
Chapter 4
Modeling of Stochastic Ca2+ Signals

Sten Rüdiger and Jianwei Shuai

Abstract It has been shown that IP3R channels are distributed in clusters on the
membrane of the endoplasmic reticulum, generating Ca2+ signals onmultiple scales,
from local puffs to global intra- and intercellular waves. Local Ca2+ puffs released
from a cluster of IP3R s are strongly stochastic. The most obvious source of noise
for puffs is the small number of channels within a cluster. In this chapter we discuss
the simulation of stochastic Ca2+ signals. Various simulation methods such as the
Gillespie algorithm, a two-state Markovian chain, and gate-based and channel-based
Langevin approaches have been introduced for use in the study of stochastic gating
dynamics of IP3R channels. Combining the stochastic channel dynamics with the
deterministic simulation the Ca2+ diffusion process, the fluctuating Ca2+ signals,
including puffs and both intra- and intercellular waves, can be investigated by hybrid
models.

Keywords Stochastic processes · Calcium signaling · Channel gating dynamics
Inositol 1,4,5-trisphosphate receptor · Calcium puffs · Calcium sparks · Calcium
waves · Intracellular waves · Intercellular waves
4.1 Introduction

Calcium is a ubiquitous mediator of cellular responses to external stimuli including
neurotransmitters, hormones andmechanical stresses. The stimulus is represented by
transient or repetitive increases of cytosolic Ca2+ concentrations. In astrocytes, for
example, oscillations of [Ca2+] enable intercellular communication and are linked to
the plasticity of neuronal synapses (Volterra et al. 2014; Rusakov 2015). Ca2+ was
shown to regulate gene expression by involving a number of transcription factors
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(Dolmetsch et al. 1998; Di Capite et al. 2009). The regulation of a multitude of such
processes emerges from the tuning of Ca2+ levels in space and time.

Cytosolic Ca2+ levels are structured by coordinated release from intracellular
stores located in cell organelles, particularly the endoplasmic reticulum (ER). The
release from stores occurs through two related types of receptor channels in the
membrane of theER: inositol trisphosphate receptors (IP3Rs) and ryanodine receptors
(RyRs). The receptor channels regulate Ca2+ release in response to the binding of
specific ligands, including Ca2+, to binding sites on the cytosolic side of the channels.
Ca2+ released by a channel diffuses into the cytosol and increases the probability of
neighboring channels being open by binding to their activating binding sites. This
provides a self-amplifying mechanism called Ca2+ -induced Ca2+ release (CICR),
which is the basis of all Ca2+ signals discussed here.

We focus on two properties of Ca2+ signals that have been studied recently:

• Subcellular organization. The multiple intracellular spatial scales and a related
hierarchy of collective behavior (Berridge et al. 2003) shape the signals of Ca2+
(Fig. 4.1). This fact becomes apparent since release events at the different scales
can be associated with different functional roles in cellular communication. The
smallest events in the Ca2+ signal hierarchy are short-lived openings of single
channels called blips. Experimental observation of larger, yet still localized release
events called puffs (Parker and Yao 1996) indicates that functioning IP3R channels
are grouped into clusters on the ERmembrane containing at most tens of channels.
Their opening is the result of local diffusion of Ca2+ and CICR between adjacent
channels. Ca2+ signals therefore often exhibit spatial gradients, which have been
shown to be important in the signaling content of Ca2+ signals for gene expression
(Di Capite et al. 2009). The significance of the nanodomain distribution for Ca2+
function has also been shown recently in dendritic spines, where it was found
that RyR channels are present in the postsynaptic dendritic spine (Johenning et al.
2015). Here, the channels play a role in synaptic plasticity but can do so only if
a local concentration is raised above the Ca2+ elevation in the spine. Finally, the
largest scale of Ca2+ signals is produced by whole-cell oscillations and waves,
which are observed in many cell types. These signals are believed to comprise
release from many clusters and possibly from further isolated channels situated
between the clusters (Smith et al. 2009).

