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Abstract

The stochasticity of ion-channels dynamic is significant for physiological processes on neuronal cell
membranes. Microscopic simulations of the ion-channel gating with Markov chains can be
considered to be an accurate standard. However, such Markovian simulations are computationally
demanding for membrane areas of physiologically relevant sizes, which makes the noise-approximat-
ing or Langevin equation methods advantageous in many cases. In this review, we discuss the
Langevin-like approaches, including the channel-based and simplified subunit-based stochastic
differential equations proposed by Fox and Lu, and the effective Langevin approaches in which
colored noise is added to deterministic differential equations. In the framework of Fox and Lu’s
classical models, several variants of numerical algorithms, which have been recently developed to
improve accuracy as well as efficiency, are also discussed. Through the comparison of different
simulation algorithms of ion-channel noise with the standard Markovian simulation, we aim to reveal
the extent to which the existing Langevin-like methods approximate results using Markovian
methods. Open questions for future studies are also discussed.

1. Introduction

The propagation of action potentials is considered the
most important type of neuronal signaling. Genera-
tion of action potentials and their transmission
through the axon are governed by currents through
ion channels on the neuronal membrane [1]. Hodgkin
and Huxley first described the nerve membrane ion
currents deterministically and established what is now
called the Hodgkin—-Huxley (HH) model [2]. The
classical HH model is expressed by a set of differential
equations to provide a deterministic description of the
mean gating states of ion channels and predicts a
voltage dynamics closely resembling the membrane
potential spikes observed in neurons. It was then
suggested that the underlying gating behavior is
subject to internal noise from microscopic fluctua-
tions [3, 4]. The stochastic channel dynamics was
confirmed later directly by single channel current
recordings with the patch clamp techniques developed
by Neher and Sakmann [5-7].

Early experiments indicated that channel noise
may be particularly important in small neuronal struc-
tures such as the nodes of Ranvier [8]. Large channel
noise has been implicated in limiting the reliability of
neuronal responses to repeated presentations of iden-
tical stimuli and the reliability of action potential pro-
pagation in thin axons [9-12]. However, it has been
realized that suitable channel noise might also be
exploited by nervous systems in order to improve the
neural signaling transmission and procession. Simula-
tion studies have shown that channel noise can induce
many nontrivial effects in neural systems. These devia-
tions from deterministic prediction include sponta-
neous action potential generation [13-17], firing time
variability [9, 18, 19], firing rate increasing with the
number of ion channels [15, 16, 20], stochastic reso-
nance [21-24], coherence resonance [22, 25, 26],
entropically enhanced excitability [27, 28], spike firing
patterns [29], stochastic facilitation [30] and others
[31-38]. Besides neuronal dynamics, channel noise is
also ubiquitous in a host of other cellular processes

©2015IOP Publishing Ltd
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including signaling in electrically non-excitable cells,
for instance the intracellular calcium release from the
endoplasmic reticulum (ER) through stochastic inosi-
tol 1,4,5-trisphosphate receptor (IPsR), [39-48] and
from the sarcoplasmic reticulum through stochastic
ryanodine receptors [49-51].

The channel noise originates from fluctuations in
the gating transitions because of the discrete nature of
partaking molecules and it becomes influential when
the number of reacting particles is small. In those cir-
cumstances, the standard representation of chemical
reactions, namely the differential equations based on
the law of mass action, can be replaced by the master
equation approach, where the reactions or gating tran-
sitions are treated as a Markovian birth—death process
[22,27, 39,41, 46]. Simulations demonstrated that the
HH neuron model with Markovian stochastic chan-
nels can generate the known macroscopic electrical
properties of neurons, including resting potentials,
action potentials, subthreshold spike generation, and
chaotic behaviors [13, 14]. The Markovian method
can thus be considered as the standard method for the
simulation of ion-channel dynamics and can be
exactly simulated via a Gillespie-type algorithm [52—
54]. However, these Markovian methods are compu-
tationally demanding in the case of large channel
numbers, making approximate methods favorable.

As in other systems one is therefore interested in
an efficiently tractable modeling. Therefore, a central
question for the stochastic HH approach and similar
conductance-based models is that for the efficient
incorporation of channel noise. The Langevin
approach is often used to approximate the master
equation for finite channel numbers. For the HH
equations, this idea was introduced by Fox and Lu,
who used a Kramers—Moyal expansion to derive sto-
chastic differential equation (SDE) models [15, 20].
This approach has been often used in the last two dec-
ades and thus the issue of channel noise in the HH
equations appeared to be settled. Yet, over the last five
years or so, a number of studies have appeared to dis-
cuss modified HH Langevin equations.

Why is there a need for such further analysis? First,
it was found early that in certain cases the classical Fox
and Lu approach based on subunits lacks accuracy
when compared to the numerical solution of master
equations. This holds particularly for the case of small-
to-moderate channel numbers, which has attracted
interest related to the research on optimal nerve cell
design [11]. However, even for large channel numbers,
there are systematic deviations from the discrete simu-
lations [55-58]. In the course of these studies the rea-
son for the deviations was sought and located in the
coupling of gating variables. Briefly, in the HH model,
the gating of an ion channel is governed by the states of
its subunits. All subunits in a channel are assumed
statistically independent. Each subunit has two dis-
crete configuration states, i.e. the activation (open)
and non-activation (closed) states, and randomly
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transitions between the two configurations. In the fra-
mework of Fox and Lu, two classes of approximations,
termed subunit-based approaches and channel-based
approaches, were proposed to represent the Marko-
vian channel noise. They are different essentially in the
place where channel noise is added to the SDEs. Sub-
unit-based Fox—Lu approaches add Gaussian noise to
the equations that describe the fractions of subunit
states of channels, while channel-based Fox-Lu
approaches introduce Gaussian noise directly into the
fractions of channel states. Subunit-based approaches
are simpler and require fewer computational resour-
ces, which is why they have been applied extensively to
stochastic neuron models [33, 59]. However, in com-
parison with the standard Markov method, subunit-
based approaches could not correctly capture the fir-
ing dynamics [55-58].

The channel-based Fox—Lu approach was demon-
strated to better replicate the statistical properties of
the Markovian HH neuron [58]. In the channel-based
approach, the dimension of state space is much larger
than that in the subunit-based approach and two dif-
fusion matrices have to be defined to calculate noise in
the state fractions for the Na* and K* channels. The
diffusion matrix has to be positive semidefinite in
order to obtain real valued matrix square roots, which
is usually a time-consuming numerical procedure.
Nevertheless, the efficient determination of the noise
amplitudes in the channel-based approach was re-
considered recently in [60, 61], where a procedure that
obviates the square root calculation was used.

A further issue of recent work deals with an incon-
sistent treatment of channel state fractions in the origi-
nal channel-based Fox—Lu approach. This problem
becomes particularly important when the number of
channels is small. Due to the addition of Gaussian
noise to the SDEs, the fractions of channel states may
be out of the range of [0, 1], which lacks biological
meaning. The original channel-based Fox—Lu
approach does not consider confinement within the
interval [0, 1] for the fractions of the eight states for
Na* channels and five states for K* channels. Until
recently, these fractions were allowed to evolve freely
without boundary limitation based on the equilibrium
noise approximation proposed in the first imple-
mentation of this approach by Goldwyn et al [58].
Later, two numerical algorithms were devised to make
sure the state fractions stay in the unit interval [61, 62].

This review is organized as follows. We first briefly
discuss the original HH model in terms of determinis-
tic differential equations and introduce the subunit-
based and channel-based approaches. Then, in
section 3 we discuss the stochastic modeling using the
master equation approach with discrete state variables.
Here we also briefly review the numerical algorithms
for discrete simulations. Section 4 introduces the stan-
dard methods to derive Langevin equations and their
application to the subunit- and channel-based
approaches. We also discuss in detail the various
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recent efforts of efficient Langevin modeling for the
two approaches. The open questions for future study
are addressed in section 5.

2. Hodgkin—-Huxley (HH) Model

In this section, we briefly recapitulate the deterministic
HH model [2] and the two basic approaches for
channel and subunit modeling. The two approaches
lead to equivalent descriptions as long as the determi-
nistic case is considered.

2.1. Deterministic HH Model

A single-compartment HH model is considered, in
which the neuronal membrane voltage evolution is
governed by [2]

—Cd—V = INa + Ik + IL + Istim, (D
dt

where V is the membrane voltage in millivolts, C
represents the membrane capacitance (usually set to
1 uF cm™2) and Iy, is the stimulus current added to
the neuron in uA cm~2. The values of Iy,, I, and I
are the currents of Na™, K*, and leakage channels,
respectively, given by

I = gnaPra(V = Ea)s @
I = gepy (V= Ee), 3)

and
L=g (V- E) )

where Eyx, = 50 mV, Ex = —77 mV, and E =
—53.4 mV are the reversal potentials of K*, Na', and
leakage channels, respectively, and g, = 120 ms cm™2,
g =36mscm % g =03 mscm 2 are the total
conductances for Na™, K", and leakage currents,
respectively. The values p, and py denote the open
fractions of Na* and K* channels respectively. In the
HH model, each Na* channel contains two types of
subunits, including three 1 subunits and one h subunit.
Each K™ channel is composed by four # subunits. If all
four subunits are in the activation (open) state, one
defines the Na* or K* channel to be open.

