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Wave failure at strong coupling in intracellular Ca2+ signaling system with clustered channels
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As an important intracellular signal, Ca2+ ions control diverse cellular functions. In this paper, we discuss the
Ca2+ signaling with a two-dimensional model in which the inositol 1,4,5-trisphosphate (IP3) receptor channels
are distributed in clusters on the endoplasmic reticulum membrane. The wave failure at large Ca2+ diffusion
coupling is discussed in detail in the model. We show that with varying model parameters the wave failure is a
robust behavior with either deterministic or stochastic channel dynamics. We suggest that the wave failure should
be a general behavior in inhomogeneous diffusing systems with clustered excitable regions and may occur in
biological Ca2+ signaling systems.
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I. INTRODUCTION

As an important second intracellular messenger in living
cells, calcium signals (Ca2+) encode the stimulus, such as in-
ositol 1,4,5-trisphosphate (IP3), and control a wide array of cel-
lular functions, including egg activation, muscle contraction,
motility, learning and memory, gene expression, metabolic pro-
cesses, and cell differentiation and apoptosis [1,2]. Intracellular
Ca2+ waves have been first observed in medaka eggs [3] and
later on in many different types of cells [4–8]. Intracellular
Ca2+ ions are released from internal Ca2+ stores, most notably
the endoplasmic reticulum (ER) or sarcoplasmic reticulum
(SR), through inositol 1,4,5-trisphosphate receptor channels
(IP3R) or ryanodine receptors (RyR) [9,10]. Experiments have
revealed that the IP3Rs or RyRs are distributed in clusters
as active regions, spaced a few micrometers apart and with
several or a few tens of channels per cluster. The localized
Ca2+ liberations at discrete excitable sites are termed as puffs
or sparks [6,8,10–12]. Local Ca2+ release events can merge to
form global release events in the form of Ca2+ oscillations and
waves [6].

The inhomogeneous excitability of Ca2+ signaling system
has attracted many numerical simulations [13,14]. For the lo-
calized Ca2+ puffs, the IP3R channels showed strong stochastic
open and closing dynamics [15]. The clustering of a few tens of
IP3Rs could increase the coherent Ca2+ puffs to respond to the
weak IP3 stimulation [16]. Because of the sharp decay of Ca2+
concentration around the open channels, two scales of Ca2+
concentrations have been suggested to describe the values for
open channels and closed channels, respectively, leading to
a breakdown of detailed balance on the coarse-grained level
of puff models [17]. By discussing the interpuff intervals of
a diffusing Ca2+ model, a division of tasks between global
feedbacks and local cluster properties have been revealed to
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guarantee robustness of function while maintaining sensitivity
of control of the average interpuff interval [18]. More recently,
it has been shown that the synchronization corresponding to
termination of local Ca2+ signals that are generated by clus-
tered Ca2+ channels can be described by the phase transition
associated with the reversal of magnetic field in a classical
Ising ferromagnet [19].

Besides the discussion on puff dynamics, the transition
mechanisms from puffs to waves have also been discussed
numerically. With a stochastic version of the fire-diffuse-fire
threshold model [20], it has been shown that stochastic calcium
release leads to the spontaneous production of calcium puffs
that may merge to form abortive or saltatory waves [20], and the
phase transition between propagating and abortive waves is the
same as for models in the directed percolation universality class
[21]. The lifetime difference between short puffs and long-
period waves can be partly understood with strongly reduced
ordinary differential equations modified by a time-scale factor
that takes into account the coupling strength of active and
passive regions determined by the Ca2+ diffusion coefficient
[22]. Later, it has been suggested that the different lifetimes of
puffs and waves are determined by their different termination
dynamics that puffs are terminated by Ca2+ inhibition while
IP3 unbinding is responsible for termination of waves [23]. The
puff releases are sensitive to the strength of IP3 stimulation
and the residual Ca2+ concentration around cluster domain,
while with high IP3 concentration global waves are built
up by long-sustained Ca2+ release events with synchronous
unbinding and rebinding of IP3 to channels [24]. The transition
from stochastic sparks to Ca2+ travelling waves in ventricular
myocytes through cluste red RyRs is also simulated and
discussed [25].

