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Derivation of persistent time for anisotropic migration of cells∗
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Cell migration plays an essential role in a wide variety of physiological and pathological processes. In this paper
we numerically discuss the properties of an anisotropic persistent random walk (APRW) model, in which two different
and independent persistent times are assumed for cell migrations in the x- and y-axis directions. An intrinsic orthogonal
coordinates with the primary and non-primary directions can be defined for each migration trajectory based on the singular
vector decomposition method. Our simulation results show that the decay time of single exponential distribution of velocity
auto-correlation function (VACF) in the primary direction is actually the large persistent time of the APRW model, and the
small decay time of double exponential VACF in the non-primary direction equals the small persistent time of the APRW
model. Thus, we propose that the two persistent times of anisotropic migration of cells can be properly estimated by
discussing the VACFs of trajectory projected to the primary and non-primary directions.
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1. Introduction
Cell migration plays an essential role in a wide variety of

physiological and pathological processes, including embryo-
genesis, nervous development, wounding healing, inflamma-
tion, metastasis and immune reactions.[1] Regulated by com-
plex cellular signaling pathways, cell migration is critical
and indispensable for the normal development of organs and
tissues.[2–4] The onset of migration in a mature organism is
often associated with some human diseases, such as cancer.[5]

As an important biological behavior, cell motility has also
attracted much attention of biophysics for a long time.[6] The
migration of cells can be simply treated as a persistent ran-
dom walk (PRW). The phenomenon of random walk has been
studied in statistical physics since the beginning of last cen-
tury. The PRW of cells can be phenomenologically described
by the Ornstein–Uhlenbeck (OU) process with the following
Langevin equation for velocity vector 𝑣:[7]

d𝑣
dt

=−1
τ
𝑣+

√
2D
τ

ξ (t) , (1)

where t is the time, τ is the persistent time, D is the diffusion
coefficient characteristic derived from Brownian motion, and
ξ (t) represents the random vector of a Wiener process.

With only two parameters, i.e, diffusion coefficient D and
persistence time τ in Eq. (1), the PRW model is one of the
simplest and popular models for cell motility. To reflect the
intensity of the current cell memory of past velocity, the PRW
model describes cell trajectory as a succession of correlated
movements within a duration equal to the persistence time τ .
An isotropic environment is also assumed for cell migration
in PRW model. As a result, the PRW describes a normal dif-
fusive process, and so the mean squared displacement grows
linearly with time on a long time scale. The PRW model also
gives a simple Gaussian distribution of velocities, a single-
exponential decay of the auto-correlation function (ACF) of
velocity, an isotropic velocity field and a flat distribution of
angles between cell movements on a long time scale.

In addition to the simple PRW model, there are various
cell types modulated by different migration signaling path-
ways in different complex cellular environments.[1] Thus, re-
searchers have found experimentally that many cells exhibit
more complex migration properties which conflict with the
prediction of simple PRW model. Unlike the normal diffu-
sion, the anomalous diffusion movement has been observed in
some cell types. Regulated by chemokine CXCL10, CD8+ T-
cell behavior is similar to a generalized Lévy walk in order
to find rare targets in an optimal strategy.[8] An exponential
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distribution of velocity has been found in the study of long-
term cell migration in low-density monolayer cultures,[9] and
the Tsallis’ distribution of velocity has been observed for en-
dodermal hydra cells in cellular aggregates.[10] The motility
of human keratinocytes and fibroblasts cell types presents a
double-exponential decay for the velocity ACF (VACF).[11]

Recent experiments reveal that the complex three-dimensional
(3D) environments can cause more interesting behaviors of
cell migration.[12] The metastatic breast cancer cells invade
a 3D collagen matrix in a cooperative manner by exchang-
ing leaders in the invading front.[13,14] It has been shown that
the migration of fibrosarcoma cells in 3D extracellular colla-
gen matrices is anisotropic, generating an anisotropic velocity
field.[15,16]

As a result, different models have been proposed to ex-
plain different migration behaviors of cells.[17,18] Some mod-
els in fact are the modified PRW models,[11,15,16,19] but more
models are quite different from PRW model.[9,14,17,18,20–23]