2.1.1. Subunit-based expression

The original HH model employs the subunit-based
expression of open fractions, py, and py, of Na™ and
K™ channels respectively. Taking the variables m, n,
and h as the open fraction of the m, h, and n types of
channel subunits, p, and py can be obtained exactly
with mh and n*, respectively. The evolution of open
fraction w = {m, h, n} can be expressed with the

relaxation equations:

dw

e ay(l —w) — B, w, where w = m, h, or n.
t

)
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Figure 1. Transition diagrams of (a) K¥ channel states and (b)
Na * channel states. The code indicates how many subunits in
the channel are in the open state. In (a) the code 4 means four
opening n subunits and therefore represents the open state of
aK" channel. In (b) the code 31 means three opening m
subunits and one opening h subunit, indicating the open state
ofaNa™ channel. The kinetic parameters o and 3denote the
transition rates between connected channel states.

Here, «,, and (3, are voltage-dependent subunit
opening and closing rates with the unit of ms~!. We
have

. — 0.1(V + 40) ’ ©
1 — exp[ — (V + 40)/10]

Bm = 4 exp[—(V + 65)/18], 7)

ap = 0.07 exp[—(V + 65)/20], (8)

By = ! ©

1+ exp[—(V + 35)/10]

for the my, and hy, subunits of Na™ channels, and

L 0.01(V + 55) ’ (10)
1 — exp[ — (V + 55)/10]
B, = 0.125 exp[—(V + 65)/80], (11)

for ng subunit of K channels.

2.1.2. Channel-based expression

Next, we describe ion-channel open fractions py, and
px with the channel-based expression, which is
equivalent to the subunit-based expression in the limit
of infinitely many channels. Here, the states of an ion
channel are regulated by the configurations of multiple
subunits and the dynamics through state transitions.
For the K* channels with four 7 subunits, a count of
open subunits defines a channel state, thus a K*
channel gets five distinct states, as shown in figure 1(a).
As to Na™ channels, there are two different types of
subunits, namely three m subunits and one h subunit,
thus the combination of the counts of open m subunits
and /1 subunit defines eight channel states, as shown in
figure 1(b).

By considering the mass action kinetics with the
transition diagram of channel states, the differential
equations that describe the trajectories of channel state
fractions are as follows [15, 20]:

PNa = V3,10 (12)
PR = X4 (13)
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¥ Ay, (14)
dr

X Ax, (15)
dt

where Ay, and Ak are transition matrices of Na* and
K™ channels respectively, which are derived from the
master equation representation of the transition
diagrams as illustrated in figure 1. Vectors Y = { Y}
with j =0, 1,2, 3 and k = 0, 1 in figure 1(b) and
X = {x;} withi =0, 1, 2, 3, 4 in figure 1(a) denote
the eight Na* channel states and five K channel
states, respectively.

The transition matrices Ay, and Ak are given as

follows
aNa(1) ﬁm 0 0
30[m aNa(2) zﬂm 0
0 2Oém aNa(3) 3/6m
A = 0 0 Qp  ONa(4)
ayp 0 0 0
0 ayp 0 0
0 0 ap 0
0 0 0 ayp
Bn 0 0 0
0 B, O 0
0 0 By, O
0 0 0 B
(16)
aNaG)  Om 0 0
3am ANa(6) Zﬁm 0
0 200 AaNa(7) ?’ﬂm
0 0 Ay aNa(g)
ak () ﬂn 0 0 0
4&,1 ax(2) Zﬂn 0 0
AK = 0 304,1 ax 3) 3ﬂn 0 (17)
0 0 20[,1 ax (4) 4ﬁn

0 0 0 Qy  dK(5)
In equations (16) and (17), the diagonal elements
are given by

8
0aNa (l) = ZANa (j) l))

j=i

5

j=i

Here the non-diagonal elements Ay, (j, i) or An, (, 7)
denote the j — i transition rates.

Given the normalization constraint of the chan-
nel-state fractions, the dimensions of the transition
matrices can be reduced by 1. In the model, one typi-
cally keeps the numbers of both the Na* and K* chan-
nels fixed with the number of the Na* channel three
times as big as that of the K™ channel. By changing the
membrane area, both the sodium and potassium
channel numbers are changed. Thus, if not specified
otherwise, we denote the K™ channel number by Nin
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the following, and the corresponding Na™ channel
number is then given by 3N.

3. Master equations and stochastic
simulation algorithms

The gating behavior of ion channels is subject to
microscopic fluctuations producing random changes
in the ion current (channel noise). This noise origi-
nates from fluctuations in the gating transition
because of the discrete molecule numbers and
becomes more influential when the number of parti-
cles is small. Since smaller extensions of action
potential-carrying membranes decrease the number
of ion channels per axonal length, miniaturization of
neuronal structures comes with the disadvantage of
larger noise. With channel densities of a few tens per
,umz, Faisal, White and Laughlin found a lower limit of
0.1 pm axonal diameter for reliable transmission of
membrane potentials [11, 63]. Furthermore, noise
becomes significant at diameters of 0.5 ym and less.
Analysis of anatomical data showed that many neu-
rons from the cortex or cerebellum are in fact in this
fluctuation range [11].

For small channel numbers, the standard repre-
sentation of chemical reactions, namely the differ-
ential equations based on the law of mass action, need
to be replaced by the corresponding master equations,
where the reactions or gating transitions are treated as
Markovian birth-death processes. As an example, we
consider the evolution of a number of subunits that
transition between two configurations (active and
inactive) with rates of activation and inactivation a,,
and (,, as above. Taking k to be the number of sub-
units in the open or active state and N the total number
of subunits, we obtain as a master equation:

Pk 1
dt
— (N = k)P(k, 1))
+ Bk + Pk + 1, 1) — kP(k, 1)),

(N — k+ )Pk — 1, 1)

(18)

where P (k, t)is the probability of having k subunits in
the open state at time £.

While master equations can be solved for simple
cases in an analytical way, this is not practical in the
case of more complex master equations, involving
many channels or many different receptor states. For
instance, for a subunit-based model with three types of
binding sites, we need to determine the evolution of a
probability P (k,,, kj, k,, t) in a three-dimensional
occupation number space. For the channel-based
model, the probability in an even larger space must be
tracked. In this case, solutions can be obtained by
Monte Carlo methods, where exemplary trajectories
are calculated using random numbers in a way appro-
priate to the transition rates. Single trajectories can
then be collected to obtain statistical features of the
system.
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A foundation of stochastic simulation algorithms
was given by Gillespie [52, 53]. The approach is based
on the notion of a propensity g, for each possible tran-
sition or reaction R;. Then

a;dt = h;c;dt (19)

is the probability that reaction R; occurs during the
next infinitesimal time step dt. Here ¢; denotes the
reaction constant of R; (the probability density that a
combination of molecules reacts) and h; is the number
of particle combinations of that particular reaction.
For instance, in the case of a mono-molecular
reaction, A — B, h equals X,, where X, is the
number of A-molecules in a certain well-mixed
volume V, and c equals the macroscopic rate k of the
transition. Similarly, for A + B — 2A, h = X3 Xp
and the macroscopic k = ¢V. If a reaction is called,
the corresponding numbers of participating molecule
species, Xj, j = 1, ..., K, are updated according to the
stoichiometric factors, which are conveniently placed
into a matrix, j;, defined as

vjj = change in the number of X

molecules produced by one R; reaction. (20)

Using the stoichiometric factors one can write the
general form of the chemical master equation for the
probability P (x, t)as

gP(x, t)= Zaj(x —Vj))P(x —vj 1)
ot F
—aj(x)P(x, t). (21)

Here x is the vector of occupation numbers for X;and
vV, = (V,‘]' )j.

The stochastic algorithm determines the time of
the next reaction and which reaction it will be, given
the state X = (X, X, ...) at the starting time #. Let
Py (7) be the probability that no reaction will occur in
(t, t + 7) and a; = a;(X) the propensity at time ¢.
Since 1 — Ei a;dr is the probability that no reaction
will occur in d7, where the sum’s index runs over all
reactions, we find that

Po(t + dr) = PO(T)(l — Zaidr) (22)

is the probability that no reaction has occurred in
(t, t + 7+ d7r). The last equation implies that
Py(T) = exp( — Eiaﬂ'). On the other hand, the
probability that the next reaction is R; and it occurs in
(t+ 7, t+ 7+ dt)is P(1, i)dt = Py(7)a;dt, i.e.,

P(r,i) = a; exp(—aor), (23)

where aq = Zi a; is the sum of all propensities. The
probability density P (7, i) can be implemented by
drawing two random numbers r; and r, from a
uniform distribution in the interval [0, 1], and choos-
ing 7 and i such that

Y Huanget al

i+1

i
ag:T = ln(l/rl), Zaj Lap-n< Zaj.
j=1 =1

(29)

In this way, the next event to occur is R; and it will
occur after time 7. This method is the so-called direct
method [52]. Variants, which differ in the application
of random numbers, are the first [52] and next
reaction methods [64].

The method described above allows us to obtain
exact solutions of the chemical master equations. A
simpler method, sufficiently accurate for many cir-
cumstances and also used in discrete simulations
below, is to choose a small time step 7 and then use the
propensities as a conditional probability for each tran-
sition during a time step 7.

