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The biexponential distributions of open times are observed in various types of ion channels. In this paper, by dis-
cussing a simple channel model, we show that there are two different schemes to understand the biexponential distribution
of open times. One scheme is mathematically strict based on generator matrix theory, while the other one has a clear phys-
ical explanation according to an approximation process with numerical simulation of Markovian channel dynamics. Our
comparison results suggest that even for biologically complex channels, in addition to carrying out a stochastic simulation,
the strict theoretical analysis should be considered to understand the multiple exponential distributions of open times.

Keywords: ion channel, biexponential distribution, generator matrix theory, Markovian simulation

PACS: 87.16.Vy, 87.50.cf, 87.17.Aa DOI: 10.1088/1674-1056/26/12/128703

1. Introduction
Ion channels play an important role in neuronal activities

and intracellular signaling. The gating kinetics of ion channels
has been extensively studied by analyzing the stochastic on/off
flickering of single current traces obtained via patch clamp
recording.[1] The most basic statistical parameters measured
are the open probability PO, and the mean open and closed
times TO and TC, as well as their time distributions. Measure-
ments of PO, TO, and TC in response to varying conditions such
as membrane potential and ligand concentration provide an in-
sight into channel gating mechanisms.[2]

Typically ion channels are comprised of several sub-
units. For example, the voltage-dependent sodium (Na+)
channel and potassium (K+) channel, the inositol 1,4,5-
trisphosphate receptor (IP3R) calcium channel, and the ryan-
odine receptor (RyR) calcium channel are all tetramers. Dif-
ferent classes of gating models have been used to incorporate
the structure of tetramer ion channels: models with indepen-
dent and different subunits,[3] models with independent and
identical subunits,[4–7] and allosteric models with cooperating
subunits,[8,9] as well as the hybrid models.[10,11]

As an important tetramer channel, IP3R can release cal-
cium ions (Ca2+) into cytosol from endoplasmic reticulum
(ER) to modulate various intracellular functions. Single-
channel properties of the Xenopus IP3R channel were exam-

ined by patch clamp electrophysiology of the outer nuclear
membrane of isolated oocyte nuclei, giving a biexponential
distribution of open-channel dwell times with time constants
of about 4 ms and 20 ms, respectively.[12] The biexponential
distribution of open time has also been observed in other chan-
nels, including the Ca2+ channels in the A7r5 smooth muscle-
derived cell in the presence of dihydropyridine agonists,[13]

the RyR Ca2+ channel of skeletal muscle in the presence of
bastadin 5 and bastadin 10.[14,15]

An interesting question is the dynamics for biexponential
distribution of open times of channels. The simple considera-
tion is to directly assume two open states which determine the
two exponential distributions, i.e., a short open state respond-
ing to a fast decay distribution of open times and a long open
state responding to a slow decay distribution. Following this
scheme, a channel model with five open states has been con-
sidered to exhibit the biexponential distribution of open times
for the Ca2+ channels in the A7r5 smooth muscle-derived cell
in the presence of dihydropyridine agonists.[13] A different
scheme for biexponential distribution of open times has been
proposed in Ref. [16]. Such a channel model consists of four
identical, independent subunits, each of which has only one
active state. The channel opens when there are at least three
subunits in the active state. The model successfully reproduces
the biexponential distribution of open times.[16,17]
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In Refs. [16] and [17], the IP3R channel consists of four
identical and independent subunits, each with the 9-state. In
order to discuss clearly the origin of the behavior of biexpo-
nential distribution of open times, a toy model is considered in
this paper. According to the theoretical analysis and numeri-
cal simulation of the toy model, we indicate that there are two
different schemes to understand the biexponential distribution.
One scheme has a clear physical explanation based on an ap-
proximation process, but a better scheme is mathematically
strict with little physical picture.

2. Toy channel model
In the paper, we consider a toy channel model. The chan-

nel is composed of two identical and independent subunits.
Each subunit has only two states: the active state (O) and the
rest state (C):

C
kO−−→←−−
kC

O, (1)

where kO and kC are transition rates between two states. The
active probability (p) for each subunit is then given as follows:

p =
kO

kO + kC
. (2)

For the channel model, there are three states, i.e., CC, CO,
and OO states. We assume that once there is a subunit in ac-
tive state, the channel is defined as being open. So the channel
states OO and CO are open states, while the channel state CC
is a closed state. Accordingly, the three channel states have
the following transition processes:

CC
2kO−−−→←−−−
kC

CO
kO−−→←−−
2kC

OO. (3)

To consider dimensionless unit by assuming kC = 1, we
have p = kO/(kO +1). In other words,

kO =
p

1− p
.