Among these models, by incorporating anisotropic space into
the PRW model, an anisotropic PRW (APRW) model has been
recently proposed to describe the migration of cells in 3D
collagen matrix.[15] Compared with other migration models,
the APRW model is still simple enough, because it just con-
siders two different persistent times and two different diffu-
sion coefficients in migration directions of x axis and y axis.
The APRW model predicts a double-exponential ACF of ve-
locity, anisotropic velocity profile and anisotropic distribu-
tion of angular displacement, which can adequately explain
the behaviors of 3D cell motility over a wide range of matrix
densities.[15,16]

Although the APRW model has been proposed to simu-
late the cell migration in 3D collagen matrix, the full character-
ization of VACF has not yet been presented for APRW model.
Importantly, it remains unclear if one can, based on the trajec-
tories of mobile cells, quantitatively derive the two persistence
times of random walk, which can reflect the anisotropy of cell
migration. In the paper, we numerically discuss APRW model
in detail. Our simulation results show that one can obtain the
two persistent times by discussing the VACFs of trajectory ve-
locity.

2. APRW model
In APRW model, the migration cells have different persis-

tent times (Px,Py) and mobile speeds (Sx,Sy) in the directions
of x-axis and y-axis, respectively.[15] So, the propagation of
cell location is given by

x(t + dt) = x(t)+ dx(t.dt) ,

y(t + dt) = y(t)+ dy(t.dt) . (2)

Here, dx and dy are the displacements of cell location in the
x- and y-axis directions in time steps of dt. The displacements

of cell location over time are governed by the following equa-
tions:

dx(t.dt) = αx · dx(t− dt.dt)+Fx ·W,

dy(t.dt) = αy · dy(t− dt.dt)+Fy ·W, (3)

where W ∼ N (0,1) is the white noise. To incorporate the
anisotropic migration of cells, the parameters of the persis-
tent times (Px,Py) and the cell speeds (Sx,Sy) along the x- and
y- axis directions are different from each other, leading to the
following equations:[15]

αx = 1− dt
Px

, αy = 1− dt
Py

, (4)

Fx =

√
S2

x dt3

Px
, Fy =

√
S2

y dt3

Py
. (5)

In the model, if we set Px = Py and Sx = Sy, the APRW model
becomes the classic PRW model.

3. Simulation results
It has been shown that there should be a relationship be-

tween the cell persistent time and mobile speed.[24,25] How-
ever, for simplicity we assume Sx = Sy = 0.6 µm/min in all the
simulations in the model. The time step dt = 0.01 min is used
in our programming simulation. With the recording time in-
terval ∆t = 1 min, each trajectory is recorded with a length of
104 min for cell migration. Considering the effects of noises
on migratory trajectories,[19] 1000 trajectories are typically av-
eraged at the level of population to obtain statistical results.

3.1. Trajectory and velocity

For comparison, we first plot 1000 trajectories for PRW
model with Px = Py = 2 min and for APRW model with
Px = 10 min and Py = 2 min in Figs. 1(a) and 1(b), respec-
tively. In the figure, all the 1000 trajectories are plotted, with
the starting points located at the origin (0, 0). The distribu-
tion of trajectories obtained with PRW model looks like simi-
lar in all directions, because it is an isotropic model. However,
the APRW model generates the migration trajectories exhibit-
ing an anisotropic distribution. With a larger memory time of
Px = 10 min, the migration movements of cells typically have
less stochasticity along the x-axis, and so the trajectories dis-
tribute in a wider range along the x axis than the y axis.