4. Langevin approaches

4.1. General remarks on the chemical Langevin
equations

In many systems the number of different reactions is
so large that simulation with the stochastic algorithm
described above is computationally demanding. For
example, a single axonal membrane patch may contain
several thousand channels of different types and with
complex gating schemes [57]. Under those conditions,
solution of the master equation in an exact way, i.e., by
considering all discrete transitions, is inefficient
because the number of required random numbers
scales with the number of channels. To overcome this
problem, several reduced stochastic approaches have
been developed. The following outline, leading to
approximate stochastic differential equations, focuses
on the derivation of the chemical Langevin equations
put forward by Gillespie and emphasizes the relation
to propensities discussed above as well as computer
simulation methods. In the limit of large channel
numbers one recovers the reaction rate equations
discussed in section 2. Relations of Gillespie’s deriva-
tion to the asymptotic expansions are discussed
in[65].

We begin with a brief discussion of the 7-leap
method. 7-leaping allows the collective execution of
several instances of each reaction during one time step
of length 7 [66]. Here 7 must satisfy the following
condition:

(i) 7 is small enough so that no propensity changes
substantially during this time (leap condition),

i.e. the reaction channels decouple at this time scale.

The number of realizations of reaction R; during time

7is then given by the Poisson distribution

(aiT)*
k!

I){Z,',T (k) =

e—a,'T
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The method is numerically efficient only if 7 can be
chosen relatively large, so that the number of drawings
of random numbers can be kept small.

If changes in occupation number during a time
step 7 are large, the Poisson distribution can be
approximated by a Gaussian distribution for the num-
ber of realizations:

G(a;7, a;7) = a;7 + Ja;,7G(0, 1), (25)

where G (m, v) describes a Gaussian variable with
mean m and variance v.

It follows that under the condition (i) and if,
additionally,

(i) 7 is large enough so that any reaction occurs
multiple times during each time step 7,

the evolution can be approximated by using the Gaus-
sian distribution instead of the Poisson distribution
[67]. This effectively means that the evolution law can
be written in the form

Xi(t+ 1) = X;(0) + > _viaiT + Y v @t
(26)

where &; denotes Gaussian variables with zero mean
and unit variance. For small 7, a stochastic differential
equation is obtained that corresponds to the Langevin
equation for random walks but with state-dependent
steps.

The conditions (i) and (ii) may be conflicting. This
happens particularly if a single step of one reaction
causes large changes in the propensity of another reac-
tion. The value of 7 must be small enough to accom-
modate the leap condition (i) for the second reaction.
However, then condition (ii) may not hold for the first
reaction and its number change cannot be approxi-
mated by a Gaussian distribution. If both conditions
(i) and (ii) hold, and the product a;7 becomes large,
the noise term in the chemical Langevin equation is
small compared to the deterministic term and it can be
neglected. In those circumstances, we recover the
deterministic reaction rate law.

The Langevin equation (26) as derived by Gillespie
requires one Gaussian process per reaction channel.
Depending on the specific Markov chain, or more pre-
cisely, the form of the stoichiometric matrix v, the
number of independent stochastic terms can be
reduced [68] and the form of the noise terms is not
unique. An equivalent Langevin equation can be
obtained by using one independent stochastic process
per reversible reaction. In the case of the activation
and inactivation of subunits, equation (26) requires
two random processes, but those two entries can be
replaced with one entry combining the two noise
amplitudes (see equation (30)). A more complex
application of this reformulation occurs for the case of
channel-based models in section 4.3.

Y Huanget al

An alternative derivation of the chemical Langevin
equation is based on the Kramers—Moyal expansion.
Here one expands the function f] (x) = a;j(x)P(x, 1)
in x for small jumps vj. Inserting in the master
equation (21) and truncating the expansion after the
second order yields the Fokker—Planck equation

AP (x, t) K9
T = — ;ija—xkaj(x)})(x, t)

iaj x)P(x, t).
X1

1 K
+ — VAkVAl_
zzj:’ " 0 0

(27)

This equation corresponds to a set of Langevin
equations

dXi(®) _ S via (X (1)
dt j
+ S i Ja X ) Tj(t),
j

where the I'j(¢) are Gaussian white noises with zero
mean and unit variance [67, 69]. These equations
equivalent to those of equation (26).

Several authors have studied the behavior of solu-
tions to the Fokker—Planck equation for bistable sys-
tems and found substantial differences to the solutions
of the original master equation [70, 71]. Most impor-
tantly, this difference persists even for the case of very
large particle numbers. It is interesting to think about
the breakdown of the continuous approximation in
this case in terms of the two conditions posed by Gille-
spie. However, a detailed discussion of this issue
would be out of the scope of this review, where instead
we focus on the case of approximation errors for small
and intermediate channel numbers and how they are
related to multiple noise sources from subunit and
channel transitions.

4.2. Subunit-based LA

The gate-kinetic Langevin approach (subunit-based
LA) was first suggested by Fox and Lu in the Hodgkin—
Huxley neuron model [15, 20]. In the subunit-based
LA, the source of internal channel noise is supposed to
be the stochastic gating of channel subunits. Because it
is easy to implement and computationally efficient,
the subunit-based LA was widely used as an approx-
imation for stochastic HH channel dynamics [55, 57—
59, 72-74] and other channel systems [39, 40, 75].
Note that the subunit open fraction may be out of the
range of [0, 1] due to the addition of Gaussian noise,
especially at small channel number. In order to ensure
a fraction in the unit interval, a simple cut-off
procedure is applied to set the subunit fraction at 0 or
1 when the fraction becomes smaller than zero or
larger than 1.
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4.2.1. Identical subunits

a. Fox—Lu’s subunit-based LA. In this approach,
subunits of the same type are identical, implying that
subunit open fractions can be calculated by averaging
across all subunits with the same type. Thus, the
stochastic version of deterministic subunit-based
expression in equation (5) can be rewritten [15, 20]:

d—W = Oéw(l — W) - /BWW + O'Wgw(t)’
dr

(w = m, h, or n), (29)

where &, (¢) is a Gaussian white noise with zero mean
and unit variance, and ¢;, denotes the intensity of the
noise and satisfies the equation

_ \/aw(l 7W)+Bw
Oy =
N;

, (30)

where N; denotes the count of Na™ or K" ion
channels.

With respect to the HH neuron model, it has been
shown that the subunit LA underestimated channel
noise for the subunit LA [55-57, 76]. As a result, the
subunit LA should be modified to give a better statis-
tical result.

b. Rounding of the open channel number. Rubin-
stein et al first reported that the Fox—Lu subunit LA
produced different action potential statistics (includ-
ing the firing efficiency and mean latency for the neu-
ron responding to a monophasic pulse) from the
Markov method for simulations with 1,000 Na*t chan-
nels [76]. They suggested that the number of the open
Na* channels should be rounded down to the nearest
integer so as to be consistent with the integer values
produced by the Markov method. Later, Bruce argued
that a rounding algorithm to the nearest integer for the
number of open Na® channels could improve the
accuracy of the Fox—Lu subunit LA [55].

When responding to a monophasic pulse, the
initiation of an action potential in the HH model is
highly dependent on the number of open Na™ channels
and consequently may be sensitive to any rounding of
the open Na* channels’ number. In detail, compared to
the rounding algorithm to the nearest integer, the
rounding down treatment always underestimates the
number of open Na™ channels which causes a current
to trigger the action potential. Even with 1,000 Na*
channels, the accumulation of small neglected quan-
tities can lead to a statistical difference. As a result, the
rounding down treatment may produce a decrease in
firing efficiency and an increase in the spike latency.

¢. Rescaled noise intensity. Because the subunit LA
underestimates the channel noise, a simple idea is then
to rescale the noise intensity added to the subunit frac-
tion [77]. By rescaling the noise intensity with an
empirical factor, equation (30) will become

o, = )\W\/aw(l 7 W) + 5w (31)

N;
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where the constant )\,, is used to rescale the noise
intensity.

Huang et al first discussed the rescaled subunit-
based LA for localized intracellular calcium signals
(Ca’* pulffs) released from a cluster of IP;Rs in the ER
membrane [78]. Because a larger mean Ca’* con-
centration is obtained with the identical subunit LA
than that with Markov method, indicating an over-
estimation of channel noise, a factor of A\ = 0.7 has
been suggested [78] for stochastic IP;R channel noise.
The rescaled subunit LA can reproduce the mean Ca?*
concentration even at a channel number around 10.

4.2.2. Independent subunits
For the identical subunit-based LA, subunits of K*
channel and Na' channel of the same type are
disturbed by identical Gaussian noise. Actually, sub-
units in a channel are independent, implying that each
subunit has distinct contribution to the open fractions
of the ion channel. For example, the subunits in a K"
channel can be distinguished by ny, np, n3 and ny. For
the Na™ channel a similar consideration follows. As a
result, ion-channel open fractions can be expressed by
Prna = Mimymzhy and py = mmnsny and each sub-
unit can be disturbed by a different Gaussian noise.
This approach was first mentioned in [40] to dis-
cuss the stochastic IP;R channel dynamics to release
Ca®" puffs. Later, Huang et al and Goldwyn et al
implemented it [58, 78] in calcium and neuron mod-
els, respectively. Although the consideration of inde-
pendent subunits is biologically more realistic, for the
stochastic HH neuronal model Goldwyn et al indi-
cated that independent subunit LA gives worse action
potential statistics than the identical subunit LA [58].

