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Abstract

A systematic understanding of the evolution and growth dynamics of invasive solid tumors in

response to different chemotherapy strategies is crucial for the development of individually

optimized oncotherapy. Here, we develop a hybrid three-dimensional (3D) computational

model that integrates pharmacokinetic model, continuum diffusion-reaction model and dis-

crete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous

microenvironment under chemotherapy. Specifically, we consider the effects of heteroge-

neous environment on drug diffusion, tumor growth, invasion and the drug-tumor interaction

on individual cell level. We employ the hybrid model to investigate the evolution and growth

dynamics of avascular invasive solid tumors under different chemotherapy strategies. Our

simulations indicate that constant dosing is generally more effective in suppressing primary

tumor growth than periodic dosing, due to the resulting continuous high drug concentration.

In highly heterogeneous microenvironment, the malignancy of the tumor is significantly

enhanced, leading to inefficiency of chemotherapies. The effects of geometrically-confined

microenvironment and non-uniform drug dosing are also investigated. Our computational

model, when supplemented with sufficient clinical data, could eventually lead to the develop-

ment of efficient in silico tools for prognosis and treatment strategy optimization.

1. Introduction

Cancer is a group of highly fatal diseases that usually involve abnormal cell growth and emer-

gent migration behaviors due to complex tumor-host interactions, leading to invasion and

metastasis. For a typical solid tumor, the proliferative cells take up oxygen and nutrition from

surrounding microenvironment and actively produce daughter cells to expand the tumor

mass. The cells in the inner region of the tumor become inactive (quiescent) due to starving
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and eventually turn necrotic. In malignant tumors, mutant daughter cells with invasive pheno-

type i.e., low cell-cell adhesion, high mobility and strong drug resistance, are produced and

can detach from the primary tumor and migrate into the surrounding stromal [1–4]. Such

invasive cells can enter the circulation systems (e.g., blood vessels) and reside in distant organs,

leading to the emergence of secondary tumor and metastasis, and thus makes it very difficult

for cancer treatment [5].

To better understand the evolution and invasive of malignant tumors and the influence of

the host microenvironment, a variety of computational models on tumor growth have been

devised, which can be generally categorized continuum [6–15], discrete [16–23] and hybrid

[24–32] models, to name but a few. The continuum models typically employ coupled partial

differential equations (e.g., diffusion-reaction equations) characterizing tumor population evo-

lution in homogeneous microenvironment as well as the evolution oxygen and nutrient con-

centrations due to cancer cell consumption and metabolism. The continuum models are able

to capture the complex diffusion dynamics of the nutrients, the tumor growth and cell apopto-

sis as well as the effects of chemotaxis and cell adhesion, and can be easily employed to investi-

gate large systems containing millions of cancer cells in the mature tumor. However, the

detailed evolution and phenotype heterogeneity of individual tumor cells cannot be studied

using the continuum models.

In the discrete models, individual tumor cells are explicitly considered and the tumor sys-

tem can be represented using either the particle-assembly model [21] or the cellular automaton

(CA) model [16–20]. In the particle-assembly model, each tumor cell is represented as a bag of

incompressible fluid enclosed by a hyper-elastic membrane with prescribed properties, which

can capture detailed morphology evolution of the entire proliferative colony. In the CA model,

the simulation domain is pre-tessellated into “automaton cells”, and each automaton cell is

assigned a value representing either a biological cell in a particular state (e.g., proliferative, qui-

escent or necrotic) or a region of host microenvironment. The state of a specific automaton

cell depends on those of the neighboring cells via prescribed CA rules. The original CA models

were devised to simulate the proliferative growth of brain tumors [17] and have been recently

generalized to investigate phenotype heterogeneity, invasive growth [33,34], effects of confined

heterogeneous environment [16,34], angiogenesis [18,25], and tumor dormancy [23]. The

hybrid models typically integrate the continuum model for nutrient concentration evolution

and the CA model for individual cell dynamics, explicitly considering the coupling of the two

via nutrients up-take and consumption for cell proliferation [24–27]. Due to the computa-

tional cost, most existing hybrid models are focused on 2D systems. The readers are referred

to recent reviews for a more detailed discussion of the aforementioned tumor simulation mod-

els [35–38].

An outstanding issue in oncotherapy is the lacking of a systematic understanding of the

evolution and growth dynamics of invasive solid tumors in response to different chemotherapy

strategies. Such an understanding is crucial for the development of individually optimized

oncotherapy. Typical chemotherapeutic agents (drugs) interfere with cancer cell division

(mitosis) to cause cell damage or death, suppressing the overall growth of the tumor [39,40].

Generally, drug macromolecules are transported to the tumor site via diffusion in the stromal

and then up-taken by the tumor cells. The effectiveness of chemotherapy strongly depends on

the drug concentration around the tumor cells. However, a high drug concentration also dam-

ages normal and healthy tissue cells, leading to significant side effects for the patient. An opti-

mized dosing strategy that can result in efficient elimination of tumor cells while maintaining

the integrity and functionality of normal healthy tissues is crucial to the success of the cancer

treatment. Periodic dosing [41,42] has recently been suggested as a promising treatment strat-

egy. In order to maximize the treatment effectiveness, the heterogeneity of the tumor-host

Modeling 3D invasive tumor growth in heterogeneous microenvironment under chemotherapy

PLOS ONE | https://doi.org/10.1371/journal.pone.0206292 October 26, 2018 2 / 26

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0206292


system [43,44] as well as the variation in the drug’s cytotoxicity (cell killing) and the effects of

tumor hypoxia [39,40] should also be taken into account.

In most chemotherapy, the anti-tumor drugs are either absorbed in the digestion system or

directly injected into the circulation systems, and then transported different organs and tumor

sites by the blood vessels. The drugs then diffuse into the avascular tissues while being metabo-

lized by cells. The evolution of average drug concentrations in plasma, interstitial tissues and

different organs can be captured via the pharmacokinetic (PK) calculations [45–47]. Such PK

calculations involve master ordinary different equations (ODE) that take into the consumption

of drugs due to decomposition and metabolism, as well as transport of drugs between different

counterparts (e.g., organs) in the body. Although the PK models can provide average drug con-

centration in different organs, it is not able to describe the detail temporal-spatial evolution of

drug concentration within an organ or tissue. To solve such temporal-spatial evolution, diffu-

sion-reaction models are usually employed, in which the consumption of drugs is quantified

via the “sink” terms in the associated partial differential equations (PDE).

Recently, significant research efforts have been devoted to computational modeling of vari-

ous aspects of chemotherapy. For example, the effects of spatial heterogeneity in drug concen-

tration [48], vascular structure and heterogeneous host environment [7,49], cell packing

density [50], intrinsic heterogeneity in cell phenotypes and cell cycles [51–56] on the effective-

ness of treatment and acquired drug resistance [57,58] have been systematically studied.

Computational tools for treatment optimization have been devised [59–62] and data-based

platform has been developed to assess robustness of treatment [63].

In this work, we develop a hybrid three-dimensional computational model that integrates

the physiologically based pharmacokinetic model, continuum diffusion-reaction model and

discrete cell automaton model to investigate 3D invasive solid tumor growth in heterogeneous

microenvironment under chemotherapy. In particular, we explicitly consider the effect of het-

erogeneous environment on drug diffusion, tumor growth and invasion as well as the drug-

tumor interaction on individual cell level. We employ the hybrid model to investigate the

effectiveness of two ideal used dosing strategies, i.e., constant and periodic dosing, in control-

ling the growth of avascular invasive solid tumors. Our model indicates the observation that

constant dosing is generally more effective in suppressing primary tumor growth compared to

periodic dosing, due to the resulting continuous high drug concentration [64–67]. However,

the suppression of primary tumor progression does not necessarily lead to a suppression of

invasive cell migration, which results in complex invasion branches emitting from the primary

tumor [68–71]. Moreover, we show that microenvironment heterogeneity can significantly

enhanced the malignancy of the tumor and thus, reduce the effectiveness of the chemotherapy

with even periodic dosing [72].