With the trajectory 𝑟 (t) , the velocity vector 𝑣 (t) can be
obtained with 𝑣 (t) = (𝑟 (t)−𝑟 (t−∆t))/∆t. As an example,

the values of speed v(t) =
√

v2
x + v2

y of a single trajectory of
cell migration generated by PRW model and APRW model are
plotted in Figs. 1(c) and 1(d), respectively. The averaged ve-
locities over 1000 trajectories with two models are also shown
in Figs. 1(c) and 1(d). Both cells display the motile behaviors
with a similar mean speed because of the same S used in two
models.
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Fig. 1. (color online) The 1000 migration trajectories generated by (a) PRW model with Px = Py = 2 min and (b) APRW model with Px = 10 min and
Py = 2 min. All 1000 trajectories are plotted with different colors, with the starting points located at the origin (0, 0). The velocity of a single trajectory of
cell migration and the averaged velocity over 1000 trajectories generated by (c) PRW model with Px = Py = 2 min and (d) APRW model with Px = 10 min
and Py = 2 min.

3.2. VACF in xxx and yyy components

Now we discuss the VACF of APRW model, which is de-
fined by the following equation[21]

c
(
tlag
)

=
N−1

N− l−1

×

N−l
∑
j=1

(
𝑣 j−

1
N− l

N−l
∑

i=1
𝑣i

)
·
(
𝑣 j+l−

1
N− l

N
∑

i=l+1
𝑣i

)
N
∑
j=1

(
𝑣 j−

1
N

N
∑

i=1
𝑣i

)2 (6)

with tlag = l∆t. In Eq. (6), the terms subtracted in the numer-
ator and denominator are considered in order to remove bias
which results from the finite trajectory length. However, this
process causes another small bias, which can be removed by
considering factor (N−1)/(N− l−1) in Eq. (6).[21] The final
VACF is an average of c

(
tlag
)

over 1000 trajectories.
In Eq. (6), the VACF is written in the form of velocity vec-

tor, which has to be split into x and y components for calcula-
tion in detail. As a result, we have c

(
tlag
)
= cx

(
tlag
)
+cy

(
tlag
)

with VACFs of cx
(
tlag
)

and cy
(
tlag
)

in x and y components,
respectively. In fact, the cell migrations along x and y axes
are independent of each other in the APRW model. Thus, the

two-dimensional (2D) APRW migration can be treated as a
linear superposition of the two independent one-dimensional
(1D) PRW migrations along x and y axes, resulting in the
VACF of 2D APRW, a double exponential decay described by
e−t/Px + e−t/Py .[15]

In Fig. 2(a), the VACFs are calculated with Py = 2 min
and Px varying from 2 min to 30 min. For the PRW model
with Px = Py = 2 min, the VACF presents single exponential
decay as e−t/τ with τ = 2 min. While for the APRW model
with large Px, the VACF clearly shows a double exponential
distribution of e−t/τx + e−t/τy . Projecting velocity vectors into
x and y directions, the corresponding VACFs in x and y com-
ponents exhibit the behavior of single exponential decay. The
fitted decay times τx and τy are plotted in Fig. 3(b) each as a
function of Px, giving τx = Px and τy= Py = 2 min as expected.

This discussion indicates that the two persistent times
of APRW model can be simply obtained by discussing the
VACFs in x and y components, respectively. But such a cal-
culation requires a prior knowledge of the directions of Px and
Py, which have been set to be along the x and y axes in our
simulation. However, the directions of Px and Py of migration
trajectories of cells in biological experiment are actually un-
known, causing such a scheme practically useless.
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Fig. 2. (color online) VACFs of APRW model with (a) Py = 2 min and Px = 4, 6, 8, 10, 15, 20, and 30 min and (b) two decay times fitted with double
exponential distribution against Px. The results for PRW model with Px = Py = 2 min are also given in the figure.
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Fig. 3. (color online) (a) trajectories generated by PRW model (upper panel) and APRW model (lower panel), and the corresponding primary directions
𝑝. (b) Polar plots of the velocity magnitude at different orientation angles with respect to the primary direction 𝑝 of cell trajectories. The blue circle is for
PRW model at Px = Py = 2 min and the red ellipse is for APRW model at Px = 10 min and Py = 2 min. (c) Velocity magnitudes versus orientation angle. (d)
Semi-major and semi-minor axes, as well as the area of the ellipse, against the persistent time Px.

