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The Langevin approach has been applied to model the random open and closing dynamics of ion channels. It has
long been known that the gate-based Langevin approach is not sufficiently accurate to reproduce the statistics of stochas-
tic channel dynamics in Hodgkin–Huxley neurons. Here, we introduce a modified gate-based Langevin approach with
rescaled noise strength to simulate stochastic channel dynamics. The rescaled independent gate and identical gate Langevin
approaches improve the statistical results for the mean membrane voltage, inter-spike interval, and spike amplitude.
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1. Introduction
In recent years, there has been increasing interest in the

simulation of stochastic channel dynamics, i.e., the random
opening and closing of ion channels. The stochastic Hodgkin–
Huxley (HH) neuron[1] can be accurately simulated with the
Markov method or Gillespie method.[2–5] However, the com-
putational cost of these Markov-based methods becomes very
high with an increase in the number of channels. Thus, various
Langevin approaches have been suggested wherein the chan-
nel variables are modulated by Gaussian noise.[6–11]

Among these approaches, Fox and Lu suggested a simple
gate-based Langevin approach for a stochastic HH model.[6]

With such an approach, the stochastic dynamics of Na+ and
K+ channels, consisting of several gates to control the channel
opening and closing, can be calculated with the gate open frac-
tions disturbed by Gaussian noise. The noise strength is deter-
mined by the channel number and fraction of open gates. Be-
cause of its simplicity, such a gate-based Langevin approach
has been applied extensively to simulate stochastic HH chan-
nel dynamics and other channel systems.[12–15]

However, in the past few years, increasing evidence
has indicated apparent inaccuracies in gate-based Langevin
approaches.[16–19] Mino et al.[16] first reported that the firing
efficiency and spiking latency of the Fox–Lu gate-based ap-
proach for a neuron with 1000 Na+ channels responding to
a pulse current differed from those for the Markov method.
They suggested that, because the generation of action poten-
tials in the HH model is highly dependent on the number of
open Na+ channels, the number of open channels in the ap-
proach should be rounded down to the nearest integer to obtain

better statistical results. Later, Bruce[17] argued that a better
treatment would be to round up the number of open Na+ chan-
nels to its nearest integer. Compared to rounding to the nearest
integer, the rounding-down method always underestimates the
Na+ current. Thus, statistically, the rounding-down treatment
may produce decreased firing efficiency and increased spike
latency.

Because each channel consists of several gates, Shuai and
Jung[18] suggested two different considerations for the gate-
based approach. In detail, each K+ channel has 4 n-gates
and each Na+ channel has an h-gate and 3 m-gates.[1] For the
same type of gate, the gates can be either identical (and thus
be disturbed by identical Gaussian noise) or independent (and
thus be disturbed by different Gaussian noises). Later, Gold-
wyn et al.[8] pointed out that although the consideration of
independent gates is more biologically realistic, the identical
gate approach derives better statistics for action potentials than
the independent gate approach for the stochastic HH neuronal
model. However, Sengupta et al.[7] showed that the identical
gate approach still underestimates the channel noise, result-
ing in overestimation of information rates with 6000 Na+ and
1800 K+ channels.

Huang et al.[19] proposed the rescaled gate-based ap-
proach to address the localized intracellular Ca2+ signals
(Ca2+ puffs) that are released from a cluster of Ca2+ chan-
nels in the ER membrane. It has been shown that, by prop-
erly introducing a factor to rescale the gate noise strength,
the modified Langevin approach can better simulate stochas-
tic calcium channel dynamics. Compared to the Ca2+ chan-
nels in ER membrane where only one type of gate is discussed
with stochastic dynamics, the Na+ and K+ channels in the HH

*Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 11125419), the National Natural Science
Foundation of China (Grant No. 10925525), and the Funds for the Leading Talents of Fujian Province, China.