It is important to emphasize that the key component of our framework, i.e., the hybrid CA

model coupled with diffusion reaction equation (DRE) for drug concentration evolution, does

not depend on the pharmacokinetic model, vascular/avascular conditions, and assumptions of

the dosing scenarios, which only provide different (transient) boundary conditions for the

hybrid model. Therefore, we also believe that our 3D hybrid model (CA+DRE) is also a suit-

able tool in the simulation for the drug screening assays with the tumor spheroid [73,74] in
vitro, given proper boundary conditions for drug concentration. These high-throughput-

screening techniques are very common in the present anticancer drug tests.

2. Materials and methods

In our model, the computational domain is a sub-region in an organ that contains both the

growing avascular tumor with possible invasive branches and the surrounding stroma.
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Specifically, we consider two types of the host micro-environment respectively with avascular

tissues (Fig 1A) and with vascular tissues (Fig 1B). In the early stage of tumor growth, there are

no capillary vessels around the tumor cells; in the later stage angiogenesis often appears by the

VEGF and the micro-environment around the tumor becomes vascularized. In this later stage

the nutrients, as well as the drugs are much easy to reach the tumor region. In our model, we

use the pharmacokinetics to simulate different drug variations, as is stated below.

Fig 1. Schemes of the tumor-drug model and the time-dependency of drug concentration. (a) and (b): 2D

schematic illustrations of the tumor-drug models in this paper for the avascular tumor in an avascular (a) and vascular

(b) host micro-environment, respectively. The Voronoi polyhedral in the figure is used in the CA model. The necrotic

cells are black, quiescent cells are yellow, proliferative cells are red and the invasive tumor cells are green. The ECM

associated automaton cells are white and the degraded ECM is blue. And the overlapped square grid (blue) is used in

the finite difference calculation for the drug diffusion. (c) The drug (CPT-11) concentration dependence on time in the

plasma (C1) and the avascular tumor (C2) calculated by the two-compartmental PBPK model (Eqs 1 and 2). The

parameters used in the calculation are: k21 = 1.48 day-1; k12 = 0.276 day-1; k10 = 13.27 day-1; V1 = 4.85 × 103 ml; V2 =

8.0 × 103 ml. The initial condition at t = 0 is set as C1 = 1.0 μg/ml and C2 = 0.2 μg/ml. (d) Schematic illustration of the

hybrid-parallel algorithm coupling the drug diffusion/consumption and cell division processes. The Fortran

commands (do i = 1, N; enddo) in the rectangles indicate the loops in our algorithm.

https://doi.org/10.1371/journal.pone.0206292.g001
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We consider that within the simulation domain, there are no blood vessels and the drugs

are transported to the tumor region via diffusion. The drug contraction in the organ will first

be obtained via the physiologically based pharmacokinetic (PBPK) model and imposed as

boundary condition at the boarder of the computational domain.

The evolution of drug concentration within the computational domain is described by a dif-

fusion-reaction equation, which includes position dependent diffusion coefficient for heteroge-

neous microenvironment and consumption terms characterizing the drug’s metabolism and

decomposition. Different dosing strategies are simulated using different time-dependent

boundary conditions. The evolution of the invasive solid tumor is simulated using the cellular

automaton model. Specifically, the probability of division of each proliferative cell is now con-

sidered a function of not only the local microenvironment (e.g., ECM density, rigidity and pres-

sure) but also the local drug concentration computed using the diffusion-reaction equation. We

consider the migration an invasive cell depends only on the microenvironment. In the subse-

quent subsections, we will provide detailed descriptions of these models and their integration.

2.1. Pharmacokinetic modeling of temporal-evolution of overall drug

concentration

In most chemotherapy, the anti-tumor drugs are either absorbed in the digestion system or

directly injected into the circulation systems, and then transported to different organs and

tumor sites by the blood vessels. The decay of average drug concentrations over time in different

organs (due to transport of drugs among different organs and drug consumption) is usually

described by a set of coupled ordinary differential equations referred to as the physiologically

based pharmacokinetic (PBPK) models [45,47,75]. Here, we apply a two-compartment PBPK

model, in which the drug concentrations in a vascularized compartment (C1) and the concen-

tration in an avascular compartment (C2) are considered. For the vascularized compartment,

e.g., a tumor micro-environment with a high density of blood vessels in the stromal tissue, the

transport of drugs is mainly through blood vessel. For the avascular compartment, e.g., an avas-

cular tumor, the drug transportation is mainly via diffusion in the stromal. The corresponding

PBPK equations characterization the temporal evolution of C1 and C2 are given below:

dC1

dt
¼ k21

V2

V1

C2ðtÞ � ðk12 þ k10ÞC1ðtÞ þ
SðtÞ
V1

ð1Þ

dC2ðtÞ
dt
¼ k12

V1

V2

C1ðtÞ � k21C2ðtÞ ð2Þ

where k21, k12, k10 are transport rate constants (for example, k21 is the transport rate from com-

partment 2 to compartment 1; k10 is the transport rate from compartment 1 to compartment 0:

which is the other organs); V1 and V2 are volumes of the compartments, S(t) is the time-depen-

dent dosage as a drug source. Eq 1 means that the change rate of C1 consists of the incoming

flow from the compartment 2 (the first term); the outgoing flow (the second term) and the

injection flow from the dosage source (the last term).

Using the same set of model parameters and initial conditions given in Ref. [45] (see the

values in the caption of Fig 1C, we can calculate of the average drug (CPT-11) concentration as

a function of time in the vascularized and avascular compartments, representing respectively a

vascularized and avascular tumor environment, for a given dosing condition. Fig 1C shows the

results for an impulse dosing at t = 0. It can be seen that in both compartments, the average

drug concentration decays monotonically with time and C1 in the vascularized compartment

possessing a much higher initial value, also drops much faster than C2 in the avascular
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compartment. This is due to the different drug transport mechanism. These PBPK results are

imply that the drug concentration in tumors in avascular micro-environments decays much

slower than that in those in vascularized micro-environments, although the initial concentra-

tion value in the avascular micro-environment is lower than that in the vascularized micro-

environment for the same initial dosage.

Based on the PBPK calculations, in our subsequent simulations, two distinct types of time-

dependent boundary conditions characterizing the drug concentration at the boundary of our

simulation domain will be used respectively for tumors in vascularized and avascular micro-

environments. In particular, we consider that for the avascular micro-environment, the drug

concentration has very slow decay after each bolus injection; and in the vascularized micro-

environment, the drug concentration decays quickly after a bolus injection. On the other

hand, for constant dosing, the drug is continuously supplied leading to an almost constant

concentration level of the drugs in different compartments.

2.2. Diffusion-reaction model for temporal-spatial evolution of drug

concentration in tumor systems

To simulate the temporal-spatial evolution of drug concentration in tumor systems, we employ

the following diffusion-reaction model:

@�

@t
¼ D0r

2� � Kmet� � l0

�

�þ �0

ð3Þ

where D0 is the diffusion coefficient of the drug; the last two terms result from drug consump-

tion. Specifically, the parameter Kmet is the first-order decay rate due to the chemical decompo-

sition as the drug macromolecules diffuse in the stroma. The last term on the right hand side

of Eq 3, usually referred to as the Michaelis-Menten metabolism term [26,46], characterizes

the drug up-take by tumor cells, i.e., drug concentration will decrease in the presence of the

tumor cells, and we set λ0 = λ14n, where n is the tumor cell number density, which is computed

from CA model as described below.