The global Ca2+ oscillations with the propagating waves
have been attracted much attention also, because the Ca2+
signal is mainly carried by the frequency of Ca2+ oscillation.
It has been shown that the spatially nonuniform media can
generate various spatially Ca2+ signals, including localized
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puffs, stochastic backfiring, abortive waves, spiral waves, and
globally salutatory or continuous waves [20,26–28]. With in-
homogeneous media, the cell’s capability of creating a globally
periodic Ca2+ response to weak IP3 stimulation can also be
enhanced [29]. By replenishing the Ca2+ load of the cell,
the membrane transport for Ca2+ can control the intracellular
Ca2+ oscillations [30]. It has been pointed out that the channel
stochasticity can destroy the global Ca2+ oscillation, but
the additional small global fluctuations in IP3 can partially
restore temporal and spatial coherence of the oscillatory Ca2+
signal [31]. A common dynamical structure was suggested
underlying Ca2+ oscillations of widely varying period that
occur at constant IP3 concentration in different cell types [19].

From these numerical studies, one may conclude that
cluster-distributed excitability of Ca2+ release dynamics pro-
vides the cell with a flexible signaling repertoire for intracellu-
lar information transportation. It has been shown that the wave
propagation can become abortive in inhomogeneous system
[20,21,32,33]. Bressloff indicated that propagation failure can
occur in an inhomogeneous excitable neural medium if the
wave speed is too slow or the degree of inhomogeneity
is too large [32]. A periodic modulation of the long-range
connections in excitatory neural network can slow down the
propagating wave, and the wave propagation failure can occur
if the amplitude and wavelength of the periodic modulation
is sufficiently large [33]. More interestingly, Pando et al.
discussed Ca2+ ions diffuse in two-dimensional space with
the fire-diffuse-fire model [34]. They found that the Ca2+
waves undergo propagation failure with increasing diffusion
coefficient. This is because strong Ca2+ diffusion plays a dual
role here, which is necessary for wave propagation but also acts
as a sink to remove Ca2+ ions from the ER membrane. Waves
in homogeneous media do not share such a counterintuitive
property. The Ca2+ fire-diffuse-fire model was developed as an
abstract model to capture only the dynamics of Ca2+-induced-
Ca2+-release. So, the model does not take into account the
complexities of channel gating dynamics, and the Ca2+ is re-
leased from point sources in one-dimensional membrane [34].

By now the phenomenon of wave failure has recieved
little attention in literature, and it remains unclear if such an
interesting behavior can occur in biological Ca2+ signaling
system. In this paper, we discuss the Ca2+ wave failure with
a more biologically realistic model. In the model, the channel
clusters have a biological size of 500 nm and are distributed
in a regular array of two-dimensional regions. The open and
closing kinetics of channels are described with deterministic or
stochastic dynamics by considering the binding and unbinding
of Ca2+ and IP3 messengers to the receptor in detail. We show
that the wave failure can be observed with varying model
parameters and with either deterministic or stochastic channel
dynamics. The robustness of wave failure indicates that such a
behavior should be a general phenomenon in inhomogeneous
system with a lattice of active regions and may occur in
biological Ca2+ signaling systems.

II. INTRACELLULAR Ca2+ DIFFUSION MODEL

We model the cytosolic space as a two-dimensional sheet,
in which the Ca2+ concentration C(x,y,t) is described by the

following reaction diffusion equation:

∂C

∂t
= D∇2C + f (x,y)JC − JP + JL, (1)

where C denotes Ca2+ concentration, D the Ca2+ diffusion
coefficient, JC the Ca2+ flux from ER to the cytosol through
clustered IP3Rs, JP the SERCA pump flux from the cytosol
to ER, and JL the leakage flux from ER to the cytosol. The
pump and leakage are homogeneously distributed over the ER
membrane, while the IP3Rs are distribute in clusters positioned
on a regular lattice and described by the following function
f (x,y):
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with the Heaviside function �(x) = 0 for x < 0, otherwise,
1. As a result, the function f (x,y) = 1 at the active regions
with channels; otherwise, f (x,y) = 0 for passive region.
Accordingly, each channel patch is a square active region with
a side length of l, and the most nearby channel patches have a
distance of L.