†Corresponding author. E-mail: jianweishuai@xmu.edu.cn
© 2015 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb　　　http://cpb.iphy.ac.cn

120501-1

http://dx.doi.org/10.1088/1674-1056/24/12/120501
mailto:jianweishuai@xmu.edu.cn
http://iopscience.iop.org/cpb
http://cpb.iphy.ac.cn


Chin. Phys. B Vol. 24, No. 12 (2015) 120501

neuron present a more complicated situation because there are
three different types of gates (i.e., 4 n-gates, 1 h-gate, and 3
m-gates). Thus, it is interesting to consider whether the gate
noise can be rescaled to improve the gate-based Langevin ap-
proach for stochastic HH neuronal dynamics. In this study, we
compare the identical gate Langevin approach and indepen-
dent gate Langevin approach with rescaled-strength of Gaus-
sian noise for the stochastic HH neuronal model. We show
that the rescaled Langevin approach can greatly improve the
statistical results.

2. Methods
The neuron membrane voltage for the deterministic HH

model is given by the following equation[1]

−C
dV
dt

= INa + IK + IL

with V representing the membrane potential and C represent-
ing the membrane capacitance. The currents of Na+ chan-
nels and K+ channels and the leakage are given by INa =

gNahm3(V −ENa), IK = gKn4(V −EK), and IL = gL(V −EL),
respectively. The equation for the gating variable x (with n for
K+ channels and m and h for Na+ channels) is

dx
dt

= α(1− x)−βx.

All of the model parameters have been described
previously.[1,11] The open/close two-state Markov process for
each single gate (n, m, and h gates) has also been previously
described[4,11] and is considered to be a standard Markov
method for stochastic channel dynamics in the paper.

There are two ways to consider the Gaussian noise for
the gate variables. The first one is to assume identical gate
dynamics with noise:[6,8,18]

dx
dt

= α(1− x)−βx+λx
Gx√
Nx

ζx(t),

where ζ (t) is the uncorrelated Gaussian white noise with zero
mean and unit variance, and Nx represents the number of
corresponding Na+ or K+ channels. The term G is a time-
dependent noise strength with

G2(t) = α(1− x)+βx.

The second way is to assume the independent gate dy-
namics for each gate. As a result, the channel currents
are rewritten as INa = gNahm1m2m3(V − ENa) and IK =

gKn1n2n3n4(V −EK), with

dxi

dt
= α(1− xi)−βxi +λx

Gxi√
Nx

ζxi(t),

where xi represents h, m1, m2, m3, n1, n2, n3, and n4. In the
simulation, we keep the boundary limitation of 0 ≤ x ≤ 1 by
simply requiring x = 0 or 1 once it is out of [0, 1].

In the original Fox–Li Langevin approach, λx = 1 (i.e.,
λh = λm = λn = 1).[6] However, we introduce the rescale fac-
tor λx to better simulate the strength of Gaussian noise on gate
dynamics in the Langevin approach. We suggest that a set of
rescale factors {λx} can be optimally selected to produce bet-
ter statistical results for action potentials of a stochastic HH
neuron.

3. Results
3.1. Finding the optimal rescale factors

Here, we use the number N to denote the number of K+

channels. We also assume that the density of Na+ channels is
always three times higher than that of K+ channels.[4,6] Thus,
N potassium channels are equivalent to 3N sodium channels
in the model. We do not consider any current stimulus on the
model, thereby deterministically obtaining a stable fixed point
for the model.

With the two-state Markov method, the stochastic action
potentials can be obtained. Then, the mean voltage and its
standard deviation, the mean inter-spike interval, and the mean
spike amplitude are calculated as a function of channel number
N from 10 to 2000. In our simulation, the first goal is to find
an optimal set of λ n, λ m, and λ h by comparing the error of the
action potential statistics between the Langevin approach and
the standard Markov HH model.