3.3. Primary direction and angular velocity magnitude

It has been suggested that the primary direction (𝑝) and
non-primary direction (𝑛𝑝) obtained with the singular vector
decomposition (SVD) can be defined as the intrinsic axes of
the migration trajectory.[15] With the SVD, the velocity matrix
M of individual cells can be expressed as

M =UΣV ∗ (7)

where U is the matrix eigenvectors of the product MM∗, V is

the matrix eigenvectors of the product M∗M, Σ are the sin-

gular values of the matrix M, and ∗ denotes the transposed

matrix. The first and second eigenvector of V ∗ correspond to

primary and non-primary directions of individual trajectory,

respectively. Thus, one can define an intrinsic orthogonal co-

ordinates for each trajectory.

As examples, the trajectories generated by the PRW and
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APRW models, as well as the correpsonding primary direc-
tions 𝑝, are shown in Fig. 3(a). The primary direction 𝑝 of
these two trajectories is different from the direction of x axis.
Then the orientation angle between velocity direction and pri-
mary direction at each time step can be calculated. As a result,
the velocity magnitudes at different orientation angles with re-
spect to the primary direction 𝑝 can be statistically obtained
over 1000 cell migrations. Figure 3(b) shows the polar plots
of the averaged velocity magnitude at different orientation an-
gles with PRW model at Px = Py = 2 min and APRW model at
Px = 10 min and Py = 2 min. A circular velocity magnitude has
been obtained with the PRW model. Differently, an ellipse of
velocity magnitude is found in the polar plot with the APRW
model, indicating a longer persistent time along the primary
direction.

For a better illustration of the effect of local anisotropy on
velocity magnitude, the relationship between velocity magni-
tude and orientation angle is drawn in the orthogonal coordi-
nates in Fig. 3(c). The PRW model generates an almost hori-
zontal line with a velocity magnitude around 0.725 for orienta-
tion angle ranging from 0◦ to 360◦, giving an isotropic move-
ment in all directions. While the APRW model gives waving
curves, all of which look like a letter “W”. In detail, the veloc-
ity magnitude reaches minimal values at orientation angles of
90◦ and 270◦ corresponding to non-primary direction, while
reaches maximal values at orientation angles of 0◦ (360◦) and

180◦ corresponding to primary direction. With the increase of
the persistent time Px, the waving amplitude becomes larger,
indicating an increasing anisotropy.

For an ellipse distribution of the velocity magnitude in
polar coordinate, the semi-major and semi-minor axes of el-
lipse can be obtained from the primary and non-primary di-
rections, respectively. In Fig. 3(d), both the semi-major and
semi-minor axes are plotted each as a function of Px. With the
increase of Px, the semi-major axis increases slightly, while
the semi-minor axis increases first and then decreases slightly.
The area of the ellipse, which is the product of π and the two
lengths, are also shown in Fig. 3(d). At a small value of Px, the
ellipse area increases with increasing Px. Then the ellipse area
approaches to a constant value at large Px.

3.4. VACF in ppp and npnpnp components

With the primary and non-primary components serving as
the intrinsic orthogonal coordinates for individual trajectories,
all the velocity vectors with time can be projected to 𝑝 and
𝑛p directions. Then the VACFs at 𝑝 and 𝑛p directions can be
calculated for each trajectory. Figure 4 shows the plots of the
averaged VACFs at 𝑝 and 𝑛p directions over 1000 trajectory
versus time for the APRW model. The VACF in the 𝑝 direction
typically exhibits a single exponential decay, while the VACF
in the 𝑛p direction shows a distribution of double exponential
decay.

0 20 40 60 80 100

Time/min

100

10-1

10-2

V
A

C
F

Px/ min Py/ min

primay
non-primay

0 20 40 60 80 100

Time/min

100

10-1

10-2

V
A

C
F

Px/ min Py/ min

0 20 40 60 80 100
Time/min

100

10-1

10-2

V
A

C
F

Px/ min Py/ min

0 20 40 60 80 100
Time/min

100

10-1

10-2

V
A

C
F

Px/ min Py/ min

(a) (b)

(c) (d)