4.3. Channel-based LA with standard diffusion
matrix

In recent years there have been a number of publications
that aim at derivation and simulation of channel-based
Langevin equations [58, 60—62, 79-84]. The channel-
based LA was already described by Fox and Lu using the
system size expansion [15]; however, the resulting
scheme was not implemented until very recently by
Goldwyn et al [58]. We discuss the implementation by
Goldwyn et al [58], which is based on a numerical
calculation of the matrix square root needed for the Fox
and Lu channel-based LA. We also discuss the issues of
the boundedness of state fractions [62], and the
discretization of open channel numbers [81].

Despite the possibility of such a straightforward
and accurate noise representation, there remains the
problem that in the channel-based approach the num-
ber of equations is much larger than in the subunit-
based approach. In a different method, several
researchers have tried to preserve the original determi-
nistic HH equation structure, but including an effec-
tive noise from the channel-based description. This




IOP Publishing Phys. Biol. 12 (2015) 061001

noise is then added to the deterministic channel frac-
tion within the voltage equation. For this line of incor-
porating channel noise, we here discuss the
approaches by Linaro et al [79], and Giiler [82].

4.3.1. Channel-based LA with unbounded state fractions
a. Quasistationary approach (original Fox—Lu LA). To
consider the channel noise together with the determi-
nistic channel-based HH model, the evolution of
channel state fractions can be traced by the following
stochastic HH differential equations [15, 20]

Y
W AWY + Sl (32)
dt

dx

o = AxX + Sk (33)

where &, and & are noise vectors with each element a
Gaussian white noise with zero means and unit var-
iances. The values of Sy, and Sk are the matrix square
roots of diffusion matrices Dy, and Dk, respectively,
which depend on the state variables and the voltage-
dependent subunit opening and closing rates.

The diffusion matrices Dy, and Dg are given as

follows:
DNa = !
Na
dNa(l) —(306,,1}/00 + ﬁm}’lo)
7(305'”}/00 + 5"1)/10) dna (2)
0 72(0%)’10 + 5110'20)
0 0
7(0‘}0’00 + ﬂh)’m) 0
0 _(Oéh)’w + 5}1)'11)
0 0
0 0
0
—Z(amylo —+ Bm)/zo) 0
dna (3) —(ozmyzo + 357}1)’30)
*(O‘m}’zo + 5mY3o) da (4)
0 0
0 0
_(O‘Wzo + 6h)/21) 0
0 _(O‘h)’ao + ﬂh}’sl)
_(O‘h}’oo + ﬁh)’()l) 0
0 _(O‘Wm + ﬂh}’n)
0 0
0 0
dNa(S) _(304771)/01 + ﬁm}’n)
—(3Ozmy01 + ﬂm}’n) dna (6)
0 72(04’")/11 + ﬂm}’n)
0 0
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0 0
0 0
_(O‘Wzo + 5}1)’21) 0
0 _(ahym + ﬁh}%l)
0 0 (34)
_Z(O‘myu + /Bmyzl) 0
dxa(7) —(Cmn + 3By
~(mysy + 38y, ) dna (8)

dy (1) —(4oznxO + ﬂnxl)
1 *(40&,13(?0 + ﬂn-xl) dK(z)
Pre= N_K 0 —(304,1x1 + Zﬂnxz)
0 0
0 0
0
f(3a,1x1 + 2ﬁnx2) 0
dx (3) — (2002 + 36,x3)
—(2anxz + 3ﬂnx3) dx (4)
0 —(anxz + 4ﬁnx4)
0
0
0
— (s + 48,4 ) .
dx (5)

For Dy, and Dy in equations (34) and (35), the
diagonal elements are given by

8
dna (i) = = ) Dra(jy )

j=i

5
dx (i) = — Y _Dx (s ).

j=i

Due to the Gaussian noise terms added, channel
state fractions are no longer guaranteed to lie on the
bounded domain, but have a probability of violating
the meaningful interval [0,1]. Since Goldwyn et al
allow for simplicity that fractions evolve unbound-
edly, for values outside [0,1] the positive-semidefinite-
ness of diffusion matrices may not be given thus
hindering the computations of the matrix square
roots. For the implementation of this model, the use of
equilibrium values of channel state fractions (see
equations (36) and (37) for each given time-depending
voltage V) was therefore suggested in [58], and is
known as the quasistationary model. However, using
this approximation, the mean period of interspike
interval at large channel number is significantly
underestimated. This problem has been reported in
[60, 62].
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(4 s
Xi = (l.)m (36)
(3 __ahB el
e (37)
i (]) (am + ﬁm)S(ah + ﬁh)

b. Orio et al approach (Orio LA). Orio et al pro-
posed a simple structure of the square root matrices to
solve the stochastic HH differential equations:

dY rio

— =AY + S9ree, (38)
dt

dx :

- = AKX S (39)

In this approach, the Cholesky decomposition
was extended to solve the stochastic terms of
complex kinetic schemes, such as the 8-state sodium
channel. For instance, the random term for i is equal
to the square root of the sum of the forward (i — j)
and backward (i < j) transition probabilities for the
transition pair i <5 j, scaled by the inverse of
the channel number. The square root in the square
root matrices Sor® and SO in equations (38)
and (39) was applied to the absolute value of the
argument.

As a consequence, the channel-state fractions are
free to evolve without any approximation to the diffu-
sion matrices [60]:

1 0 0 1 0
-1 1 0 0 1
0 -1 1 0 0
goro _[ 0 0 -1 0 0
Na 0 0 0 —1 0
0 0 0 0 -1
0 0 0 0 O
0 0 0 0 O
0 0 0 0 0
0 0 0 0 O
1 0 0 0 0
01 0 0 0| Fu
0 0 1 0 0/Nw (40)
0 0 -1 1 0
-1 0 0 -1 1
0 -1 0 0 -1
1 0 0 0
SOrio -1 1 0 0 FK ( )
=10 -1 1 0 , 41
0o o0 —1 1 [Nk
0 0 0 -—1

where Fy, and Fg are 10 x 10 and 4 x 4 diagonal
matrices and their elements on the diagonal are
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V3 + B
V20ung + 2B
N amy + 3Bmyso
VYoo + By
Vo + By
oy + Bury
Jonyso + Buysy
V3omyo, + By
N
Jany + 3Buys

and

respectively.

Instead of the five and eight random terms in
equations (35) and (34) suggested by Fox and Lu [20]
and implemented by Goldwyn et al [58] for K and
Na" channels, the simplified formulations proposed
by Orio et al require four and ten random terms,
respectively. Although one more random term is
added, the expensive matrix operations are avoided,
greatly reducing the total computational cost during
the numerical simulation [84]. Such a simpler expres-
sion for the diffusion matrix results with the fulfill-
mentof SST = D.

4.3.2. Channel-based LA with bounded state fractions
Both the quasi-stationary approach and the Orio
approach do not consider any bounding procedure to
limit the channel state fraction between 0 and 1. When
the number of channels is sufficiently large, the
unbounded approaches are able to reproduce a
quantitatively accurate approximation to the exact
Markovian chain simulation, such as the mean and
variance of the open fractions [58, 60]. It seems that
the effect of the free boundary is only relevant at small
channel number due to the large Gaussian noise. For
instance, as illustrated in figure 2, two typical spikes
are generated by the original unbounded Fox—Lu
approach with the number of K™ channel equal to 10.
Instead of inhibiting the spiking, the negative open
fraction of the K* channel at the initial stage of spiking
might trigger a spiking or an overly depolarized phase.
However, even at large channel number, the Gaus-
sian noise can frequently drive the open fraction to be
negative. At large channel number without stimulus,
the channel noise becomes weak and the HH channel
frequently stays at the quiet state. Thus the open
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Figure 2. Trajectory of voltage (gray) as well as open fractions
of potassium (pink) and sodium (green) channels. The
channel number is 10. Here the stimulus current Iy, = 0.

fractions of Na™ and K™ channels should often reside
at zero. As a result, even a small Gaussian noise can
easily drive the open fractions to become negative. The
probability of negative channel-state fractions still
remains high (about 10%) even at N = 5000, especially
for Na™ channels [62]. One may argue that such a
small negative open probability could induce little
effect on stochastic action potentials. However, simu-
lation results showed that suitable probability-boun-
ded LA can improve the stochastic simulation
substantially. In the following, we discuss several
numerical algorithms applied to the original master-
equation LA, aiming at solving the boundary problem.

a. Simply bounded approaches. The overflowing
part of any channel state fraction can be simply trun-
cated and then those coupled and truncated state frac-
tions are normalized again so as to ensure persistent
satisfaction of the normalization constraint,
Y% %—0,0/ = 1.0 forNa® channels and 35 ox; = 1.0
for K™ channels. However, as pointed by Huang et al
[62], this simple truncated scheme could not repro-
duce the channel noise correctly for N < 2000,
requiring better bounded schemes. Alternatively, one
can ignore the large noise and retry new noise terms in
one simulation step until the boundary condition is
satisfied eventually [85]. In fact, applying a small noise
just means to generate an uncorrect channel noise in
the model, similar to the simple truncated scheme.
This scheme would also greatly slow down the speed at
small channel number.

b. Reflecting approach (reflected LA). A reflected
scheme was first applied to limit the neuron channel
state fractions within the biologically meaningful ran-
ges through incorporating the reflecting process with
an orthogonal projection method into the evolutions
of SDEs [61]. The approach adds reflecting processes
Ry, and R to the stochastic differential equations to
deal with the behavior of the open fractions Y and X
on the boundary. Such a reflecting process is a mini-
mal procedure which forces the open fraction to
remain in the interval [0, 1] [61]. Mathematically, it
computes the projection of a vector onto the canonical
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simplex which satisfies the condition of the open frac-
tion in [0,1] and ensures that their sum equals a unit
[86]. The numerical expressions are given by

Y(t + Atr)
=Y() + Ana Y() At

1
+ ——Lna N at\/At
\/m N]NgN()

+ ARna (D), (42)
X(t + A
=X() + AxX(t) At
L ke (OVAT + AR, (43)

JAN

+

where the reflecting processes Ry, and Rk can be
foundin[61].