For the identical gate approach, our numerical simula-
tions indicate that the statistical results for an action poten-
tial are insensitive to the change in the factor λ h in the range
of 0.5 to 3.0. This is understandable because the h-gate is a
slow inactivation variable for Na+ channels to terminate the
Na+ current. This variable has little effect on the initiation
of action potentials, and the termination of the action poten-
tial is mainly determined by the K+ current. Therefore, we
set λ h = 1.0. Furthermore, the simulations show that the two
optimized factors λ n = 2.0 and λ m = 1.8 provide satisfactory
mean voltages and mean inter-spike intervals.

For the independent gate approach, our simulation sug-
gests that the statistical results for the action potential are in-
sensitive to not only the change in λ h, but also the change in
λ m. This observation indicates that, for the independent gate
approach, the strength of Gaussian noise added on the Na+

channels has little effect on stochastic activity. Therefore, we
set λh = λm = 1.0. Furthermore, our simulation shows that the
independent gate approach with λn = 3.0 can produce satis-
factory statistical results.

In the following subsection, we compare the statistical
results for action potentials obtained by the Markov method
(Markov) and different Langevin approaches, including the
original independent gate approach (Indep), original iden-
tical gate approach (Ident), rescaled independent gate ap-
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proach (rescaled Indep), and rescaled identical gate approach
(rescaled Ident).

3.2. Statistics for the membrane voltage

The stochastic channel noise will produce a fluctuation of
membrane voltage. We first compare the mean, ⟨V ⟩, and stan-
dard deviation, DV , of the voltage obtained with these meth-
ods. The mean and standard deviation of the voltage are plot-
ted in Fig. 1 against the channel number N.

Markov
Ident
Indep
rescaled Ident
rescaled Indep

N

N

D
V
/
m

V
<V

>/
m

V

Fig. 1. (color online) The mean, ⟨V ⟩, (a) and standard deviation, DV ,
(b) of the membrane voltage as a function of channel number N. In all
the figures, the solid line represents the simulation results obtained by
the Markov method, the dotted red line represents the original indepen-
dent gate approach (Indep), the dashed black line represents the original
identical gate approach (Ident), the red circles represent the rescaled in-
dependent gate approach (rescaled Indep), and the squares represent the
rescaled identical gate approach (rescaled Ident).

Both the original identical and independent gate ap-
proaches typically produce a smaller value for the mean volt-
age than the Markov method. As a result, the rescale factor
λ ≥ 1 has to be considered to produce larger Gaussian noise
in order to obtain a higher membrane voltage. The rescaled
identical gate approach can reproduce a higher mean mem-
brane voltage than the rescaled independent approach.

A maximal and a minimal voltage are detected during
each time window of 0.1 sec, in which several action poten-
tials will typically be observed. Then, the averaged maximal
and minimal voltages can be calculated for long-term record-
ing. The resulting averaged maximal and minimal voltages are
plotted in Fig. 2 against channel number N. The original inde-

pendent gate approach shows worse curves for both the aver-
aged maximal and minimal voltages at N > 100. The rescaled
independent gate approach gives curves closest to those ob-
tained by the Markov method.

V
/
m

V

Markov

Ident
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rescaled Ident

rescaled Indep

N

Fig. 2. (color online) Bifurcation diagram showing the averaged maxi-
mal (upper symbols) and minimal voltages (lower symbols) of the mem-
brane voltage as a function of channel number N.

3.3. Statistics of the action potential

Next, we study the mean inter-spike interval (T ) and the
mean spike amplitude (H), which are shown in Fig. 3 as a
function of channel number N. With increasing N, the channel
noise becomes small, generating an increasing mean inter-
spike interval and a decreasing mean spike amplitude. Be-
cause the Gaussian noise given by the original identical and in-
dependent gate approaches is small, these two approaches pro-
duce a larger mean interval and smaller amplitude than those
obtained by the Markov method for N > 30. Better results are

T
/
m

s
H

/
m

V

N

N

Markov
Ident

Indep
rescaled Ident

rescaled Indep

Fig. 3. (color online) Mean inter-spike interval (a) and spike amplitude
(b) as a function of channel number N.
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generated with the larger noise strength for the two rescaled
approaches. The rescaled identical gate approach produces
more accurate mean inter-spike intervals, whereas the rescaled
independent gate approach provides more accurate spike am-
plitudes.

