
state fractions in the next time step, we accurately preserve
the strength of the Gaussian noise for channel stochasticity.
Through the investigation of statistical properties of the
membrane voltage, we show that the Langevin approaches
with restoration procedure give a better agreement with the
original dynamics.

The effectivity of the restoration process is also confirmed
with the reflected Langevin approach [45]. For the reflected
Langevin approach, a long mean period of spontaneous spikes
is generated at large channel number, indicating that the
channel noise is underestimated. While, at small channel
number, a short mean period of spontaneous spikes is obtained,
indicating that the channel noise is overestimated. However,
our simulation shows that the reflected approach with restora-
tion process can overcome these problems.
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The procedure of truncation and restoration can be treated
as a reorganization of the white Gaussian noise. As a result, the
channel state fractions are disturbed by two sources of noise:
an uncorrelated Gaussian noise and a time-correlated noise
obtained from the truncation of unlimited state fractions.

The stochastic channel dynamics is found not only in
neuron dynamics, but also in intracellular calcium signaling
system [17,18] and muscle cells [19]. We suggest that the
Langevin approach with the restoration of truncated state
fractions can be applied to other Markovian channel systems.
A similar procedure on state fractions may be considered to
other Langevin approaches to avoid the state fraction out of
range of [0, 1]. Our method is especially applicable to systems
with large channel number. Recently, a binomial noise has
been proposed to replace the Gaussian noise at small receptor
number in nonlinear biochemical signaling [49]. It has been
shown that the dynamics of most biologically realistic channels

are non-Markovian which should be produced with non-
Gaussian noise. The two-state Markovian process, as well as
the corresponding Langevin approaches with Gaussian noise,
is a simple approximation. We believe that, with accurate rep-
resentation of stochastic channel dynamics more quantitative
insights on how channel noise modulates electrophysiological
dynamics and function in cellular systems can emerge.
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[30] S. Rüdiger, J. W. Shuai, and I. M. Sokolov, Phys. Rev. Lett. 105,

048103 (2010).
[31] E. Skaugen and L. Walloe, Acta Physiol. Scand. 107, 343 (1979).
[32] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
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