We consider the simulation domain is initially drug free and the drugs enter the domain

through the boundary. For constant dosing, a time-independent drug concentration value will

be used of the boundary condition. For periodic dosing, a general time-dependent boundary

condition suggested by the PBPK calculations is employed to capture the time-evolution of

drug concentration in the tumorous organ due to pharmacokinetics as well as different dosing

cycles. Specifically, in the early stage of one dosing cycle, i.e., the drug infusion period charac-

terized by the infusion time τinfusion, the drug concentration approximately remains a level in

the system and then decays to zero after τinfusion as indicated by pharmacokinetics. This infu-

sion-decay process corresponds to a complete dosing cycle with a period τcycle and such a pro-

cess is repeated to simulate periodic dosing. For different tumor micro-environment (i.e.,

vascularized vs. avascular), the rate of decay for the drug concentration is taken differently

according the PBPK calculations.

To numerically solve the diffusion-reaction Eq 3, we use the finite difference method. In

particular, the simulation domain containing the solid tumor and stroma is discretized into a

cubic grid with N3
f points. The Euler forward-finite difference scheme is used, i.e.,

�
nþ1

i;j;k ¼ �
n
i;j;k þ Dt � ½D0Dð�

n
i;j;kÞ � Kmet�

n
i;j;k � l14ni;j;k

�
n
i;j;k

�
n
i;j;k þ �0

� ð4Þ
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where the Laplacian operator for spatial finite difference is written as

Dð�
n
i;j;kÞ ¼ ð�

n
iþ1;j;k þ �

n
i� 1;j;k þ �

n
i;jþ1;k þ �

n
i;j� 1;k þ �

n
i;j;kþ1
þ �

n
i;j;k� 1
� 6�

n
i;j;kÞ=Dx

2 ð5Þ

This algorithm is numerically stable for the pure diffusion equation, if the following condi-

tion is satisfied [76]

D0Dt
Dx2

<
1

2
ð6Þ

We have verified that Eq 6 is also sufficient to guarantee numerically stability for Eq 4. ni,j,k

is the cell density from the CA model, as is described later.

The obtained drug concentration value on each grid point is then mapped to the nearest

automaton cells, which is then used to determine the decrease factor for the division rate of the

proliferative cells in the CA model. The number of automaton cells representing the tumor

cells within the volume element associated with a grid point is also obtained and used to calcu-

lation the tumor cell number density n for Eq 3. The detailed implementation for coupling the

continuum diffusion-reaction model and the discrete CA model is provided in Sec. 2.4.

2.3. Cellular automaton model for invasive tumor growth in heterogeneous

microenvironment under effects of drugs

We employ the cellular automaton (CA) model to simulate the evolution of invasive tumor in

heterogeneous microenvironment under the effects of chemotherapy. Our CA algorithm fol-

lows closely that described in Refs. [33] and [34]. In particular, the simulation domain is tessel-

lated into polyhedra (or polygons in 2D) associated with a prescribed point configuration (i.e.,

the centers of randomly packed congruent hard spheres) via Voronoi tessellation. Each poly-

hedron is defined as an automaton cell, which in our model can either represent a real biologi-

cal cell or a region of tumor stroma (which consists of a cluster of ECM macromolecules). The

tumor cell can be proliferative, quiescent, necrotic or invasive in our model (see details below).

Accordingly, the tumor-associated automaton cell can take distinct numerical values repre-

senting the different tumor cell state. Each ECM-associated automaton cell possesses a local

density value ρECM to take into account the ECM heterogeneity, which is also positively corre-

lated with the local ECM rigidity. When an ECM-associated automaton cell is taken by a

tumor cell due to either proliferative growth or invasion, we set its ρECM = 0.

In our simulation, the tumor cells in the proliferative rim (mainly in the outer shell of the

primary tumor which has access to the nutrients such as oxygen and glucose) can produce

daughter cells taking nearby ECM-associated automaton cells via cell division. This process

leads to the growth and expansion of the primary tumor mass. The tumor cells in the inner

region may turn into quiescent (alive but inactive) and then necrotic (dead) if they could not

acquire sufficient nutrients for a long time. A small fraction of daughter cells may acquire inva-

sive phenotype (e.g., weak cell-cell adhesion, strong mobility and ECM degradation ability) via

mutation, which can leave the main tumor body and immigrate into the surrounding tissue

leading tumor invasion. In our simulation, time is discretized into days, and for each day, the

state of all tumor cells are checked for possible update. During each day, the evolution of the

tumor is simulated by applying the following cellular automaton (CA) rules:

Modeling 3D invasive tumor growth in heterogeneous microenvironment under chemotherapy
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1. The quiescent cells more than a certain distance δ n from the tumor surface are turned

necrotic due to starving. The critical value of δ n is given as

dn ¼ aLðd� 1Þ=d
t ð7Þ

where a is a prescribed scaling parameter (see Table 1) and d is the spatial dimension. Lt
is the distance between the geometric centroid (xc) of the tumor and the tumor edge cell

that is closest to the quiescent cell considered. xc is defined as xc ¼
1

N

PN

i¼1

xi, where N is the

total number of noninvasive tumor cells, which is updated when a new noninvasive

daughter cell is added to the tumor.

2. Each proliferative cell can produce a daughter cell the probability Pdiv, which will occupy

an ECM-associated automaton cell in the surrounding stroma. We consider that the

probability of division depends on both the heterogeneous environment and local drug

concentration and possess the following expression [33,34]

Pdiv ¼ p0 � Pg;φ �
ð1 � r

Lmax
Þ þ ð1 � rECMÞ

2
ð8Þ

where p0 is the base probability of division, Pγ,φ is the cellular division reduction factor

due to the chemotherapy and is considered a linear function of normalized local drug

concentration (φ), i.e., Pγ,φ = 1 –(1- Pγ) φ; r is the distance of the dividing cell from the

tumor centroid; Lmax is the distance between the tumor centroid and the closest growth-

permitting boundary cell in the tumor growth direction. Eq 8 implies that Pdiv depends

on both the physical confinement imposed by the boundary of the growth-permitting

region and the local mechanical interaction between tumor cell and the ECM, as well as

the local drug concentration.

3. A proliferative cell turns quiescent if it is more than a certain distance δ p from the tumor

surface or there is no space for the placement of the forthcoming daughter cells. The

Table 1. Summary of the definition and numerical values of the parameters for the CA model.

Symbols Definition Expression or values

Lt Local tumor radius (varies with cell positions) See the text

Lmax Local maximum tumor extent (varies with cell positions) See the text

a Base necrotic thickness 0.12 mm(1/3) (Ref. [15])

b Base proliferative thickness 0.08 mm(1/3) (Ref. [15])

p0 Base probability of division 0.192 (Ref. [27])

dn Characteristic living-cell (necrotic cell) rim thickness See Eq (7)

dp Characteristic proliferative rim thickness See Eq (9)

Pdiv Probability of division for proliferative cells See Eq (8)

g Mutation rate for invasive cells 0.05 (Ref. [27])

Ai Adhesion value 2 (Ref. [28])

w ECM degradation ability 0.15 (Ref. [27])

m Mobility of invasive cells 3 (Ref. [27])

https://doi.org/10.1371/journal.pone.0206292.t001
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distance δ p, which corresponds to the thickness of nutrient-rich proliferative rim of the

primary tumor, is given by

dp ¼ bLðd� 1Þ=d
t ð9Þ

where b is a prescribed scaling parameter (see Table 1), Lt is the distance between the

tumor centroid and the tumor edge cell that is closest to the proliferative cell considered.