The three fluxes in Eq. (1) are given by

JC = vCm3
∞n3

∞h3(CER − C), (3)

JP = vP

C2

k2 + C2
, (4)

JL = vL(CER − C), (5)

in which CER describes the Ca2+ concentration in ER. The
parameters vC , vP , and vL describe the maximum flux through
a cluster of IP3Rs, maximum pump flux, and leakage rate,
respectively.

The flux JC through a cluster of channels is determined
by the fraction of open IP3Rs in the cluster. Various kinetic
models have been proposed to study IP3R gating dynamics
[35–40]. In the paper, we apply the Li-Rinzel model [35] to
describe channel dynamics, which is a simplification of the
DeYoung-Keizer model [36]. Each channel has three identical
and independent subunits. Each subunit has a binding site
for IP3 (i.e., m gate) and two binding sites for Ca2+, one
for activation (i.e., n gate), and one for inactivation (i.e.,
h gate). The subunit becomes active only when IP3 and
activating Ca2+ sites are both bound. The channel is open if all
three subunits are in active state. In Li-Rinzel model, binding
probabilities of IP3 and activating Ca2+ are instantaneous and
represented by their quasisteady states m∞ = p/(p + dm) and
n∞ = C/(C + dn) with p the IP3 concentration. The Ca2+-
inactivation h gate is slow and described by

dh

dt
= α(1 − h) − βh, (6)

with the binding and dissociation rates α = a1(p + d1)/
(p + d2) and β = a2C.

In the simulation, an area of 60 μm × 60 μm mem-
brane is considered with most nearby cluster distance
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FIG. 1. Bifurcation diagrams of two-dimensional Ca2+ diffusion
model, i.e., the maximal and minimal concentrations of 〈C〉, against
p at D = 0.001 μm2/s (a) and at D = 200 μm2/s (b). The inset in
(a) is an enlarged part for p in the range of (0, 0.2 μm).

L = 3 μm and cluster size l = 0.5 μm. Non-flux bound-
ary condition is applied in the model. The parameters in
the IP3R model are given as follows: vC = 21.6 /s, vP =
0.5/s, vL = 0.001 μM/s, CER = 15 μM, k = 0.1 μM, dm =
0.13 μM, dn = 0.08 μM, a1 = 0.21 /s, a2 = 0.2 /μM/s,
d1 = 0.13 μM, and d2 = 0.94 μM [31].

In the simulation, the Eular method (i.e., the first-order
numerical procedure) is used for solving Eq. (1) with the
grid-size dx equalling to the cluster size l for simplicity and
the time step dt typically 0.2 ms [28]. Our simulation results
indicate that with smaller grid-size (such as dx = l/2), the
similar bifurcation results can still be obtained.

III. SIMULATION RESULTS

A. The point model approximation at very small or large D

To discuss how the diffusion coefficient D modulates the
Ca2+ release dynamics, we first consider the two extreme cases
of the Ca2+ diffusion model, i.e., at very small and large D. The
bifurcation diagrams of the cell averaged Ca2+ concentration
〈C〉, i.e., the maximal and minimal concentrations of 〈C〉,
against IP3 concentration p are plotted at D = 0.001 and
200 μm2/s in Figs. 1(a) and 1(b), respectively. One can see
that an oscillation is found in the small region of 0.037 <

p < 0.141 μM at D = 0.001 μm2/s, and in the large region
of 0.23 < p < 1.04 μM at D = 200 μm2/s.

Actually, such bifurcation behaviors of the two-dimensional
Ca2+ diffusion model at very small and large D can be well
understood with the simple point model [22]. For small D,
all the regions can be treated as independent domains. With
D → 0, the oscillation dynamics of the cell averaged Ca2+
concentration can be explained by the Ca2+ dynamics in the
active region, which is described by

dC

dt
= JC − JP + JL, (7)

with the equation for h given by Eq. (6).