The production of Ly and Jx or Ly, and Jy, is the
alternative representation of the square root matrix Sk
or Sna. In fact, the square root matrices are non-
unique, i.e. there are different matrices S such that
SST = D. In [68] it was shown how the matrices S can
be explicitly chosen to allow an efficient numerical
implementation that does not require the time-con-
suming matrix square root calculation. A particular

: e ol LnaJNa LxJx
choice for Sy, and Sk is given by = and =—
JANy, JANg

respectively. The matrices Ly,, Jna» Lx, and Jx are
provided in [61]. It was pointed out and will also be
shown below that the efficiency of channel-based LA
can be significantly enhanced with these noise term
representations [61, 62, 81].

The action potential statistics, including the mean
action potential, the mean spike amplitude and the
mean interspike interval from simulations of ion-
channel dynamics using the reflected SDE have been
compared with those derived from the discrete-state
Markov method [62]. It has been shown that the
reflected approach is invalid below the channel num-
ber of 500 [61, 62, 84]. This is mainly because the
reflecting method actually applies smaller noise by
ignoring the extra open fraction out of [0, 1] with a
projection process.

¢. Truncated and restored approach (truncated-
restored LA). The failure of the reflected LA may be
partly due to simply throwing away the non-mean-
ingful state fractions after the reflecting procedure.
Huang et al demonstrated that the restoration after a
bounded operation is an essential step, which puts the
changes of the channel state fractions after a bounded
process back to the SDEs at the next simulation step
[62]. Taking K* channels for an example, the vector
E(¢) is truncated from X at time ¢ and then added to
the SDEs at the next time step t + At to get a tempor-
ary vector K(¢r + At). Once again, the bounded pro-
cess is executed to get the truncated vector E(t + At).
As aresult, the two continuous restoration steps define
the following two vector equations:

10
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K(t + At) = X(1) + AcX(0) At + S (DAt
+ E(1),
(44)

X(t + At) = K(t + At) — E(t + Ar), (45)

Putting equations (44) and (45) together, the itera-
tion equations can be expressed as:

X(t + Ar) = X(t) + AxX(t) At

+ (Sk&® + me)VAL,  (46)

(E(t + At) — E(t))
JAt ’

where the vector 7y (1)) = {¢;(t)} with elements
{e,(t) G =0, 1, 2, 3, 4). The truncated vector
Mna (1)) = {5k (t)} corresponding to Na™ channels
can also be defined in a similar way. The reason why
the restoration process is indispensable for a bounded
method is that it maintains the mean of the state
fractions derived analytically from the channel-based
Fox-Lu approach in [58]. For example, after two
continuous simulation steps, the bounded state frac-
tion is X(t + At) + E(t) — E(t 4+ t). As a result,
the average of the state fraction can be reformulated to
be (X(t+ At)) + (E()) — (E(¢r + 6t)), where
(E(¢)) = (E(t + 6t)). By comparison of the action
potential statistics, including the mean action poten-
tial, the mean spike amplitude and the mean interspike
interval, the truncated and restored LA show a good
agreement with the Markov method even at the
channel number about 100.

Combining the restored process with the reflected
approach, the simulation accuracy is as good as the
truncated and restored LA [62]. Thus, the failure of the
reflected approach in [61] occurs because the reflec-
tion process simply throws away the extra values of the
state fractions. However, with the restoration process
to put the truncated fractions back into the state frac-
tions in the next time step [62], one can accurately pre-
serve the strength of the Gaussian noise for channel
stochasticity. Another conclusion is that after con-
sidering the restoration of the truncated noise, a time-
correlated colored noise is introduced in the simula-
tion method [62].

nx (1) = (47)

4.3.3. Channel-based LA with discretized open fraction
Typically, the Langevin approaches could not accu-
rately replicate the properties of the Markov model at
small channel number. However, an effective contin-
uous-to-discrete treatment was proposed in [81] in
order to capture the discrete behavior of the channel
open fraction especially for small membrane patch
areas. Assuming that x4 (¢) is the channel open fraction
at time t, then the integer number of the open channel
derived from x4 has two possibilities: one is the
maximal integer Nk open— that is smaller than x, Nk
and the other is the minimal integer Nk opens that is
bigger than x4 Nx. Thus, a parameter 0 is proposed to
define the propensity to the two cases. As a result, if
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x4Ng < (NK,openf + 91()’ (48)
one sets
Px = Nk,open—> (49)
and, otherwise,
Px = Nk opent- (50)

From the calculations of the mean and standard
deviation of the open fractions of Nat channels,
Huang et al found that the open fraction of Na* chan-
nels is sensitive to parameter 6y, thus it is of impor-
tance for the Na™ channel to choose a proper 6y, with
respect to the adopted continuous LA. As suggested in
[81], the optimal choice is for K" channels, fx = 0.5,
while for Na™ channels, 0y, = 0.4. It has been shown
that at small channel number the discretization proce-
dure can better mimic the trigger behavior of the sto-
chastic channel dynamics, giving an improved
stochastic description [81]. Rubinstein et al and Bruce
previously suggested different rounding methods with
subunit-based LA [55, 76], which are actually special
cases of this discrete method.

4.4. Channel-based LAs with effectively colored
noise

Apart from Fox and Lu’s channel-based matrix
method, different approaches have also been suggested
to directly add effective noise to the channel open
fraction to preserve the structure of the HH equation.
As a result, different forms of colored noise have been
proposed to be added to channel conductances in
these effective LAs. Here, we discuss two representa-
tive approaches of this class introduced by Linaro et al
and Giler [79, 82]. Again, in principle the open
probability should be confined by 0 and 1. However, in
order to achieve an adequate numerical approxima-
tion to the interspike interval statistics of the Markov
method, the open fractions were set free to evolve
without boundary conditions. As a result, the simula-
tions of these two models would break down at small
channel number. It was claimed by Linaro et al that
their model is valid under the condition that the
channel number is large. Therefore, with respect to
these two effective approaches, we will not discuss the
case of small channel number, suchas N < 500.

4.4.1. Linaro et al approach (Linaro LA)

In this model, colored noises are added to the channel
open fraction [79]; see also [58]. The noise is derived as
an approximation of the fluctuations in the open
channel count for a fixed number of subunits in the
gating states n, h, and m. These gating variables
describe the fraction of open subunits in the mem-
brane patch, while the changes in membrane potential
are determined by the open channel number. For
infinite channel number, of course, the products m’h
and n* determine correctly the open fractions, but at
finite channel numbers binomial distributions govern
the open counts at fixed voltage. These distributions

11



10P Publishing

Phys. Biol. 12 (2015) 061001

can then be approximated by Gaussian distributions.
In [79], the noise is given by the sum of a set of
independent Ornstein—Uhlenbeck (OU) processes,
which describe colored Gaussian noise:

7
Prna = M + in, (51)
i—1
4
px = n*+ > ¢ (52)
i=1

The deterministic gating variables w = {m, h, n} still
obey equation (5). The 11 new stochastic variables ;
and (; are written as follows [79]:

dv.

TNa,i fllt(t) = _Xi(t) + ONa,i/ 27—Na,i€Na,i(t)> (53)
dc.

TK,i% = —((t) + ox,i27k,i & (1), (54)

where on.i» Ok TNai» Tk, are voltage-dependent
expressions, which can be found in [79]. &, ;(t) and
&k ; () are also Gaussian white noises with zero means
and unitary variances.

4.4.2. Giiler approach (Giiler LA)

This model, like the Linaro et al approach, intends to
preserve the original structure of the HH equations
and to take into account the fluctuations related to
channel states. Noise is added to both the gating
fractions and the conductance. The model distin-
guishes the uncertainty in the number of gating
fractions from what is here called the gate-to-channel
uncertainty. The latter refers to the different config-
urations in which a given number of, say, n-gates can
be distributed to the channels resulting in a variability
of the open channel number. To take the gate-to-
channel uncertainty into account, the author intro-
duces equations of motion of Brownian harmonic
oscillators to formulate colored noise terms [82]. The
full set of equations for the noises is then

, m3(1 — m3)
=m’h + | —— g, 55
pNa NNa qNa ( )
. n4(1 — n4)
=n* 4+ || —>q, 56
Px Ne qdx (56)
qua
Na = R 57
N dt PNa ( )
dgg
K— = s 58
K dt PK ( )
d
TNa (P;I:a = — YNaPna — UIZ\Ia‘SNana

+ YNa TNa 6Na gNa) (59)

d
TK% = —kPx — VkOkaqx + 1 Tkdkée  (60)

where the parameters 7y, and 7 correspond to the
unit time of 0.01 ms. The én, = o, (1 — m) + B,,m
or 6x = a,(1 — n) + B,n describe how fast a chan-
nel state loses memory at a microscopic timescale. The
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constants vy.,, Y UNa» Uk> Ina and Tx and the
variables q,, Pna»> x> and py are all nondimensional.
The values of these constants can be found in [82]. The
& and &, are Gaussian white noises with zero means
and unitary variances. Gate variables m, 1, and h have
the same expressions as in the identical subunit-
based LA.