4. A newly produced daughter cell can gain invasive phenotype (weak cell-cell adhesion,

high motility and strong ECM degradation ability) and become an invasive cell with the

mutant probability γ (see Table 1). Only when the daughter cell has such mutation proba-

bility and the number of its neighboring cells is less than the adhesion value Ai, can it

turn into the invasive cell.

5. A mutant invasive cell has the ability to degrade the nearby ECM and migrate into the

surrounding stroma. We consider that the invasive cell has the mobility: μ, which is the

upper bound on the number of attempts the cell makes to degrade the surrounding ECM

and migrate into the ECM-associated automaton cell. For example, an arbitrary invasive

cell can make m attempts to degrade ECM and move, where m is an arbitrary integer in

[0, μ]. In each degradation/moving attempt, the density of the ECM-associated automa-

ton cell will be decreased by δ p, where δ p is an arbitrary real number in [0, χ] characteriz-

ing the cell’s ECM degradation ability. After m attempts, if the ECM in the automaton

cell is completely degraded (ρECM� 0), the invasive cell will migrate into this automation

cell, leaving behind a path composed of degraded ECM-associated cells. The direction of

motion is the one that maximizes the nutrient concentration.

6. A migrating invasive cell does not divide anymore.

2.4. Spatial-temporal coupling of the diffusion-reaction and cellular

automaton models

In order to investigate the effects of chemotherapy on tumor growth, one needs to couple the

diffusion-reaction model describing the drug diffusion and consumption with the CA mode

for tumor dynamics. Although the spatial coupling of the two models is straightforward by

mapping the computational grid points for PDEs to the CA cell positions, the temporal cou-

pling can be nontrivial.

We first estimate the characteristic drug diffusion time in the tumor. From the analytic

solution of diffusion equation in a homogenous medium: �ðr!; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
ð4pDtÞ3
p e� r2

4Dt for the initial

condition �ðr!; 0Þ ¼ dðrÞ [77], we can define a characteristic “diffusion time” tm ¼
x2

0

4D, at which

the concentration at x0 is high enough (about e� 1 � 0:37 compared to that at the source). For

an example of a real tumor, if we set D = 1.3 × 10−6 cm2s-1, x0 = 0.3 cm, we see tm = 1.73 × 104

s, or about 0. 2 day. Comparing the common cell cycle time (ranging about 8 hours to 24

hours), we see that for the ordinary drug, the characteristic diffusion time is typically less than

one cell cycle.

The above analysis suggests that the drug can diffuse rapidly into the tumor, and thus the

drug concentration may change significantly in one cell cycle due to cellular uptake of the

drug macromolecules and metabolism. However, the traditional CA model usually sets the cell
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division rate (Pdiv) as a constant in one cell cycle. So in our hybrid model, it is not suitable to

do the drug diffusion calculation between two cell cycles. In the actual system, drug diffusion

and cell division occur simultaneously and can have instant effects on one another: on one

hand the drug concentration reduces the cell division rates (see expression of Pγ,φ in Eq 8); on

the other hand, the growing tumor increases the tumor density n, which leads the drug con-

sumption (see the last term in Eqs 3 and 11) and the variation of diffusion coefficient. The dif-

fusion coefficient (D) is also related to the cell density, as will be presented a gas diffusion

model in Eq 13 later.

In our model, we develop a quasi-parallel algorithm for coupling these two processes: We

divide one cycle of the proliferation process (during which cell divides) and one dosing period

(during which the drug diffuses into the tumor mass) into the same number of (Np) steps. In

each step, these two dynamical processes are simulated in sequence for different iterations.

Then at the end of each step, the updated drug concentration distribution obtained from the

diffusion-reaction model is passed to the CA model to compute updated cell division reduc-

tion factor; and the updated cell density distribution and heterogeneous diffusion coefficient

distribution obtained from the CA model are passed to the diffusion-reaction model. Fig 1D

schematically illustrates this procedure. We note that the aforementioned procedure not only

enables easy parallelization of our hybrid algorithm but also more realistically mimics the

actual tumor proliferation process compared to traditional CA method. In particular, in tradi-

tional CA method, the fact that tumor cells divide at different times within a proliferation

cycle is not explicitly considered. Here, by coupling a sub-spatial region of the tumor with a

sub-temporal process of drug diffusion, we consider that the cells within this sub-region divide

during the time span in which the diffusion occurs. This implies that tumor cells in different

sub-region divide at different times. When Np is sufficiently large (e.g., = 50 ~ 100), the quasi-

parallel algorithm can approximate the actual coupled processes. At last, we notice that in this

coupling algorithm, we calculate the cell density in CA model by the expression:

ni;j;k ¼
1

DV

X

m

nm, where nm = 0 or 1, for all the tumor cells in the neighbor of a finite difference

grid point (i,j,k), ΔV is the unit volume of the grid. This is used in the consumption calculation

for Eq 4. We use a mapping scheme to relate these quantities (such as ni,j,k, �n
i;j;k, r

n
ECM;ði;j;kÞ)

between the finite difference grid and the Voronoi tessellation.

3. Results and discussions

In this section, we first study the drug dynamics in a steady-state tumor (i.e., with constant cell

density distribution), in order to understand the spatial-temporal evolution of drug concentra-

tion within one proliferation cycle for both constant dosing and periodic dosing conditions.

Then we employ the model to investigate the growth of avascular tumors in both vascularized

and avascular homogeneous environments under constant and period dosing conditions.

Finally, the coupled hybrid model is employed to study the effects of periodic dosing condi-

tions on invasive tumor growth in heterogeneous microenvironment.

3.1 Spatial-temporal evolution of drug concentration in steady-state

tumors

3.1.1. Drug dynamics in steady-state tumor with constant dosing condition. In the

constant dosing condition, the boundary condition is set as a time-independent constant in

the outer spherical shell (with the radius R = 0.4 cm) without any decay due to pharmacokinet-

ics and is zero within the tumor region. In addition, we assume that steady-state tumor possess

an ideal isotropic morphology, and tumor cell density distribution as one moves away from

Modeling 3D invasive tumor growth in heterogeneous microenvironment under chemotherapy
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the tumor center can be characterized by a Fermi function (1/(1 + exp[(r—r0)/σ]), where r0 is

the tumor radius and σ is the effective boundary-layer thickness.

The diffusion-reaction Eq 3 is employed to obtain the drug concentration distribution as a

function time. In particular, we consider tumors with different sizes r0 and drug consumption

ratio λ14. Fig 2A and 2B show respectively the distribution of drug concentration in a steady-

state tumor with r0 = 0.2 cm and σ = 0.01cm at t = 100 minutes and t = 5 hours for different con-

sumption ratios (λ14 = 2.5 × 10−4 s-1, λ14 = 2.5 × 10−5 s-1 and λ14 = 0). When there is no con-

sumption, the evolution of the drug concentration is entirely controlled by the diffusion and

chemical decomposition (Kmet) terms, and the concentration values in the inner tumor region

is larger compared to the other two cases. In addition, it is clear that a larger consumption ratio

leads to a lower drug concentration in the inner tumor region. The long-time drug concentra-

tion shown in Fig 2B represents steady-state solution to Eq 3. We note that the typical time to

achieve this steady-state (5 hours in the current case) is faster than a typical cell proliferation

cycle, which is consistent with our time-scale analysis discussed in Sec. 2.4. Fig 2C shows the

drug concentration distribution in a smaller tumor (r0 = 0.06 cm and σ = 0.01 cm) as a function

of time with a large drug consumption ratio λ14 = 2.5 × 10−4 s-1. Compared to Fig 2B, the

steady-state of drug concentration distribution is established in a longer period of time, i.e., at

t = 1000 minutes. This suggests that drugs need to diffuse through a wider region to achieve a

steady distribution. Due to fast diffusion of drug and rapid establishment of the steady-state of

drug concentration in the tumor region, we may approximate the actual drug distribution as a

uniform constant for the constant dosing condition, as shown in later Sec. 3.2.1.