FIG. 2. Bifurcation diagrams of C against p for the point models
with Eqs. (6) and (7) (a) and with Eqs. (6) and (8) (b). The inset in (a)
is the enlarged part for p in the range between 0 and 0.2 μM. Solid
lines are for stable states and dashed lines for unstable states.

However, at large D the coupling is so strong that all the
active and passive regions experience almost the same calcium
concentration, giving ∇2C → 0 for the system. The fact of
∇2C → 0 indicates that the released Ca2+ ions from active
regions have to be shared by both active and passive regions.
Thus, the Ca2+ dynamics can be described by the following
equation [22],

dC

dt
= λ × JC − JP + JL, (8)

with the rescale factor λ representing the averaging effect of the
released Ca2+ ions by both active and passive regions, given
by

λ = SActive

SActive + SPassive
= l2

L2
, (9)

where SActive and SPassive are the areas of the active and passive
regions, respectively. Here we have λ= 0.027 with l = 0.5 μm
and L = 3 μm.

For the point model, the bifurcation diagrams, i.e., the
maximal and minimal C, against p are plotted in Figs. 2(a) and
2(b) with Eqs. (6) and (7) and Eqs. (6) and (8), respectively.
Through Hopf bifurcation, an oscillation region occurs at
middle p, with the stable and unstable states denoted by
solid and dashed lines, respectively, in Fig. 2. The oscillating
dynamics can be found for p in the range of 0.036 and 0.142
with Eqs. (6) and (7), and in the range of 0.24 and 1.13 with
Eqs. (6) and (8), respectively.

As a result, the Ca2+ bifurcations of the Ca2+ diffusion
model at large and small D can be well understood with the
point model. For the point model, with the decrease of λ from
1 to 1/37, simulation results show that the oscillation range
in bifurcation diagrams against p simply keeps enlarged with
the left bifurcation point shifting from 0.04 to 0.23. Quite
differently, the Ca2+ diffusion model exhibits rich bifurcation
behaviors with varying D, as shown in the following sections.
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FIG. 3. Bifurcation diagrams of 〈C〉 against p for the Ca2+

diffusion model at different D. In (a)–(d), D = 1, 10, 20, and
50 μm2/s, respectively.

B. Ca2+ bifurcation diagrams against p at different D

Now we discuss how the diffusion coefficient D modulates
the Ca2+ release dynamics in Ca2+ diffusion model. The
bifurcation diagrams of cell-averaged 〈C〉 against p are plotted
in Figs. 3 and 4 with different D. Figure 3 plots the bifurcation
diagrams of 〈C〉 against p with D = 1, 10, 20, and 50 μm2/s,
showing an enlarged oscillation region in p with increasing D

as predicted by the point model.
However, Fig. 4 indicates that complex oscillation dynamics

can be observed in the Ca2+ diffusion model with D changing
in a narrow range between 12 and 15 μm2/s. Interestingly,
Fig. 4(a) shows that an additional oscillating region (i.e.,
A1) occurs around p = 0.5 μM at D = 12 μm2/s, giving two
oscillation regions (i.e., A1 and A2) with the increasing p. With
the further increase of D, the ranges of the two oscillating

FIG. 4. The bifurcation diagrams of 〈C〉 against p for the Ca2+

diffusion model at different D. In (a)–(d), D = 12, 14, 14.6, and
15 μm2/s, respectively.

FIG. 5. The trajectories 〈C〉 of bistable oscillation states of the
Ca2+ diffusion model at D = 15 μm2/s and p = 0.35 μM.

regions in p both become enlarged, and the corresponding
oscillating amplitudes increase also. Around D = 14 μm2/s,
the two oscillating regions A1 and A2 become overlapping and
merge into a large oscillating region [Fig. 4(b)].

Within the oscillating region, one can observe a single stable
oscillation state or bistable states. The bistable states can be
either an oscillation state with a fixed piont, or two oscillation
states with different oscillating amplitudes and frequencies
(Figs. 4(c) and 4(d)]. As shown in Fig. 4(d), for the bistable
oscillation states, their maximal and minimal amplitudes are
marked as MaxA and MinA, and MaxB and MinB, respec-
tively. At p = 0.21 μM and D = 15 μm2/s, which is labeled
with a red arrow, the corresponding two oscillation trajectories
of 〈C〉 are plotted in Fig. 5 with a red line for oscillation A and
a blue dashed line for oscillation B.