Thus in the model, we have only one free parameter p
which is the active probability of the subunit. So the channel
model can be rewritten as

CC
2 p

1−p−−−→←−−
1

CO
p

1−p−−−→←−−−
2

OO. (4)

As a result, the channel open probability PO is expressed
as[12]

PO = p2 +2p(1− p) = 2p− p2. (5)

with the mean open time TO = PO/J and the mean closed time
TC = (1−PO)/J with the flux J = 2p(1− p).

3. Theoretical analysis of open-time distribution
In the following, we use the generator matrix

theory[16,18,19] to discuss the open-time distribution of the
channel. Assuming that the probabilities in the states of CC,
CO and OO are C, O1, and O2, respectively, the binding-
unbinding reaction equations of the channel are given by

dC
dt

=− 2p
1− p

C+O1,

dO1

dt
=

2p
1− p

C−
(

1+
p

1− p

)
O1 +2O2,

dO2

dt
=

p
1− p

O1−2O2. (6)

Thus the generator matrix is given as follows:

Q =


− 2p

1− p
1 0

2p
1− p

−1− p
1− p

2

0
p

1− p
−2

 . (7)

With the generator matrix, we have the following open matrix:

Q00 =

−1− p
1− p

p
1− p

2 −2

 , (8)

and thus the open-time distribution is defined as

fO(t) =
[

1 0
]

exp(QOOt)
[

1
0

]

=
[

1 0
]

exp

−t− pt
1− p

pt
1− p

2t −2t

[ 1
0

]
. (9)

Considering the definition of the exponent of a matrix,

exp
([

a b
c d

])
=

1
∆

[
A B
C D

]
,

with

∆ =
√

(a−d)2 +4bc,

A = exp
(

a+d
2

)[
∆ cosh

(
∆

2

)
+(a−d)sinh

(
∆

2

)]
,

B = 2bexp
(

a+d
2

)
sinh

(
∆

2

)
,

C = 2cexp
(

a+d
2

)
sinh

(
∆

2

)
,

D = exp
(

a+d
2

)[
∆ cosh

(
∆

2

)
+(d−a)sinh

(
∆

2

)]
,

the open-time distribution is then given by

fO(t) =
1
∆

[
1 0

][ A B
C D

][
1
0

]
=

A
∆
, (10)
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with

∆ = t ·

√(
1− p

1− p

)2

+
8p

1− p

= t ·

√
1+

6p
1− p

+

(
p

1− p

)2

,

and

A = exp
(
−3t

2
− pt

2(1− p)

)
×
[

∆ cosh
(

∆

2

)
+

(
t− pt

1− p

)
sinh

(
∆

2

)]
.

Substituting ∆ and A into fO(t), the open-time distribution be-
comes

fO(t) =
1
∆

exp
(
− t

2

(
3+

p
1− p

))
×
[

∆ cosh
(

∆

2

)
+ t
(

1− p
1− p

)
sinh

(
∆

2

)]
. (11)

Let

α =

√
1+

6p
1− p

+

(
p

1− p

)2

,

and
β = 3+

p
1− p

,

then we will have

fO(t) =
1
α

exp
(
−β t

2

)
·
[
α cosh

(
αt
2

)
+(4−β )sinh

(
αt
2

)]
=

α−β +4
2α

exp
(

α−β

2
t
)

+
α +β −4

2α
exp
(
− α +β

2
t
)
. (12)

Let

λS =
1
2
(β −α), (13)

λF =
1
2
(β +α), (14)

and so
α = λF−λS,

then the open-time distribution will be expressed as

fO(t) =
2−λS

λF−λS
exp(−λSt)+

2−λF

λS−λF
exp(−λFt). (15)

As a result, the expression fO(t) given in Eq. (13) indi-
cates that the open-time distribution consists of two exponen-
tial decay modes, i.e.,

fO(t) = fOS(t)+ fOF(t), (16)

with fOS(t) having a slow exponential decay rate λ S:

fOS(t) =
2−λS

λF−λS
e−λSt (17)

and fOF(t) having a fast exponential decay rate λ F:

fOF(t) =
2−λF

λS−λF
e−λFt . (18)

One property of the open-time distribution is that the total
open-time distribution should be unity. In order to check it, we
consider the integral as follows:

FO =
∫

∞

0
fO(t)dt = FOS +FOF (19)

with

FOS =
2−λS

λS(λF−λS)
,

FOF =
2−λF

λF(λS−λF)
.