3.1.2. Drug dynamics in steady-state tumors with periodic dosing condition. We now

consider the periodic dosing condition and employ a time-dependent periodic boundary con-

dition to simulate the dosing condition [78]. For the periodic dosing, due to different pharma-

cokinetics in vascularized and avascular host micro-environments (see discussion in Sec. 2.1),

we will consider these two cases separately. In particular, for the vascularized micro-environ-

ment, the drug is transported to the tumor region by blood vessels. For the avascular micro-

environment, the drug reaches the tumor region mainly via diffusion. In the former case the

drug concentration decays very quickly with an initial high value; and in the latter case, the

drug concentration decays relatively slowly. In our simulation, we model these two cases by

using different decay time parameters in the time-dependent boundary condition. Specifically,

Fig 2. Spatial-temporal evolution of the drug concentration in the tumor model. (a) and (b) the drug concentration

distribution in an ideal tumor with r0 = 0.2 cm and σ = 0.01 cm. Under constant dosing condition with different drug

consumption ratios, the concentration distribution is plotted at t = 100 minutes (a) and 5 hours (b), respectively; (c)

the drug concentration distribution in an ideal tumor with r0 = 0.06 cm and σ = 0.01 cm as a function of time with a

large drug consumption ratio λ14 = 2.5 × 10−4 s-1 under constant dosing condition. The model parameters are set as

follows: diffusion coefficient D0 = 1.3 × 10−6 cm2�s-1; chemical decomposition ratio Kmet = 2.0 × 10−4 min-1. Δt = 0.1 s;

Δx� 0.01 cm. The red lines are the corresponding cell density.

https://doi.org/10.1371/journal.pone.0206292.g002
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we assume that the drug concentration has the following time dependency

CðtÞ ¼
C0

1þ exp½ðt � tdecayÞ=ðtdecay=10Þ
; t 2 ½Ntcycle; ðN þ 1Þtcycle� ð10Þ

where τcycle is the dosing period and τdecay is the decay time for the drug in the tumor (for tak-

ing into account the pharmacokinetics effects).

Fig 3 shows the spatial-temporal evolution of drug concentration in ideal isotropic tumors

with r0 = 0.2 cm and σ = 0.01 cm for both vascularized [(a) and (b)] and avascular [(c) and (d)]

micro-environments under different periodic dosing conditions. Specifically, two periodic

dosing conditions are applied, which are shown as the black curves in Fig 3. We clearly can see

that in the vascularized micro-environment, the drug decays rapidly (τdecay = 600 mins) and in

avascular micro-environment the drug decays slowly (τdecay = 1800 mins). Moreover, in the

avascular case, the drug is difficult to escape due to the pharmacokinetic analysis as shown in

the black curves (on the tumor boundaries), the average drug concentration within the tumor

always maintains in a relatively high level. This gives a positive effect on chemotherapy. Due to

the decomposition and the small τdecay (600 mins) leads to a very rapid decay of the drug con-

centration in the tumor, consistent with the pharmacokinetic analysis (see Fig 1B). In an avas-

cular micro-environment, the large decay time (τdecay = 1800 mins) leads to a slow decay of the

drug within the tumor. Moreover, in the avascular case, the average drug concentration within

the tumor always maintains in a high level. Due to the diffusion and consumption, the drug

concentrations in the central tumor region exhibit smaller values as shown by the red dashed

curves in Fig 3. With smaller drug consumption, the maximum concentration in the tumor

center is larger, which is consistent with the cases for constant drug dosing conditions. Finally,

we observe that there is a phase shift for the periodic variation of dosage (black curves) and

Fig 3. Spatial-temporal evolution of the drug concentration in ideal isotropic tumors under different periodic

dosing conditions. (a) and (b) are associated with the vascularized micro-environment with quick drug decay (τdecay =

600 min); (c) and (d) are associated with the avascular micro-environment with a slow drug decay (τdecay = 1800 min).

(a) and (c) are associated with a small drug consumption ratio (λ14 = 2.5 × 10−5 s-1); (b) and (d) are associated with a

large drug consumption ratio (λ14 = 2.5 × 10−4 s-1). The chemical decomposition parameter is the same in all cases:

Kmet = 2.5 × 10−4 min-1. The black curve indicates the applied time-dependent boundary condition and the red curve

indicates the drug concentration in the tumor center region. The dosing period is set as τdecay = 1 day = 1440 min. The

tumor size parameters are set as r0 = 0.2 cm and σ = 0.01 cm.

https://doi.org/10.1371/journal.pone.0206292.g003
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drug concentration in the tumor (red curves). This is because that drug needs some time to

diffuse from the outer boundary to the inner region.

3.2. Evolution of invasive tumors in homogeneous microenvironment

under chemotherapy

3.2.1. Invasive tumor growth under constant dosing condition. We now employ the

hybrid model to study the growth dynamics of invasive tumor under constant dosing condi-

tion in homogeneous microenvironment. To simulate the constant dosing condition, we apply

a time-independent constant drug concentration at the boundary of the simulation domain.

As discussed in Sec. 3.1.1, in this case, the drug concentration evolution is the same for both

vascularized and avascular micro-environments as the pharmacokinetics does not play a role

here. The effects of different drug concentrations are taking into account by using different

cell division reduction factor P0
g

(= 0.6 and 0.3). Here Pγ,φ in the CA rule 2 in Sec. 2.3 is spatial

independent, Pγ,φ = P0
g
). We chose the cell cycle time as one day. In the subsequent simulations,

we focus on the early growth stages of the tumor.

The growth dynamics of proliferative tumors, i.e., the tumor size (radius) as a function of

time is shown in Fig 4A. We can see that when the drug is infused in the tumor, its growth is

significantly suppressed. Higher drug concentration (i.e., associated with a larger of division

reduction P0
g
) leads to the slower growth of the tumor. This is expected as the drug can signifi-

cantly suppress the division of proliferative cells which is a determinant factor for the tumor

growth process.

Next, we consider invasive tumor growth under the constant dosing condition with a high

drug concentration (P0
g

= 0.6). The mutation rate and mobility of the invasive cells are respec-

tively set as 0.05 and 3 following Ref. [34]. The ECM degradation ability is 0.4. Fig 4B and 4C

shows the average linear size associated with the quiescent region, proliferative rim and inva-

sive branches as growth time for a freely growing invasive tumor and one under chemotherapy

for purposes of comparison. Snapshots of the morphology of the growing invasive tumors are

also shown in Fig 4D and 4E.

We can see from Fig 4B and 4C that when the drug is applied, the expansion of both the

proliferative tumor and the invasive cells are apparently surprised. A more quantitative com-

parison shows that although proliferative cells grow much slower (the final primary tumor size

is decreased by 50%) with drug infusion, the growth of the invasive cells is only weakly sup-

pressed (the final extent size is decreased by 20%). In the chemo treated tumors, the invasive

cells can still develop long invasive branches (see Fig 4E compared to the free growth case. The

apparent decrease of the overall extent of the invasive branches is due to the significantly

reduced size of the primary tumor. In fact, the average linear extent of the invasive cells

remains roughly the same as in the free growth case. This is because the drug does not affect

the motility and ECM degradation of the invasive cells. However, the number of invasive cells

is reduced by applying the drug, which is again due to the reduced division rate of the prolifer-

ative cells (i.e., less mutant daughter cells with invasive phenotype are produced).