4.5. Comparison of different LAs

In order to discuss the performance of Langevin
approaches, different action potential statistics have
been investigated and compared with the Markovian
HH model. These statistical parameters include the
steady state statistical properties (i.e. mean, standard
deviation, autocorrelation) of the fraction of open
channels under voltage clamp [58, 60, 61, 78, 79], the
statistic behaviors responding to stimulus current
pulse (i.e. firing efficiency, mean and standard devia-
tion of spike latency, and jitter) [55, 79], the statistic
action potentials responding to DC current (i.e. mean
and standard deviation of action potential, the
interspike interval, spike amplitude and spike width)
[60, 62, 78, 79, 81], the power spectral densities of
membrane voltage [79], the information rates of
spiking and nonspiking membranes [57], and the
bifurcation diagram of the membrane voltage against
DC current [62].

By comparing different statistical variables, differ-
ent evaluations on the performance of LAs are derived.
In this review, we will mainly focus on the comparison
of the action potential statistics responding to DC cur-
rent, including the mean and standard deviation of
action potential, the interspike interval, and spike
amplitude.

The number of K channel ranges from 500 to
5000 in most calculations in the paper. The running
length was 250s for the simulations of Langevin
approaches and extended to 500s for the Markov
method when the number of K channel is larger than
3000. When the increasing voltage passes a threshold
like -60 mV and the reached peak before going back to
the threshold is at least 30 mV higher than the thresh-
old, the action potential is recorded. In this way, the
aborted spikes with small amplitude can be discarded.
The implementation of the Markovian method fol-
lows the protocol as described in II. C of [62].

4.5.1. Subunit-based LAs with rescaled noise

The subunit-based Langevin approaches are obtained
by approximating the Markov model through adding
Gaussian noise terms to the differential equations of
subunits [15, 20]. Thus, although the Langevin
approaches will be invalid at small channel number,
one may expect that the Langevin approaches would
converge to the Markov model as the channel number
increases. However, in comparison to the Markov
model, Sengupta et al showed that the identical
subunit approach underestimates the channel noise,
resulting in an overestimation of information rates
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with channel number at 6000 Na™ and 1800 K*
channels [57]. This result indicates that the Langevin
model may not be suitable for accurately simulating
channel noise in neurons, even in simulations with
large numbers of ion channels [57]. The same conclu-
sion has also been drawn with other biological systems,
including the intracellular calcium signals [39, 40, 78]
and pancreatic 3 cells [42].

As shown in figure 3, both the identical and inde-
pendent subunit LAs underestimate the noise inten-
sity. As a result, in order to better approximate the
Markovian channel noise, Huang et al considered a set
of scaling parameters with A\,, > 1 (w = n, m, h) to
enlarge the noise intensity for subunit-based LAs [77].

There are three different types of subunit in the
HH model, thus a set of optimal factors A, A, and N,
were determined by comparing the error of the action
potential statistics between the standard stochastic
HH model and the subunit LAs. Numerical simula-
tions indicate that a varying of ), in the range of 1.0 to
3.0 has a negligible effect on stochastic activities by
identical subunit LA. This may be related to the fact
that the h-gate is a slow inactivation variable of Na™*
channels. As illustrated in figure 3, the identical sub-
unit LA rescaled by two optimized factors A, = 2.0
and A, = 1.8 provides satisfied mean voltage and
mean interspike intervals when compared with the
standard values [77]. The simulation results implied
that one could alternatively use such an adhoc
approach to find a set of parameters of A, A, and )\,
for the rescaled LA to nicely match the interspike
interval given by the Markov HH method.

With respect to the independent subunit LA,
simulation shows that a varying of \j, or A, has a neg-
ligible effect on the quantities of interest. Then
A= A, = 1 is considered only as A, is adjusted.
Simulation results are given in figure 3 with A\, = 3
[77]. Tt is evident that the computed quantities are
improved significantly and are comparable with those
obtained by the rescaled identical subunit LA. Here we
conclude that the independent subunit-based LA ben-
efits more from such a rescaling scheme than does the
identical method.

4.5.2. The limitation of subunit-based LAs

The assumption of subunit-based LAs has long been
challenged and has been demonstrated to be intrinsi-
cally inaccurate, because the subunit-based noise
fundamentally differs from that of the Markovian
chain model [58]. Although a simple LA can yield good
results for a large number of some ion channels such as
calcium signaling models [87], the accuracy is actually
model-dependent. For example, the identical subunit
LA provides stronger noise for the Li-Rinzel model
[78], but weaker noise for the HH model [17, 58]. Even
though the accuracy can be improved with the
rescaled-noise scheme for the HH model as imple-
mented here and for the Li—Rinzel model first
performed in [78], it is an adhoc approach that calls for

Y Huanget al

>

-60

62

<V> (mV)

64

10

w

Markov i
----- Ident-LA !
- - - Indep-LA s ;
_ 10005 o |dent-LAAm=1.8n=2.0 . 1
B & Indep-LA a=3.0, RS
x 5 ’
9 100+ & " 3
v PR oio
10 T Y
10 100 1000
N

Figure 3. The comparison of the mean membrane potential
(a) and the mean interspike interval (b) of the stochastic HH
model as a function of channel number N from 10 to 2000
among Markov method (solid line), Fox—Lu identical sub-
unit-LA (dotline), Fox—Lu independent subunit-LA (dashed
line), rescaled identical subunit-LA at A\, = 2.0, A\,, = 1.8,
and A, = 1.0 (solid circle) and rescaled independent sub-
unit-LA at A, = 3.0, \,, = 1.0,and A, = 1.0 (open square).

preliminary simulations to determine the scaling
factors.

Bruce has proposed that a source of the inaccuracy
is that the Fox—Lu subunit LA does not adequately
describe the combined behavior of the multiple activa-
tion of subunits in each Na™ and K channel [56].
Bruce suggested that the stochastic term added in the
dynamics of subunit fractions should be correlated
and have a non-Gaussian noise with a non-zero mean,
rather than an uncorrelated, zero mean Gaussian
noise.

By analyzing three LA models, i.e. the identical
subunit-based LA, the independent subunit-based LA
and the channel-based LA, Goldwyn et al showed that
the channel-based approach can capture the statistical
behaviors of the Markov HH model better than the
two subunit LAs [58]. This comparison indicates that
the temporal correlation in the channel noise is deter-
mined by the combinatorics of bundling subunits into
channels, but the subunit-based approaches do not
correctly account for this structure.

4.5.3. Statistics of action potentials by channel-based LAs
Now that subunit-based Langevin approaches fail to
converge to Markov dynamics even at large channel
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number [55, 56, 76], a timely question is to what extent
the channel-based LAs approximate the Markov chain
simulation. Unlike the subunit-based models, chan-
nel-based models consider the intrinsically coopera-
tive action of multiple gates that constitute a single
channel. However, the current difficulty is how to
properly carry out Fox and Lu’s channel-based model
or how to impose channel noise to govern the
conduction with different methods. This issue has
been partially discussed among the channel-based
matrix methods in [62, 81, 84]. In the current review,
we discuss if the statistical results obtained by these
LAs converge to those given by the Markovian
method. The discretized LA is not considered here
because it would not help improve the accuracy when
Nis bigger than 500.

As shown in figure 4, the mean voltage, spike
amplitude and spike width derived by these LAs con-
verge to the results by the Markovian method. How-
ever, some of them fail in higher order statistics,
including the skewness (equation (61)) and kurtosis
(equation (62)) of action potentials, which are defined
as

Zj\il(vi - V) )3

Skewness = M- Do (61)
M (i)

Kurtosis = zl:l( < >) -3 (62)
(M — 1)6*

where M is the number of data points, V;is the voltage,
(V) and 6 are the mean and standard deviation of V;
respectively. As shown in figure 5, except for the Orio
LA, the values of skewness and kurtosis obtained by
those unbounded approaches, i.e. the original Fox—Lu
LA, Linaro LA and Giiler LA, deviate from the results
given by the Markov method. However, the two
bounded approaches, i.e. the reflected approach and
truncated-restored approach, can replicate the two
values given by the Markov method.

The most important parameter is the spiking fre-
quency, or the interspike interval (ISI), because it is
believed to be used to encode neuronal information.
Besides the mean ISI, we also discuss the ISI distribu-
tion in detail. Figure 6 shows the difference of the
mean ISI obtained by the Markov method and the
Langevin approaches against the channel number. The
comparison in figure 6 clearly reveals the shortcoming
of some Langevin approaches. Among these LAs, the
truncated-restored approach as well as the unbounded
Orio’s approach remains accurate as the channel
number increases. Previously, it was demonstrated in
[62] that the restoring process is essential because
when the reflection is followed by the restoring opera-
tion, it can achieve convergence as well. The reflected
LA gives a longer ISI. This is because the strong noise
has been cut off during the reflected procedure and
smaller noise intensity produces longer ISIs. As to the
unbounded Orio approach, mainly due to the absolute
values applied in the square root arguments, the noise
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Figure 4. The comparison of mean membrane voltage (a),
spike amplitude (b) and width (c) as a function of channel
number N from 500 to 5000 for Markov method (solid line),
unbound Fox—Lu channel-based LA (dashed line), reflected
LA (green square), truncated and restored LA (red star),
Linaro LA (blue lozenge), Giiler LA (black plus) and Orio LA
(blue cross). Here the stimulus current I, = 0.

intensity is not affected as well. On the other hand, the
original LA and the two effective methods (Giiler LA
and Linaro LA) generate shorter ISI than with the
Markov method, indicating that the noise intensities
considered in these three LAs are larger than the Mar-
kovian noise.