Then we have

FO =
2−λS

λS(λF−λS)
+

2−λF

λF(λS−λF)
=

2
λSλF

. (20)

Because

λSλF =
1
4
(β 2−α

2)

=
1
4

(
9− 6p

1− p
+

p2

(1− p)2 −1

− 6p
1− p

− p2

(1− p)2

)
= 2,

as expected, the total probability is then given as FO = 1.
Figure 1 shows the open-time distributions at p = 0.1 and

0.9, which are calculated according to Eq. (15). The fast and
slow decay distributions of open times, i.e., fOF(t) and fOS(t)
are also plotted in the figure. The open-time distribution can
be strictly separated into two exponential distributions. With a
large p, the double exponential distribution of open times can
be clearly observed in the curve of the open-time distribution
as shown in Fig. 1(b), including the fast decay mode for the
short time duration and the slow decay mode for the long time
duration.

Figure 2 shows the plots of the two exponential decay
rates versus p given by Eqs. (13) and (14). With increasing
p, the decay of the fast decay mode becomes faster, while the
decay of the slow decay mode becomes slower. In detail, with
p increasing from 0 to 1, the fast decay rate λ F increases from
2 to infinity, while the slow decay rate λS decreases from 1 to
0. Especially, with p approaching to 1, λ S is close to 0 and so
one can typically observe the slow decay distribution almost
parallel to the x axis.
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Fig. 1. (color online) Open-time distributions at p = 0.1 (a) and 0.9 (b). The upper, middle and lower panels give the total, the fast
decay, and the slow decay distributions of open times, respectively. In the model, the time has a dimensionless unit.
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Fig. 2. (color online) Two exponential decay rates versus p, obtained in
theory.
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Fig. 3. (color online) Contribution percentages of (a) fast decay mode
and (b) slow decay mode to the open-time distribution.

Figure 3 depicts the contribution percentages of fast de-
cay and slow decay modes with respect to the open-time dis-
tribution, which are defined by Eqs. (17) and (18) divided by
Eq. (16), respectively. Figure 3 indicates that the slow decay

mode typically occupies the majority among the open time se-
ries, just because it decays slowly. A surprising observation
is that both the fast decay and slow decay modes contribute
to the open time series in a nonlinear manner with increasing
p. With p approaching to 0 and 1, almost all the open time
events are the slow decay mode. With p approaching to 0.5
from both values of p = 0 and 1, the contribution of fast decay
mode to the open time series keeps increasing. However, the
largest percentage that the fast decay mode contributes to the
open time events is still less than 15% at p = 0.5.

4. Markovian simulation of open-time distribu-
tion
Now we carry out the numerical simulation to discuss

the open-time distribution of the channel model. As a re-
sult, the stochastic simulation of the detailed transition pro-
cess between active and rest states of each subunit is recorded
to obtain the stochastic time series of channel open and closed
states. Different approaches have been suggested to simulate
the stochastic channel dynamics.[20–22] In the paper, we di-
rectly simulate the stochastic dynamics of the channel model
by a two-state Markovian process.[5,23,24] In detail, the state of
each subunit is updated in small time steps of dt. If the subunit
is, for example, in rest state at time t, then at time t + dt, it can
go to the active state with the transition probability kO dt, oth-
erwise it will remain in the rest state. In the simulation, a ran-
dom number homogeneously distributed in [0,1] is generated
at each time step and compared with the transition probability
in order to determine which state the channel subunit will be
at the next time step. With such a Markovian simulation, one
can trace the subunit state, as well as the channel state, with
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time in detail.
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Fig. 4. (color online) Variations of (a) channel state and (b) the num-
ber of active subunits with time at p = 0.5. The channel open state can
be classified as the CO-only and OO-related open states as marked by
arrows.

In the following, by discussing the Markovian numeri-
cal simulation, we provide another scheme to understand the
biexponential distribution of open times. Figure 4 shows the
variations of channel state and the number of active subunit
with time at p = 0.5. As defined, once there is a subunit in
the active state, the channel becomes open. So we can distin-
guish between two types of channel open states: the CO-only
open state and OO-related open state.[16] Here the CO-only
open state is defined as that involving only one subunit in ac-
tive state in the whole duration of the opening, whereas the

OO-related open state involves at least one occurrence of two
subunits in the active state. Examples for the CO-only and
OO-related open states are marked by arrows in Fig. 4.