C. Ca2+ bifurcation diagrams against D at different p

Next, we discuss the bifurcation diagrams of 〈C〉 against
D of the Ca2+ diffusion model. With 0.25 � p � 1.1 μM, the
Ca2+ diffusion model shows Ca2+ waves at large D, but does
not exhibit any oscillation at small D. As an example, the
bifurcation diagram of 〈C〉 against D is given in Fig. 6(a) at
p = 0.3 μM. The propagation waves are always observed at
large D.

As shown in Figs. 6(b) and 6(c), an interesting observation
is found for p at 0.2 and 0.1 μM. The bifurcation diagrams
indicate that the propagating waves occur only at limited range
ofD. In other words, the Ca2+ diffusion system does not exhibit
any oscillation not only at small D, but also at large D. The
behavior that the Ca2+ waves undergo wave failure at large D

could not occur in homogeneous media [19]. In our model, the
2D media consists of a lattice Ca2+ channel clusters distributed
on the passive ER membrane. The oscillation frequency of
propagation waves against D is plotted in Fig. 6(d). With
the increasing D, the oscillation frequency typically keeps
decreasing.

As plotted in Fig. 6(b) at p = 0.2 μM, with small D,
each excitable region can be treated as an independent Ca2+
system, giving no oscillation. With coupling in 11.1 � D �
43.0 μm2/s, the proper interaction between pump dynamics
in the passive region and the channel dynamics in the excitable

012406-4



WAVE FAILURE AT STRONG COUPLING IN … PHYSICAL REVIEW E 97, 012406 (2018)

FIG. 6. (a)–(c) Bifurcation diagrams of 〈C〉 against D for the
Ca2+ diffusion model at p = 0.3, 0.2, and 0.1 μM, respectively. The
inset in (c) is the enlarged part for D in the range of (0, 5 μm2/s). (d)
The oscillation frequency of Ca2+ wave against D at p = 0.3 (blue
line), 0.2 (red line), and 0.1 μM (black line).

regions generates global Ca2+ wave propagations. However,
with D > 43.0 μm2/s, the strong Ca2+ diffusion dynamics can
largely remove Ca2+ ions from the active regions, causing the
wave failure.

In the model the two important terms for Ca2+ oscillation
are channel dynamics in active regions and pump dynamics on
the ER membrane. A proper interaction between the release
dynamics of Ca2+ channels and the sink dynamics of Ca2+
pump is necessary to support wave propagation. Now we
discuss the robustness of the wave failure with varying model
parameters of these two important terms. The bifurcation
diagrams are given in Figs. 7(a) and 7(b) with the maximum
channel flux decreasing from vC = 21.6/s to its 80% and 60%,
and in Figs. 7(c) and 7(d) with the maximum pump flux vP

changing from vP = 0.5/s to 0.45 and 0.8/s, respectively.
Our simulation results indicate that by changing the maximum

FIG. 7. Robustness of wave failure with varying model parame-
ters. Bifurcation diagrams of 〈C〉 against D for the Ca2+ diffusion
model at different maximum channel flux with vC = 13.0 (a) and
17.3 s−1 (b) and different maximum pump flux with vP = 0.45 (c)
and 0.8 s−1 (d), respectively.

channel or pump flux in a certain range, one can still observe
the wave failure.

D. Wave failure with stochastic channel dynamics

The clustered channels show a strong stochastic behavior in
the realistic Ca2+ signaling system due to the thermal opening
and closing of the individual channels in each cluster with
a small number of channels [15]. The channel fluxes with
stochastic channel dynamics can be expressed as

JChannel = vCm3
∞n3

∞
Nh−open

N
(CER − C), (10)

where Nh−open denotes the number of noninhibited channels
in the cluster. In the simulation, a Markov process is applied
to perform the stochastic gating dynamics [15]. In detail, the
state of each channel is updated for every small time step dt .
Each IP3R channel has three two-state h gates, i.e., h-open
or h-closed, which is Ca2+ unbound or bound at the inhibited
binding site, respectively. If an h gate is closed at time t , then
the probability that it remains closed at time t + dt is αdt , and
if it is open at time t , then the probability that it remains open
at time t + dt is βdt . To determine the state of a gate, random
numbers are drawn consistent with these probabilities. Only
if all three h gates in an IP3R channel are open at time t , the
channel is h-disinactivated or h-open, contributing a unit to
Nh−open [15].