3.2.2. Invasive tumor growth under periodic dosing condition. We now investigate the

effects of drugs on the tumor growth under periodic dosing condition. In this condition, drugs

are periodically applied and the drug concentration decays in a different manner in vascular-

ized and avascular micro-environments as predicted by the pharmacokinetic calculations. Spe-

cifically, for the vascularized micro-environment, the drug concentration at the simulation

domain boundary drops very quickly due to the fast transport via blood vessels; and for the

avascular micro-environment, the drug concentration at the tumor boundary decays relatively

slowly due to diffusion.
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Fig 5A shows the growth dynamics of both proliferative and invasive tumors in vascularized

micro-environment under periodic dosing conditions. The distribution of drug concentration

within the tumor during one proliferative cycle is discussed in Sec. 3.1.2. Different dosages are

applied, which leads to different cellular division reduction factors i.e., Pγ = 0.6; 0.3 and 0.05

used in the simulations. For purpose of comparison, we also consider the growth proliferative

tumor without chemotherapy and with two different constant dosing conditions (Pγ = 0.6 and

0.3).

We can see from Fig 5A that in general periodic dosing conditions do not lead to the strong

suppression of tumor growth as in the constant dosing cases, even for the high drug concentra-

tion cases (with a division reduction factor Pγ = 0.05). This is because for the periodic dosing,

the drug concentration drops quickly in the vascularized micro-environment, which results in

a weaker reduction of cellular division. This is to contrast with the constant dosing condition,

which has been shown to be able to significantly suppress tumor growth in both vascularized

and avascular micro-environments. However, such dosing condition can cause also damages

to the normal cells and serious side effects. Thus, an alternative strategy is to infuse the drug

more frequently with a shorter dosing period, as we will show below.

Fig 4. Tumor size and morphology under constant dosing condition. (a) The growth dynamics of proliferative

tumors with different drug concentrations in homogeneous microenvironment. (b) The average sizes of invasive

tumor cells as a function of growth time without chemotherapy. (c) The average sizes of invasive tumor cells as a

function of growth time with a division reduction factor P0
g

= 0.6. (d) A snapshot of the simulated growing tumor

without chemotherapy on day 120 (with 142 invasive cells); (e) A snapshot of the simulated growing tumor under

constant dosing condition (P0
g

= 0.6) on day 120 (with 31 invasive cells). As stated in the context, in this figure the

micro-environment can be either avascular or vascularized. In (d) and (e), only the proliferative cells (red), the invasive

cells (yellow) and the degraded ECM cells (cyan) are plotted.

https://doi.org/10.1371/journal.pone.0206292.g004
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The growth dynamics of an invasive tumor under periodic dosing condition with Pγ = 0.3 is

also shown in Fig 5A. We see that the growth curve of the primary tumor almost coincides

with that of the proliferative tumor with the same Pγ. This is because although the invasive

cells leave the primary tumor and migration into surrounding tissues, the division rate of the

proliferative cells in both cases are almost identical, leading to the same primary tumor sizes.

We now investigate the effects of different periodic dosing conditions on the growth of

invasive tumors in avascular micro-environment. Fig 5B shows the growth dynamics of the

primary tumor for different dosing period τcycle and decay time τdecay but the same division

reduction factor Pγ = 0.05. As shown in Fig 5B, cases 1 and 2 are associated the small decay

time (τcycle> τdecay), corresponding to the tumors in vascularized micro-environment for

which the drug concentration decays very quickly due to fast pharmacokinetics. Cases 3 and 4

are associated with the large decay time, corresponding to the tumors in avascular micro-envi-

ronment. It can be clearly seen that in the latter cases (i.e., avascular cases) the drug can effec-

tively suppress the tumor growth. The reason is that for the avascular micro-environment the

drug decay is much slower (also see Fig 1C. This results in a higher drug concentration to sup-

press the tumor cell division. In addition, a large consumption parameter (λ14 = 2.5 × 10−4 s-1)

Fig 5. Tumor size in homogeneous microenvironment under periodic dosing conditions. (a) Growth dynamics of

the tumor in vascularized homogeneous microenvironment under different periodic dosing conditions. Effects of

different dosages are modeled via different division reduction factor Pγ, with a dosing period and decay time of τdecay =

1 day and τdecay = 600 min, respectively. For purpose of comparison, the results for constant dosing with Pγ = 0.6 and

0.3 as well as freely growing tumors are also shown. (b) Growth dynamics of the invasive tumor in avascular

homogeneous microenvironment under different periodic dosing conditions. The dosing period τcycle, decay time

τdecay are shown in the figure. Here a division reduction factor Pγ = 0.05 is used. The results for tumor in vascularized

micro-environment with small decay time (cases 1 and 2) are also shown for purpose of comparison with the tumors

in avascular micro-environment (cases 3 and 4). The consumption parameters used are Kmet = 2.0 × 10−4 min-1, λ14 =

2.5 × 10−4 s-1 (cases 1, 2, and 3) and 2.5 × 10−5 s-1 (case 4).

https://doi.org/10.1371/journal.pone.0206292.g005
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is used for case 3, and a small consumption parameter (λ14 = 2.5 × 10−5 s-1) is used for case 4.

We see that with a smaller consumption parameter, the drug concentration can remain a

higher for a longer time, which leads to continuously suppression of tumor cell division and

thus, a smaller final tumor size.

Finally, we investigate the invasive tumor morphology under these periodic dosing condi-

tions. Fig 6A–6C shows the snapshots of the growing tumors at day 120 under periodic dosing

with different decay times, i.e., a fast decay with τdecay = 600 min for (a) corresponding to

tumors in vascularized micro-environment; and a slow decay with τdecay = 1800 min for (b)

and (c) corresponding to tumors in avascular micro-environment. We see that in all cases,

there are a large number of dendritic invasive branches composed of collectively migrating

invasive cells. Since the drug only reduces the proliferative cells’ division rate, the linear extents

of the invasive branches in all cases are almost the same. The sizes of the tumors in avascular

micro-environment in Fig 6B and 6C are smaller than the tumors in vascularized micro-envi-

ronment in Fig 6A, which is due to the higher effective drug concentration in the avascular sys-

tems. The small consumption in (c) also leads to a decreased size than that in (b).

3.3. Evolution of invasive tumor in heterogeneous environment

under periodic dosing conditions

In this section we employ our hybrid model to investigate invasive tumor growth in heteroge-

neous environment under periodic dosing conditions. To accurately capture the diffusion

Fig 6. Snapshots of simulated tumors. In all these cases, the same dosing period τcycle = 1 day, chemical

decomposition parameter Kmet = 2.0 × 10−4 min-1, and division reduction factor Pγ = 0.05 are used. Here only the

proliferative cells (red), the invasive cells (yellow) and the degraded ECM cells (cyan) are plotted. (a)-(c): Snapshots of

the simulated invasive tumors in homogeneous microenvironment under periodic dosing conditions at day 120. (a) is

the tumor in vascularized micro-environment with a quick drug decay (τdecay = 600 min) due to fast pharmacokinetics

and a small consumption parameter (2.5 × 10−5 s-1); (b) is the tumor in avascular micro-environment with a slow drug

decay (τdecay = 1800 min) and a large consumption parameter (2.5 × 10−4 s-1); (c) is the tumor in avascular micro-

environment with a slow drug decay (τdecay = 1800 min) and a small consumption parameter (2.5 × 10−5 s-1). (d)-(e):

Snapshots of the simulated tumors in heterogeneous microenvironment (with a random distribution of ECM density).