With the trajectories of channel open and close states, we
can calculate the open time distribution. As examples, the
open-time distributions at p = 0.1, 0.5, and 0.9 obtained with
Markovian simulation are plotted in Fig. 5, which are the same
as those given in Fig. 1.
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Because the channel open states can be distinguished as
the CO-only and OO-related open states, the open time series
can then be split into the CO-only and OO-related open modes.
The distributions of the CO-only and OO-related open time
events are given in Figs. 6(a) and 6(b), respectively. One can
see that the CO-only open-time distributions typically show
an exponential decay with time. However, the OO-related
open-time distributions exhibit an increase in a small time in-
terval, and then a decrease at large time duration. Because
the OO-related open-time distribution is not strictly an expo-
nential curve, the exponential fitting is only carried out in the
region of large time duration as shown in Fig. 6(b).

By fitting the exponential decays of CO-only and OO-
related open-time distributions, the exponential decay rates
can be obtained. The decay rates for both the CO-only and
OO-related open states against p are given in Fig. 7. The OO-
related open events are a slow decay mode, while the CO-only
open events are a fast decay mode. Around p= 0.01, the decay
rate of OO-related open mode is about 0.74, and the decay rate
of CO-only open mode is about 1.0. With p increasing from
0.01 to 0.99, the decay rate of CO-only open mode increases
from 1 to 107, while the decay rate of OO-related open mode
decreases from 0.7 to 0.02.
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Fig. 7. (color online) Exponential decay rates of the CO-only and OO-
related open-time distribution versus p.

By counting the numbers of CO-only and OO-related
open events of the open time series, the contribution percent-
ages of CO-only and OO-related open modes as a function of
p can be calculated as given in Fig. 8. A linear increasing
curve with slope k = 1 is observed for the contribution per-
centage of the OO-related open mode. As a result, with p
approaching to 0, one can typically find CO-only open events,
and the OO-related open mode is hardly observed; while with
p approaching to 1, one can typically find OO-related open
events, and the CO-only open model is hardly observed. At
p = 0.5, there is an equal chance to observe the CO-only and
OO-related open events.
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Fig. 8. (color online) Plots of contribution percentage of CO-only and
OO-related open modes versus p.

5. Conclusions and perspectives
In this paper, we consider a toy model to discuss the be-

havior of the biexponential distribution of open times, which
has been observed in various types of channels.[12–15] The toy
channel consists of two identical and independent subunits.
Each subunit has only an active state and a rest state. The
channel opens when at least one subunit is in active state. The
open time distribution of the channel is investigated systemat-
ically with theoretical analysis and Markovian simulation. We
show that there are two different schemes to understand the
biexponential distribution of open times.

First we use the generator matrix theory[16,18,19] to dis-
cuss the open-time distribution. Mathematically strict re-
sults are derived, but with little physical picture to understand
clearly what open time events are fast and slow decay modes.
The biexponential distribution of open times actually origi-
nates from 2 by 2 square open matrix, due to the two open
states of CO and CC. As a result, the expression of open-
time distribution consists of two exponential decay modes:
one with a slow decay rate and the other with a fast decay
rate. A surprising observation is that the fast and slow decay
modes contribute to the open time series in a nonlinear manner
with increasing p. The largest percentage that the fast decay
contributes to the open time series at p = 0.5 is still less than
15%.

Another scheme on open-time distribution has a clear
physical explanation, but based on an approximation process
for the fitting of exponential distribution. Because the chan-
nel has two open states, i.e., CO-only and OO-related open
states, the open time events can then be split into the CO-only
and OO-related open modes. Linearly increasing and decreas-
ing curves are observed for contribution percentages of OO-
related and CO-only open modes, respectively. Especially, at
p = 0.5, the CO-only and OO-related open states each con-
tribute 50% probability to the open time events.
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As a result, the two different schemes reveal different
characteristics of the open times of the channel model. The
scheme with the classification of CO-only and OO-related
open states is easily understandable with a clear physical pic-
ture, which has been used to discuss the behavior of the open
time distribution of the IP3R channel model based on the
numerical simulation of stochastic channel dynamics.[16,17]

Compared with the toy model discussed here, the biologically
realistic IP3R channel model is complex. Thus it is a little
hard to use the generator matrix theory to investigate the open-
time distribution of the IP3R channel model. However, in the
present paper our comparison results suggest that the analytic
discussion with the strict generator matrix theory should be
considered in order to understand the behaviors of multiple
exponential distributions of open times of biological channels,
such as the IP3R channel, which are typically complex.
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