Considering 36 IP3Rs in each cluster, we apply the Markov
simulations for channels to investigate the stochastic spa-
tiotemporal Ca2+ waves. As an example, a series of snapshots
of stochastic propagation wave are shown in Fig. 8 at p =
0.5 μM and D = 15 μm2/s. A mean period of about 12 s is
observed for the noisy oscillation.
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FIG. 8. The snapshots of stochastic propagation wave at p = 0.5 μM and D = 15 μm2/s. The time interval is 2 s between two successive
snapshots.

By calculating the averaged maximum and minimum of
concentration 〈C〉 for certain time intervals, one can still
discuss the bifurcation diagram of the stochastic propagation
model. In detail, we calculate the averaged maximum and

FIG. 9. Bifurcation diagrams of 〈C〉 against p for the noisy Ca2+

diffusion model at different D. In (a)–(d), D = 10, 15, 20, and
50 μm2/s, respectively.

minimum over 50 times with each time interval of 100 s,
giving variance typically smaller than 0.005. Figure 9 plots
the bifurcation diagrams of 〈C〉 against p at D = 10, 15, 20,
and 50 μm2/s. Comparing to the bifurcation diagrams of the
deterministic Ca2+ diffusion model given in Figs. 3 and 4,
one can see that the stochastic channel dynamics modulate the
Ca2+ oscillation behavior more at regions with bistable states
in deterministic model. The stochastic noise typically destroys
the multiple states. As a comparison between Figs. 4(d) and
9(b), if the bistable states are an oscillation with a fixed point
in deterministic model, the stochastic model typically exhibits
fluctuation around the fixed point. As a result, two oscillation
regions are found with the increasing p at D = 15 μm2/s.

The bifurcation diagrams of 〈C〉 against D are shown in
Figs. 10(a) and 10(b) for the noisy Ca2+ diffusion model with
N = 36 at p = 0.3 and 0.2 μM, respectively. One can see in
Fig. 10(b) that the wave failure can still be observed even
with the stochastic channel dynamics. To show the robustness
of wave failure in noisy Ca2+ diffusion model, we consider
different channel number in Eq. (10). As examples, Figs. 10(c)
and 10(d) plot the bifurcation diagrams at N = 25 and p =
0.25 μM, and at N = 15 and p = 0.45 μM, respectively. Our
simulation results show that the wave failure is a robust
behavior even in the noisy Ca2+ system.

IV. DISCUSSION

In this paper, we discuss the intracellular Ca2+ signaling
with a two-dimensional model in which the channels are
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FIG. 10. Bifurcation diagrams of 〈C〉 againstD for the noisy Ca2+

diffusion model at p = 0.3 μM and N = 36 (a), p = 0.2 μM and
N = 36 (b), p = 0.25 μM and N = 25 (c), and p = 0.45 μM and
N = 15 (d), respectively.

distributed in clusters. Thus, the Ca2+ diffusion media consists
of a regular array of excitable regions embedded in a large
passive region. The active regions with clustered channels
can exhibit oscillation dynamics, while only with the pump
dynamics and a small leakage term the passive region mainly
acts as a sink to drive Ca2+ ions into cytosol from the ER
pool. It has been shown that the clustered distribution of Ca2+
channels can generate various spatial Ca2+ signals, including
localized puffs, stochastic backfiring, abortive waves, spiral
waves, and globally salutatory or continuous waves [20,26–
28]. By investigating the bifurcation diagrams of the global
Ca2+ signals with varying Ca2+ diffusion coefficient and
IP3 stimulation, the wave failure at strong Ca2+ diffusion
coefficient is discussed in detail in this paper.