(d) The ECM density ranges from 0.1 to 0.5 and with an average value of 0.3; (e) The ECM density ranges from 0.1 to

0.9 and with an average value of 0.5.

https://doi.org/10.1371/journal.pone.0206292.g006
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dynamics of drugs in the heterogeneous stroma, we explicitly utilize the location-dependent

diffusion coefficient in the diffusion-reaction equation, i.e.,

@�ðr!; tÞ
@t

¼ r � ½Dð r
!

; tÞr�ð r
!

; tÞ� � Kmet�ð r
!

; tÞ � l0

�ðr!; tÞ
�ðr!; tÞ þ �0

ð11Þ

The discretized form of the heterogeneous diffusion term in Eq 11 is given below
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The diffusion coefficient in a heterogeneous ECM depends on the local ECM density,

which also represents the rigidity of the system in our model. Following the formulation of het-

erogeneous gas diffusion coefficient in systems with non-uniform pressures [79], we use the

following empirical expression for Dðr!; tÞ

Dð r
!

; tÞ ¼

(
D0 � r0ECM=ðrECMðr

!
; tÞ þ rresÞð r

! lies in the ECM regionÞ

ZD0 ðr! lies in the tumor regionÞ
ð13Þ

where D0 is the diffusion coefficient in the uniform ECM possessing a density of ρ0ECM, ρres is

the residual density after the ECM is completely degraded by the invasive cells. In the following

simulations, we employ a random distribution for the ECM density and choose ρ0ECM = 0.3,

which is the value used for the homogeneous ECM in previous sections. And we choose ρres =

0.1. In addition, we set η = 0.75 since the diffusion in the tumor region is evidently slower due

to high cellular density than that in the ECM.

Table 2. Summary of the model parameters for different periodic dosing conditions (the division decay factor Pγ; the consumption parameter λ14; the two periodic

dosage times τcycle and τdecay) as well as the growth data of tumors in both vascularized and avascular micro-environment (the averaged radius of proliferative cells

and invasive cells Rp and RInv; the number of invasive cells NInv) on day 120 in the heterogeneous ECM. The brackets in the last column indicate the corresponding

morphology plots in Fig 6.

Pg l14

(s-1)

rECM tcycle(day) tdecay(min) RP
�1 (cm) RInv

�2 (cm) NInv*
3

0.6 2.5�10−4 0.3 1 600 0.210 ——- ———

0.3 2.5�10−4 0.3 1 600 0.200 ——- ———

0.05 2.5�10−4 0.3 1 600 0.198 ——- ———

0.05 2.5�10−4 0.3 1 600 0.187 0.264 92

0.05 2.5�10−4 0.3 2 1440 0.174 0.262 101

0.05 2.5�10−5 0.3 1 600 0.158 0.236 72 (a)

0.05 2.5�10−4 0.3 1 1800 0.106 0.210 25 (b)

0.05 2.5�10−5 0.3 1 1800 0.076 0.182 9 (c)

0.05 2.5�10−5 [0.1,0.5] 1 1800 0.119 0.165 28 (d)

0.05 2.5�10−5 [0.1,0.9] 1 1800 0.091 0.118 16 (e)

�1: The averaged radius of proliferative cells at day 120;

�2: The averaged radius of invasive cells at day 120;

�3: The number of invasive cells at day 120.

https://doi.org/10.1371/journal.pone.0206292.t002
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In the heterogeneous environment, we use the following sinusoidal-like distribution to

describe the initial (time = 0) ECM density

rECMð r
!

; 0Þ¼rECM;av �
1

2
rECM;fluc þ rECM;flucjsinð

px
Lx
þ
py
Ly
þ
pz
Lz
Þj ð14Þ

where ρECM,av is the average ECM density, ρECM,flue is the ECM fluctuation amplitude, Lx(Ly,
Lz) is the sinusoidal period. In our simulation, we set ρECM,av = 0.3 for Fig 6D and ρECM,av = 0.5

for Fig 6E. Lx(Ly, Lz) is about L/60 or L/30, where L is the size of the cubic simulation box.

Snapshots of the morphology of both proliferative and invasive tumors growing in hetero-

geneous ECM with random density under periodic dosing are shown in Fig 6D and 6E. It can

be clearly seen that in the heterogeneous ECM, the tumors develop rough and bumpy surface

due to position dependent inhomogeneous cell division probability, as well as varying division

reduction factors due to inhomogeneous drug concentration. This phenomenon has also been

observed in the previous work for tumors growing in heterogeneous ECM with high rigidity

[34].

Table 2 provides a detailed summary of the model parameters for different periodic dosing

conditions as well as the growth data of tumors in both vascularized and avascular micro-envi-

ronments on day 120 in the heterogeneous ECM. We can clearly see that for periodic dosing,

the treatment is more effective in suppressing tumors in avascular heterogeneous micro-envi-

ronment than that in vascularized heterogeneous ECM, consistent with the cases in homoge-

neous ECM. In addition, we find that denser and more rigid ECM (e.g., with average density

0.5) leads to an overall smaller tumor. However, under the same dosing condition, the tumor

growing in heterogeneous ECM becomes more malignant (with larger primary tumor size and

more invasive cells) compared the tumor growing in homogeneous ECM with the same den-

sity (ρECM = 0.3).

We note that a high ECM density, on the one hand, can suppress tumor growth; and on the

other hand, can slow down the drug diffusion to the tumor region, which promotes tumor

growth. Therefore, the actual tumor growth dynamics in heterogeneous ECM is the outcome

of these two competing effects. For the case of average ρECM = 0.3, the diffusion of the drug is

significantly slowed down while the density is not high enough to sufficiently suppress tumor

growth, leading to a larger tumor compared with that in homogeneous ECM with the same

density. For the case of an average ρECM = 0.5, the ECM density is large enough to suppress

tumor growth even with very little drugs, and thus, results in a smaller tumor compared to that

growing in corresponding homogeneous ECM. However, the invasiveness of the tumor grow-

ing in heterogeneous ECM with high density is significantly enhanced, which is consistent

with the observation reported in Ref. [34].

3.4. Tumor growth dynamics in heterogeneous environments and non-

uniform dosing conditions

To further demonstrate the utility and predictive capability of our hybrid model, we now

examine the effects of periodic dosing on the growth dynamics of proliferative tumors in

highly heterogeneous microenvironment. Specially, we consider two distinct cases for the

environmental heterogeneities: (i) geometrically confined microenvironment and (ii) spatially

non-uniform drug dosing.

3.4.1. Effects of geometrically confined microenvironment. Certain tumors such as duc-

tal carcinoma in situ (DCIS) grow in a geometrically confined microenvironment, which usu-

ally results in a highly anisotropic tumor shape. On the other hand, the heterogeneity of the

microenvironment also significantly influences the diffusion of drugs to the tumor site. Here,
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we apply our hybrid model to investigate the effects of periodic dosing on proliferative tumors

growing in confined environment. The effects of the environmental confinement are modeled

by a discontinuous distribution of ECM density. In particular, we consider the simulation

domain is composed of two equal-sized sub regions. The left sub region possesses a higher

ECM density value (ρECM = 0.6, e.g., to mimic the hard basal membrane) and the right region

possesses a lower ECM density value (ρECM = 0.2, to mimic soft tissue). The dosing period is

τcycle = 1 day, and the drug decay constant is τdecay = 800 mins. The drug is released at the

boundary of the spherical simulation domain with radius R = 0.3 cm (see Fig 1), which

imposes a uniform initial high drug concentration at (and outside) the simulation boundary

and zero concentration within the simulation domain. An initial tumor of linear size 0.06 cm

is introduced in the center of the domain. The drug diffusion coefficient, which is a function

of ECM density and local cell density, is obtained using Eq 13.