Fig. 4. (color online) VACFs in primary direction 𝑝 and non-primary direction 𝑛p of APRW model with Py = 2 min and Px = 4 (a), 8 (b), 20 (c), and 30
min (d). Red line represents VACFs in 𝑝 direction and the blue lines in 𝑛p direction.
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Thus, we use e−t/τ to fit the VACF in the 𝑝 direction,
and e−t/τ1 + e−t/τ2 to fit the VACF in the 𝑛p direction by us-
ing software Origin2017. The obtained decay time τ in the 𝑝

direction versus Px is plotted in Fig. 5(a). An interesting ob-
servation is that the exponential fitting gives a relationship of
τ = Px. Thus, even by discussing the VACF along primary di-
rection, the obtained exponential decay time can satisfactorily
reveal the value of large persistent time of the APRW model.
Figure 5(b) shows the plot of the decay times τ1 and τ2 in the
𝑛p direction against Px. Here, the small decay time almost
keeps constant at 2 min with varying Px. As a result, the result
of τ1 =Py = 2 min indicates that the small decay time obtained
from VACF along the non-primary direction can properly re-
flect the value of small persistent time of APRW model.
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Fig. 5. (color online) Plots of exponential decay time τ in (a) 𝑝 direction
and decay times τ1 and τ2 in (b) 𝑛p direction versus Px.

4. Conclusions
In order to describe the cell migration in 3D colla-

gen matrix, an anisotropic persistent random walk model is
suggested.[15,16] Compared with the classic PRW model, the
APRW model contains some different assumptions in order to
consider two different and independent persistent times and
mobile speeds for cell migration in the x and y axes, respec-
tively. Because the dynamical behaviors of APRW model have
not yet been systematically investigated, we carry out the nu-
merical simulation to discuss the various properties of APRW
model in detail.

An important question with APRW model is whether the
basic parameters of two persistence times along the x and y
axes can be properly calculated only by discussing the migra-
tion trajectories. We show that if a prior knowledge of the
directions of Px and Py is given, one can directly project the
migration velocities of cells into such orthogonal coordinates.
Then the VACFs on the two axes of such orthogonal coordi-
nates will simply exhibit a distribution of single exponential
decay, with the decay times exactly equal to Px and Py. How-
ever, such a scheme is practically useless, because one could
not have a prior knowledge of the directions of Px and Py in
biological experiment.

The only information one has in experiment is the tra-
jectories of migration cells. For each trajectory, one can de-
fine the primary and non-primary directions by velocity ma-
trix based on the singular vector decomposition method. As
a result, the intrinsic orthogonal coordinates of the primary
and non-primary directions can be obtained for each trajectory.
The anisotropic migration behaviors, including ellipse distri-
bution of velocity magnitude at polar plot, can be discussed
according to the intrinsic orthogonal coordinates.

By projecting the migration velocity to the intrinsic or-
thogonal coordinate, the VACF at primary direction typically
exhibits a single exponential decay, while the VACF at non-
primary direction shows a distribution of double exponential
decay. Importantly, our simulation results show that the de-
cay time of single exponential VACF in the primary direc-
tion equals the large persistent time of the APRW model,
and the small decay time of double exponential VACF in the
non-primary direction equals the small persistent time of the
APRW model.

In experiment, the double exponential VACFs are ob-
served with anisotropic migrations for various cell types. Our
work indicates that the two persistent times of the biological
trajectory of cell migration can be properly estimated by dis-
cussing the VACFs of trajectory velocities projected to the in-
trinsic orthogonal coordinates of the primary and non-primary
directions. The information of two persistent times will quan-
titatively reveal how anisotropic the cell migration is, which
may be caused by anisotropic environment.

In our model, the cell migrates only with different per-
sistent times of Px and Py along the x and y axis, but with
the same mobile speeds along the x and y axes, i.e, Sx = Sy.
It has been suggested that there should be a relationship be-
tween the cell persistent time and diffusion coefficient,[24,25]

because the anisotropic environment typically causes not only
the different persistent times, but also the different diffusion
coefficients in different directions. Thus, how to derive cor-
rectly all the persistent times and the diffusion coefficients in
different directions from the migration trajectories remains an
interesting problem to be discussed in the future research.
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