The counterintuitive behavior of wave failure was first
discussed in nonhomogenous media with a very simple model
by Pando et al. in Ref. [34]. However, such an interesting
phenomenon has recieved little attention by now. In this paper,
we show that the wave failure can be observed in a more
biologically realistic Ca2+ diffusion model. With the model,
the propogation waves are found for D in the range of 10 �
D � 45 μm2/s, and the wave becomes failure at D larger than
45 μm2/s [Fig. 6(b)]. In cells, the diffusion coefficient of free
Ca2+ ions is about 220 μm2/s [41]. In biological condition
with various Ca2+ buffers, the effective diffusion coefficient is
about 5–50 μm2/s [41], with a typical value of 20–30 μm2/s
applied in many simulation models [21,26,27,29]. Thus, the
wave failure occurs in our model with the effective diffusion
coefficient of Ca2+ ions in biological range.

In our diffusing system, the media consists of excitable
regions with the release dynamics of Ca2+ channels and
passive region with the Ca2+ pump dynamics. In such an
inhomogenous system, the intracellular Ca2+ ions are mainly
released through IP3R channels from ER in the active regions,
and the passive region acts as a sink to drive Ca2+ ions back into
ER. Thus, there is a net flux of Ca2+ ions from the active regions

to passive region. With a large diffusion coefficent D, the Ca2+
ions will move more rapidly from the active regions to passive
region. As a result, the Ca2+ diffusion plays a dual role in
such inhomogeneous media. On the one hand, Ca2+ diffusion
is necessary to generate wave propagation among excitable
regions. On the other hand, Ca2+ diffusion removes Ca2+ ions
from the excitable regions to destroy the Ca2+ oscillation.
A proper interaction between the Ca2+ channel dynamics in
excitable regions and the pump dynamics in passive region is
necessary to support Ca2+ oscillation and wave propagation.
The Ca2+ diffusion with a too large Ca2+ diffusion coefficient
acts as a strong sink to remove lots of Ca2+ ions from the
excitable regions, leading to the failure of Ca2+ waves. In
our simulation, the wave failure can be observed with varying
model paramters, including different channel flux rates, pump
flux rates and the channel numbers in each cluster, either with
determinsitc or stochastic channel dynamics. Thus, the wave
failure is a robust behivor in the model.

Another interesting observation is the two oscillation re-
gions with the increasing p, which occurs either with deter-
ministic diffusion model or with stochastic channel model.
The signal of IP3 strength is typically encoded into Ca2+
signal by Ca2+ oscillation for cellular functions [1]. The two
oscillation regions in p indicate that the Ca2+ signaling system
may encode the IP3 stimulus in separated pieces, rather than
with only one continuous range.

Compared to the biological Ca2+ system, our model is
still quite simple with two-dimensional space. During the
release events, the Ca2+ concentration in ER is assumed to
keep constant. Various Ca2+ buffers are ignored by simply
considering an effective diffusion coefficient for free Ca2+
ions. Thus, the complex bifurcations may depend on some of
the idealizations of the model, such as the specific IP3R channel
model. Nevertheless, the fact that the wave failure has been
observed either in an abstract model by Pando et al. [19] or in
a more biological realistic model in this paper indicates that the
wave failure should be a general behavior in inhomogeneous
diffusing systems.

As a prediction, the wave failure may occur in biological
Ca2+ signaling systems. To test this hypothesis in experimental
Ca2+ system, one has to modulate the effective diffusion
coefficient of Ca2+ ions. As a fact, the Ca2+ buffers play a key
role in affecting Ca2+ diffusional mobility. Immobile buffers
can reduce the effective diffusion coefficient of Ca2+, whereas
mobile buffers can act as a shuttle to speed Ca2+ diffusion in
the presence of immobile buffers [42]. Especially, the mobile
buffers with fast on-rate, such as BAPTA and calretinin, can
slow Ca2+ responses and promote globalization of spatially
uniform Ca2+ signals [43,44]. We propose that one may discuss
the Ca2+ responses in the presence of different concentrations
of exogenous Ca2+ buffers to test the hypothesis of wave
failure.
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