The spatial-temporal evolution of the drug concentration in the ECM-tumor system is

obtained by numerically solving Eq 11. Fig 7A shows the drug concentration distribution in

the x-y plane associated with z = 0 at t = 1.0 hour. Due to the high ECM density (i.e., low drug

diffusivity) in the left region of the simulation domain, a higher concentration is built up com-

pared to that in the right region. This leads to an overall non-symmetric distribution of drug

in the system. However, due to the small tumor cell population (and size) at this stage (shown

as the red circle in Fig 7A), the difference in drug concentration in the left and right region

next to the tumor is relatively small. Fig 7B shows the distribution of the division reduction

factor Pr,φ in the proliferative rim at t = 15 days. We note that the observed fluctuations in Pr,φ
is mainly due to the heterogeneous cell division time in our hybrid model. As discussed in Sec.

2.4, in our CA model we consider a proliferative cell can divide at any time during a dosing

cycle, implying a random distribution of cell division time. Under periodic dosing condition,

the drug concentration at a cell at the time of division is generally different from that of

another cell, leading to the non-uniform distribution of Pr,φ.

Fig 7C and 7D show the snapshots of the growing tumors (at t = 150 days) in the confined

environment with two different cell division probabilities (p0 = 0.192 and 0.288). It can be

clearly seen that the tumor develops a highly anisotropic shape, indicating the majority of pro-

liferation occurs in the right low-density ECM region. On the other hand, protrusion-like

structures are developed across the soft-hard ECM boundary, which is a key feature of micro-

environment-enhanced malignancy. We note that even after 150 days, the protrusions remain

relative compact. This is to contrast the elongated dendritic protrusions typically found in

tumors growing in drug-free hard ECM [20, 21]. These observations illustrate the effects of

drug treatment on proliferative tumor in confined microenvironment.

3.4.2. Effects of spatially non-uniform drug dosing. Finally, we consider the effects of

spatially non-uniform drug dosing. This is motivated by the fact that at certain stage of devel-

opment, tumor cells can produce vascular endothelial growth factor (VEGF) to recruit endo-

thelial cells for angiogenesis. The newly formed blood vessels can transport both nutrients and

drugs to the local tumor site close to the blood vessels. When sufficient amount of drugs are

transported to the tumor site, its local growth can be suppressed. Based on these consider-

ations, in our simulation, instead of considering uniformly distributed vascular network (or

avascular drug diffusion) on the tumor boundary as shown in Fig 1, we consider the blood ves-

sels recruited by the growing tumor are located in the lower left region of the tumor-ECM sys-

tem. This is implemented by releasing the periodically dosed drugs at the lower left of the

spherical simulation domain. Here, we set the drug concentration on the lower left region as a

source boundary condition, where �ðr!; tÞ is the periodical function in Eq 10 for only a

restricted region, which satisfies the following conditions: (0.2 cm� r� 0.3 cm; x–x0 < 0; y–

y0 < 0), where x0 = y0 = z0 = 0.5 cm, are the coordinates of the spherical center.
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Fig 8A shows the distribution of drug concentration in the x-y plane associated with z = 0.

It can be seen from Fig 8A that after initial releasing, the drugs quickly diffuse to the entire sys-

tem and are consumed and degraded. The lower left region of the domain remains to possess a

relatively high drug concentration even after 16.8 hours of dosing, suggesting a high suppres-

sion of tumor growth in this region. Fig 8B shows the distribution of the division probability

Pdiv of the proliferative cells with z = 0. It can be seen that the cells in the lower left region pos-

sess a much smaller division probability due to the high drug concentration in this region. Fig

Fig 7. Effects of geometrically confined microenvironment on proliferative tumor growth under periodic dosing (τdecay = 600 min, τcycke = 1

day). (a) Asymmetric distribution of drug concentration in the x-y plane associated with z = 0 at t = 1.0 hour. the small red circle denotes the original

tumor; (b) Distribution of the division reduction factor Pr,φ in proliferative cells in the x-y plane associated with z = 0 on day 15. The red dots denote

the proliferative cells. (c) Snapshot of a proliferative tumor growing in the confined microenvironment with p0 = 0.192 on day 150; (d) Snapshot of a

proliferative tumor growing in the confined microenvironment with p0 = 0.288 on day 150. In (a), (c), (d), the middle lines denote the interfaces

between two different ECM densities (ρECM is 0.6 in the left side and 0.2 in the right side).

https://doi.org/10.1371/journal.pone.0206292.g007
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8C and 8D show the snapshots of two proliferative tumors with different cell division probabil-

ities (p0 = 0.192 and 0.384) at day 150. It can be seen that the effects of drugs are more signifi-

cant in the fast growing tumor (Fig 8D). Specifically, the cell division in the lower left region of

the fast growing tumor is strongly suppressed by the high drug concentration, which results in

a relatively flat edge in this region. On the other hand, the slowly growing tumor develops a

relatively isotropic shape with a slightly flat edge in the lower left region.

4. Summary and conclusions

In this paper, we presented a comprehensive investigation of the effects of different chemother-

apy (i.e., constant vs. periodic dosing) on the growth dynamics of invasive tumors in both vascu-

larized and avascular 3D heterogeneous microenvironment using a novel hybrid computational

model. Our hybrid model integrates the physiologically based pharmacokinetic model for pre-

dicting overall drug concentration decay in different types of tumors, the continuum diffusion-

reaction model for spatial-temporal evolution of the drug distribution in tumor-ECM system, as

well as the discrete cell automaton model for invasive tumor growth simulation under effects of

Fig 8. Effects of spatially non-uniform drug dosing (τdecay = 600 min, τcycke = 1 day) on proliferative tumor growth (ρECM is 0.2 in the whole

region). (a) Evolution of drug concentration distribution in the x-y plane associated with z = 0. The drugs are dosed in the lower left region of the

spherical simulation domain periodically. Left panel: t = 2.4 hours; right panel: t = 16.8 hours. (b) Distribution of the division probability Pdiv in

proliferative cells in the x-y plane associated with z = 0 on day 15. The red dots denote the proliferative cells. (c) Snapshot of a slowly growing tumor

with p0 = 0.192 on day 150. (d) Snapshot of a fast growing tumor with p0 = 0.384 on day 150.

https://doi.org/10.1371/journal.pone.0206292.g008
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drugs. This model allows us to explicitly consider the effects of heterogeneous environment on

drug diffusion, tumor growth and invasion as well as the drug-tumor interaction on individual

cell level.

We have employed the hybrid model to investigate the evolution and growth dynamics of

avascular invasive solid tumors in both vascularized and avascular micro-environments under

chemotherapy with both constant and periodic dosing. We find that constant dosing is gener-

ally more effective in suppressing primary tumor growth compared to periodic dosing, due to

the resulting continuous high drug concentration. While periodic dosing is found to be more

acceptable in suppressing tumor growth in micro-environment, due to the small side effects.

However, as the chemotherapy is assumed not to suppress invasive cell migration, complex

invasion branches emitting from the primary tumor have been found. In addition, we find

that the malignancy of the tumor is significantly enhanced in highly heterogeneous microenvi-

ronment, leading to inefficient chemotherapy. We also use this model to the geometry-con-

fined environment and non-uniform drug dosing situation. Our computational model, once

supplemented with sufficient clinical data, could eventually lead to the development of efficient

in silico tools for prognosis and treatment strategy optimization.

In our current model, the drug-tumor interaction is modeled as a reduction of the division

probability (rate) of individual tumor cells, which depends on the local drug concentration.

We note that this treatment does not explicitly consider the heterogeneity in the distribution

of cell division time and cycle time and has assumed uniform distributions for these quantities.

In future, we will further generalize our hybrid model to explicitly take into account the afore-

mentioned heterogeneity, which would lead to a more accurate prediction of tumor growth

dynamics under periodic dosing conditions.
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