The ISI distributions at the channel number of
1000 and 5000 with the stimulus current Iy, = 0 are
discussed in figure 7. At small channel number with
N = 1000, the ISI is mainly distributed in the range of
smaller than 300 ms because of the large channel
noises. Figure 7(a) shows that all these different LAs
can nicely reproduce the ISI distribution given by the
Markov method. However, at N = 5000, the reflected
LA, truncated and restored LA, Giiler LA and Orio LA
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Figure 5. The comparison of mean skewness (a) and kurtosis
(b) of voltage as a function of channel number N from 900 to
5000 among Markov method (solid line), unbound Fox—Lu
channel-based LA (dashed line), reflected LA (green square),
truncated and restored LA (red star), Linaro LA (blue
lozenge), Giiler LA (black plus) and Orio LA (blue cross). Here
the stimulus current Iy, = 0.

give better ISI distribution than the original Fox—Lu
LA and Linaro LA. The ISI distributions derived from
the original Fox—Lu LA and Linaro LA are over-con-
centrated in the region of small ISI.

Recently, Rowat and Greenwood calculated dis-
tributions of ISI of the neuron model responding to a
certain stimulus at Iy, = 6 A cm™ 2 and found gen-
erally similar ISI histograms for the Markovian
method, the original Fox—Lu LA, as well as the Linaro
et al Giiler and Orio approaches. The Giiler approach
was deemed computationally faster than the other
methods although the ISI distributions are not as close
to the Markovian method as for the original Fox—Lu
LA [83]. At Iyim = 6 uA cm™ 2, the deterministic HH
neuron is right below the bifurcation point (approxi-
mately Iy, = 6.5 A cm2) to generate the periodic
spikes. Thus, for the stochastic HH model with
Igim = 6 A cm™ 2, the channel noise can easily trigger
action potentials. In this review, the ISI distributions at
the channel number of 1000 and 10000 with the sti-
mulus current Iy, = 6 #A cm 2 are also discussed.
As shown in figure 8, The ISI distributions by these
channel-based Langevin approaches agree well with
that derived from the Markov method, except for the
Giiler LA which gives a little lower probability of big
ISIat N=1000.

The Langevin methods and their performance are
summarized in table 1. This comparison indicates
that, if only the noise intensity is properly maintained,
either the bounded approach, like the truncated and
restored approach, or the unbounded approach, like
the Orio’s approach, is able to replicate the discussed
parameters from the Markov method.

4.5.4. Key role of bounded and discrete open fractions in
resting state
In order to discuss the origin of these different
performances among different LAs, we analyze the
properties of the zero open fraction by the reflected LA
and truncated-restored LA, and the non-positive
channel open fraction by the original Fox-Lu LA,
Linaro LA, Giiler LA and Orio LA. Figure 9 plots the
results of the probability of all channels in closed states
(panels A and B for K" and Na™ channels, respectively)
and the mean time of staying in the closed state for all
channels (panels C and D) against N. Deterministi-
cally, without any stimulus, the HH neuron model
shows an open fraction of 0.01 for the K* channels
and 0.00017 for the Na™ channels, respectively. As a
result at N = 1000 there are on average 10 open K*
channels, and the Markov method shows that the
probability of all K channels in closed state exponen-
tially decays to 107>, However, at N = 5000 there are
on average 2.6 open Na™ channels, and the Markov
method indicates that the probability of all Na*
channels in closed state is still as large as 0.3.
Figures 9(c) and (d) show that the corresponding mean
time of staying in closed state obtained with the
Markov method decreases rapidly down to the com-
putation time step (0.01 ms) at N > 1000 for K*
channels, but only down to 0.1 ms for Na™ channels.
From figures 9(a) and (b), one can see that only the
discretized LA can reproduce the probability of zero
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channel open fraction for both K™ and Na™ channels.
The truncated-restored LA gives a correct probability
of zero channel open fraction for K*, but a slightly
smaller probability of zero open fraction for Na*
channels. In fact, compared to the Markov method,
the original Fox—Lu LA, Linaro LA and Giiler LA typi-
cally give a large probability of negative channel open
fraction for K™ channels and a small negative channel
open fraction for Na™ channels. In particular the Orio
LA is as good as the truncated and restored approach
for K™ channels (figures 9(a) and (b)), however, it
resembles the original Fox—Lu LA for Na* channels
(figures 9(c) and (d)). Noting that with a negative K
(or Na™) open fraction, the K* (or Na™) current will
change its flux direction. As a result, these negative
open fractions yield a larger inward Na™ current and a
less outward K™ current than the Markov method,
determining a more excitable system with shorter ISI.

As shown in figure 9(d), all LAs can give a constant
mean time in closed state for Na™ channels at large N.
However, figure 9(c) reveals that all the LAs are not
able to provide a satisfying approximation for the
mean time of staying in the closed states of all K
channels. This discussion indicates that there may be
an intrinsic shortcoming of master-equation LAs
which fails to reproduce the behavior of all channels
staying in closed state. An accurate Langevin approach
to represent the Markov channel dynamics is still
lacking.
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4.5.5. Significance of time-dependent diffusion matrix
One advantage of the bounded approach is that the
diffusion matrices are time dependent. As we know,
the mean values of the open fractions only depend on
the voltage, whereas the variances of the open fractions
reduce as the channel number increases. Thus, var-
iances are overlooked when the mean values of the
fractions are used in the diffusion matrix. As a
consequence, steady-state approximation would lead
to underestimated noise at small channel number and
overestimated noise when the number of the channel
is large.

Two hybrid approaches are proposed here to
demonstrate the limitation of quasi-stationary
assumption of the diffusion matrices in the unboun-
ded original Fox—Lu LA especially at big channel num-
ber. In hybrid 1, the diffusion matrices in the original
Fox—Lu LA are calculated with the truncated-restored
LA. As a result, the diffusion matrices vary with time.
In hybrid 2, the diffusion matrices in truncated-
restored LA are estimated based on the equilibrium
fractions as in the original Fox—Lu LA. As illustrated in
figure 10, the mean ISI provided by hybrid 1
agrees with that by the Markov method, whereas
hybrid 2 underestimates the mean ISI as the original
Fox—Lu LA does, indicating that the dependence of the
diffusion matrices upon time is of importance at big
channel number. As illustrated in figures 4 to 8,
the results given by Linaro LA are close to those
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Table 1. Comparison of different channel-based LAs.

Y Huanget al

Method References Master Equation [0,11° Noise type Converged mean values at large N
Original Fox-Lu LA [15,58] Yes No White Gaussian Vv HY, We

Reflected LA [61] Yes Yes White Gaussian V.H,W, S, K

Restored LA [62] Yes Yes Colored Gaussian V,H, W, S, K, ISI

Linaro LA [79] No No Colored Gaussian V,H, W

Giiler LA [82] No No Colored Gaussian V,H, W

Orio LA [60] Yes No White Gaussian V,H, W, S, K, ISI

* Boundary condition.

® The added noise is white Gaussian, but after truncated and restored processes, it becomes colored Gaussian.

¢ Membrane voltage.

4 Spike amplitude. The difference between the peak of a spike and the threshold of —60 mv.

¢ Spike width.
f Skew of membrane voltage.
¢ Kurtosis of membrane voltage.
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Figure 9. The comparison of the closing probability of K channel (a) and Na™ channel (b) respectively and the mean time staying in
closed state for K channel (c) and Na* channel (d) respectively. The comparison is among Markov method (solid line), original Fox—
Lu channel-based LA (dashed line), reflected LA (green square), truncated and restored LA (red star), discretized LA (brown circle),
Linaro LA (blue lozenge), Giiler LA (black plus) and Orio LA (blue cross). Here the stimulus current Iy, = 0 pA.

given by the original Fox—Lu LA, which agrees
well with the conclusion drawn in [60, 84]. Both
methods involve a steady-state approximation in the
stochastic terms, which accounts for the identical
inaccuracies.

4.5.6. Indispensable restoration process

Here we demonstrate that the restoration process
proposed in the truncated-restored LA is an indis-
pensable complement to the Langevin approaches
with standard diffusion matrix. Huang et al have
provided the evidence that the performance of the
reflected LA becomes as good as the truncated-

restored LA once the restoration process is added
[62]. We call the reflected LA plus post-processing
reflected LA+R. Likewise, in this review we applied the
truncation and restoration to the unbounded fractions
of channel states in Orio LA (Orio LA+TR). As
illustrated in figures 11(a) and (b), the statistics
of action potential of the Orio LA, such as mean
voltage and the ISI, are not influenced at all by
the post-processing, while the closing probability
(p(f _Na = 0.0)) and the mean time of staying in
closed state ({t (f _Na = 0.0))) become much better,
as shown in figures 11(c) and (d). Therefore the
restoration process may be a general step for the
matrix-based Langevin approaches.
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Figure 10. Mean interspike interval as a function of channel
number N from 1000 to 5000. The comparison is among the
Markov method (solid line), original Fox—Lu’s unbound
channel-based LA (dash line), truncated and restored LA (red
star), hybrid 1 (plus) and 2 (circle). In hybrid 1, the diffusion
matrix in the original Fox—Lu’s unbound LA is calculated with
the truncated and restored approach. In hybrid 2, the
diffusion matrix in truncated and restored LA is approxi-
mated by using equilibrium fractions. Here the stimulus
current Iy, = 0.