3.4. Closing probability of ion channels

Now we discuss why the rescaled approaches achieve
better statistical results. Deterministically, without any chan-
nel noise, a stable fixed point is obtained for the HH neuron
model, given a zero open fraction for Na+ channels and a
small fixed open fraction for K+ channels. When consider-
ing the stochastic channel dynamics, the random opening and
closing of channels cause fluctuation in the open fractions of
K+ and Na+ channels in the ranges of [0, 0.35) and [0, 0.25),
respectively.

N
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Fig. 4. (color online) Closing probability of ion channels. The proba-
bilities (a) P(n1n2n3n4 = 0) and (b) P(m1m2m3h = 0) that all K+ and
Na+ channels are closed against N.

For a proper Gaussian noise added on the gate variable,
the probability to drive the channel open fraction to zero (i.e.,
the channel open fractions n1n2n3n4 = 0 and m1m2m3h =

0) should be similar to that given by the Markov method.
Therefore, we study the probabilities P(n1n2n3n4 = 0) and
P(m1m2m3h = 0) that all the K+ and Na+ channels are in the
closing state. Figure 4 compares the plots of the probabili-
ties P(n1n2n3n4 = 0) and P(m1m2m3h = 0) against N from 10
to 2000 for the Markov method and 4 different Langevin ap-
proaches. For the original identical and independent gate ap-

proaches, the Gaussian noises are too small, resulting in low
probability at the zero open fraction.

However, for the two rescaled approaches, the rescaled
Gaussian noise that is added on the gate variables is actually
slightly larger, and such Langevin approaches can generate a
strong fluctuation for gate variables. The strong fluctuation
of gate variables results in larger probability at the zero open
fraction, which is more similar to the probability given by the
Markov method. With a better approximation of the open
fractions for K+ and Na+ channels, the rescaled Langevin
approaches can achieve better statistical results for fluctuated
membrane voltage.

4. Discussion
Gate-based Langevin approaches have been widely ap-

plied for the study of stochastic channel dynamics after Fox
and Lu proposed such approaches to simulate the stochastic
HH neuronal model in 1994.[6] It has been realized that these
simple approaches actually suggest an over-simplified noise
approximation for stochastic channel simulation, leading to
qualitatively correct but quantitatively incorrect conclusions.
Thus, an interesting question is how to construct an improved
Langevin approach to better approximate the Markovian chan-
nel dynamics.

In this paper, we indicate that the Gaussian noise sug-
gested by the original identical and independent gate ap-
proaches is typically small. Thus, we propose to rescale the
strength of the Gaussian noise for the gate-based Langevin ap-
proaches for the stochastic HH neuron model. With a larger
Gaussian noise, the rescaled Langevin approaches can gener-
ate a strong fluctuation for gate variables, resulting in a larger
probability at the zero open fraction, as given by the Markov
method. With a better approximation of open fractions for
K+ and Na+ channels, the rescaled Langevin approaches can
achieve better statistical results for fluctuating membrane volt-
age. Our simulation results show that the rescaled identical
gate approach agrees better with the Markov method regard-
ing the calculation of mean membrane voltage and mean inter-
spike interval, whereas the rescaled independent gate approach
agrees better with the Markov method for the calculation of
the bifurcation diagram of the averaged maximal and minimal
voltages and the mean spike amplitude.

Because the rescale parameters for Langevin noise are
not universal, the rescaled Langevin approach is an ad-hoc
approach that calls for preliminary simulations to determine
the empirical scaling factors. Stochastic channel dynamics
are found widely in neuron dynamics and intracellular cal-
cium signaling systems.[15] Considering the simplicity of the
gate-based Langevin approach, we believe that the rescaled
Langevin approach may be applicable in many stochastic
channel systems.
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