4.5.7. Computational efficiency

Another important issue is the relative computational
efficiency of various Langevin approaches. As pointed
out by Pezo et al in [84], Giiler LA is the fastest among
the channel-based LAs listed above. However, they did
not use a unit programming language. In this review
we show a more precise comparison of the computa-
tional efficiency by using a single programming
language C. With respect to the running length of
160 s and the time step of 0.01 ms, the computational
time of the original Fox-Lu LA is 263.52 s which is
taken as the reference. Here we focus on one single
channel number N = 1000. The computational time
given by different approaches are listed in table 2. As
presented in table 2, the original Fox—Lu LA as well as
the truncated and restored LA is about one magnitude
slower than the others due to the demanding calcula-
tion of the root square of the diffusion matrix.
The time of the subunit-based LAs is about half of
that by the fastest channel-based LA, namely Gtiler LA.
In fact, the simple formulation of the square-root
diffusion matrices derived for the Orio LA is identical
to that introduced by the reflected LA. Therefore,
in terms of numerical effort, they provide nearly
the same computational efficiency. In addition, it
should be stressed that the reflected LA and the Orio
LA with post-processing (reflected LA+R and Orio
LA+TR) exhibit the same computational efficiencies
with the reflected LA and Orio LA respectively,
indicating the negligible computational cost of the
post-processing.

5. Conclusions and outlook

Since 1994, when Fox and Lu proposed the Langevin
approaches to simulate the stochastic HH neuronal
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model [15, 20], these approaches have been widely
applied for the study of noisy channel dynamics.
However, none of these approaches guarantees a
precise description of channel noise in the neuronal
system. In consequence, the use of the over-simplified
noise approximations in stochastic differential
equations may thereby lead to qualitatively correct but
quantitatively incorrect conclusions. Only recently,
several groups have become interested in how to
construct an improved Langevin approach in order to
better describe the Markovian channel dynamics. In
this paper we reviewed the newer developments of
Langevin approaches to the intrinsic Markovian noise
in the standard stochastic HH model.

In order to simulate the Markovian channel
dynamics, the original Langevin approach proposed
by Fox and Lu naturally assumed an uncorrelated,
zero-mean Gaussian noise [15, 20]. However, the
simulations by the truncated and restored LA indi-
cated that the simple Gaussian noise cannot ade-
quately describe the Markovian channel dynamics,
and the inaccuracy has shown up even at large channel
numbers [62]. Thus, an important question is how to
construct a correct noise term in the Langevin
approach and where to add the noise to the equations
in order to correctly describe the Markovian channel
dynamics [80].

The first issue discussed is the distinction of sub-
unit-based and channel-based models. Because chan-
nel noises depend on the combinatorics of subunits of
a channel, the channel-based LA can describe the
channel noise better than the subunit-based LA. The
simulation results indicate that the diffusion matrix
technique using the time-dependent channel-state
fractions will compare better to the Markov method
than using the equilibrium channel-state fractions. In
a different line of research, noise terms were derived
that can be added to the original HH differential
equations [79, 80, 82]. These effective approaches are
not limited to explicit Markov chains because their
empirical parameters can be estimated from the con-
duction fluctuation measured in experiment [80]. The
models also implicate time-correlated colored noise in
stimulating the Markovian processes of channel tran-
sitions [62, 79, 82]. However, we presented evidence
that the discussed two effective LAs are not as good as
the bounded Fox and Lu LA with the truncated and
restored fractions or the unbounded Orio LA. Under
constant current, the original Fox—Lu LA was proved
to provide a better distribution of interspike interval
than was provided by the two effective approaches
[83]. A better effective approach is still lacking.

Among these Langevin approaches, the bounded
truncated-restored LA and the unbounded Orio LA
are equally good, and provide the best approximations
to the exact microscopic simulation. However, the
Orio LA lacks the biologically meaningful boundary of
the channel-state fractions. In fact, most of the
improved Langevin approaches simply allow the un-
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Figure 11. The mean voltage (a), error of mean interspike interval (b), closing probability of Na* channel (c) and the mean time
staying in closed state of Na™ channel (d). The comparison is among Markov method (solid line), reflected LA (dashed blue line), Orio
LA (dashed red line), reflected LA plus restoration (4+R) (blue circle) and Orio LA plus truncation and restoration (+TR) (red cross).
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Table 2. Computational efficiency of different LAs.

Method References Relative comput. efficiency
Ident. LA [15,20], 0.078
Indep. LA [40] 0.12
Original Fox-Lu LA [15],[58] 1.0
Restored LA [62] 1.0
Reflected LA [61] 0.23
Reflected LA+R [62] 0.23
Linaro LA [79] 0.28
Giiler LA [82] 0.15
Orio LA [60] 0.23
Orio LA+TR 0.23

Note. The running length is 160 s and the time step is
0.01 ms. The recorded time of the original Fox-Lu LA
is 263.52 s. The relative computational efficiency is the
ratio of the recorded time t0 263.52 s.

physical open fractions driven by the noise
[58, 60, 79, 82]. In this review, we show that this pro-
blem can be well solved with the truncated and
restored procedure proposed by Huang et al
(figures 4-11), implying that the restoration of the
residual fractions after the truncation procedure may
be indispensable and applicable to other stochastic
channel models. Among all the reviewed LAs, taking
the computational efficiency into account, the combi-
nation of the Orio LA or the reflected LA with the

truncated-restored LA, such as Reflected LA+R or
Orio LA+TR, provides the most accurate and simulta-
neously physically meaningful approximation to the
Markovian dynamics.

Langevin equations are constructed from the mas-
ter equations which are the heart of simulations of bio-
chemically reactions and ion-channel dynamics if the
number of molecules is small. Normally, the Langevin
approaches, especially the effective approaches, can-
not accurately replicate the properties of the Markov
model at small channel number, such as a few tens of
channels in the patch. However, there are some biolo-
gical situations where only a few tens of channels are
observed in clusters, such as channels in the dendritic
spine or in an axon node. Other examples are the Ca*"
releasing IP;R channels and RyR channels which are
spatially organized in clusters with only a few or sev-
eral tens of IP;R and ryanodine receptors in the ER
and SR membranes [50, 51, 88-90]. Thus, these sys-
tems call for the effective Langevin approaches espe-
cially for capturing the Markov channel dynamics at a
small membrane patch area. The first effort proposed
in [81] indicates that the continuous-to-discrete treat-
ment is necessary in order to catch the intrinsically dis-
crete property of channel state fractions at small
membrane patch areas (see also [91]). Actually, the
discretization procedure is feasible only when the
boundary condition is satisfied, thus it is important to
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use a bounded method. The discretization as well as
the restoration as mentioned above are helpful to the
methodological advances of numerical algorithms.
Their relevance to the impact on excitability of neural
systems is not clear yet. However, the encouraging
results throw light on future improvement.

In fact, we still lack a universal and consistent
Langevin approach to accurately represent the Mar-
kov channel dynamics. A Markov chain can be com-
pletely described by master equations. Different
approximate approaches have been developed to
solve the master equations in a variety of biochemical
networks [92, 93]. A generating function approach
has been proposed for the Markovian process by
mapping the master equation into a wave equation,
and has been applied to a variety of signal transduc-
tion problems [94, 95]. A Brownian-ratchet-like sto-
chastic theory has recently been developed for the
electrochemical membrane system of the HH model
[96]. We believe that the development of these sto-
chastic theories may shed light on how to improve
the Langevin approach.

Besides the discussion of the effects of channel
noise, a more fundamental question is how to char-
acterize the channel noise accurately. During the last
thirty years, fractal ion-channel behavior and history-
dependent ionic current signals have been captured in
experiments through analyzing the patch-clamp data
[97-102]. Moreover, the analysis of the power spectra
of nanochannel currents showed that such currents
have the properties of the so-called 1/f (flicker) noise
[103—-105]. Actually a biologically realistic neuronal
system is complex with composite axon and dendritic
structures, showing a non-Markovian channel
dynamics.

The channel noise discussed in the paper is a spe-
cific example of the widespread phenomenon of noise
in complex biological systems. Stochasticity has been
shown to widely exist in subcellular systems, including
those involved in synaptic transmission, cellular sig-
naling networks and regulation of gene expression,
because these systems include a relatively limited
number of constituent molecules that interact non-
linearly [106-110]. The accurate simulation of sto-
chastic chemical reaction with Langevin approaches is
an active area of research.

The results reviewed in this paper concern
the recently developed Langevin approaches on
stochastic channel dynamics, aiming to accurately
represent Markovian channel noise. Given the
increasing interest in biological stochastic processes,
the accurate simulation of the channel noise by the
Langevin model becomes an important issue for
the studies of stochasticity in molecular systems.
The accurate Langevin approaches may reveal
how channel behavior affects spike timing, reliability,
propagation, and other aspects of neural dynamics.
These Langevin approaches could be principally
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applicable in other stochastic systems. With the
accurate Langevin approaches, more quantitative
insights on how biological noise modulates electro-
physiological dynamics and function in cellular sys-
tems can emerge.
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