• Stochasticity. It was found that puffs, lasting from 50 to a few hundreds mil-
liseconds, are strongly stochastic events (Marchant and Parker 2001). The most
obvious source of noise for puffs is the small number of channels within a cluster
(around 3–30). Several mathematical models have been put forward that repro-
duce the stochastic and dynamic features of puffs based on the single channel
gating noise (e.g. Shuai and Jung 2003; DeRemigio et al. 2008; Rüdiger et al.
2010a). Furthermore, experiments have shown that global oscillations also have
a strong stochastic component. Attributing this noise again to intrinsic stochastic
behavior, fluctuations in the interwave interval have been associated with single
channel noise in a number of computational models (Falcke 2003; Skupin et al.
2010; Rückl et al. 2015).
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Fig. 4.1 The multiple spatial and time scales of Ca2+ signals (Rüdiger 2014a). a Ca2+ blips
released from a single channel, b Ca2+ puffs released from several channels in a cluster, c Ca2+
signals released from an array of clusters. d An overview of the relevant scales in space and time

In early modeling studies, time-dependent Ca2+ elevations were described using
deterministic ordinary differential equations (ODEs). These were based on a small
number of feedback processes, the combination of which can indeed guarantee the
existence of a limit cycle behavior. However, the two properties that we have men-
tioned, spatial localization and noise, require more complex spatial, nonlinear and
stochastic equations, of the kind not usually studied in standard systems biology.
Studies have resulted in evidence that the Ca2+ oscillator belongs to the class of
stochastic excitable systems and not to the limit cycle class. In the following sec-
tion we review a number of approaches to the problem, including partial differential
equations (PDEs), Markovian modeling and numerical methods. In each case, we
discuss the links to recent experimental results.

4.2 Stochastic Simulation of IP3R Gating Dynamics

4.2.1 Master Equations of the Stochastic Process

First, we discuss a toymodel of a channelwith the following open and close processes
only

C
α

�
β

O (4.1)
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with the open rate α and the closing rate β. Given a large ensemble of channels, the
differential equations for the state fractions xi of channels (i = o or c) can be given.
For example, the open fraction xo is written as,

dxo
dt

= α(1 − xo) − βxo (4.2)

Equation 4.2 is suitable for a large numbers of channels with continuous state
fractions. However, when the channel number is small, the state fractions become
discrete. The fluctuations of the channel number in the states i around its mean values
become large, and the standard deviation around themean value is of the order 1/

√
N

with N the total channel number. As a result, the above differential equation based on
the law of mass action needs to be replaced by the corresponding master equations,
where the reactions are treated as Markovian birth-death processes. Taking M to be
the number of open channels, one has the following master equation:

dP(M, t)

dt
= α((N − M + 1)P(M − 1, t) − (N − M)P(M, t))

+β((M + 1)P(M + 1, t) − MP(M, t)), (4.3)

where P(M, t) is the probability of having M open channels at time t .
The master equations can be solved in an analytical way only for simple cases.

This is not practical in the case of more complex master equations involving many
channels or many different receptor states. Thus, numerical methods are usually
required to solve the master equations for complex gating states. For instance, a
widely discussed IP3R channel model based on the microscopic kinetics of IP3 and
Ca2+ gating was proposed by DeYoung and Keizer (1992). The model assumes that
three equivalent and independent subunits are involved in conduction of an IP3R.
Each subunit has one binding site for IP3 (gate m) and two binding sites for Ca2+:
one Ca2+-binding site for activation (gate n), the other for inhibition (gate h). The
subunit conducts only when the IP3 site and activation Ca2+ site are bound. Thus, as
shown in Fig. 4.2a, each subunit may exist in eight states with transitions governed
by the first- or second-order rate constants. For such a subunit-based model with
three types of binding sites, we need to determine the evolution of a probability
density P(Mm, Mn, Mh, t) in a three-dimensional occupation number space. For
the channel-based model, the probability density in an even larger space must be
tracked. In this case, solutions can be obtained by Monte Carlo methods, where
exemplary trajectories are calculated using random numbers in a way appropriate
to the transition rates. Single trajectories can then be collected to obtain statistical
features of the system.
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Fig. 4.2 a The eight IP3R subunit states proposed by DeYoung and Keizer (1992). b An example
to show how the two-state Markovian method simulates the stochastic gating dynamics from the
current (100)-state to the three other possible states of (000), (110), or (101) (see also Chap. 3)

4.2.2 Gillespie Simulation

A mathematically precise basis for stochastic simulation algorithms was derived by
Gillespie (1976, 1977). The approach relies on the notion of a propensity ai for each
microscopic transition or reaction Ri . Then

aidt = hicidt (4.4)

is the probability that reaction Ri occurs during the next infinitesimal time step dt .
Here ci denotes the reaction constant of Ri (the probability density that a combination
of molecules reacts) and hi is the number of particle combinations of that particular
reaction. For instance, in the case of a mono-molecular reaction, A → B, h equals
XA, where XA is the number of A-molecules in a certain well-mixed volume V ,
and c equals the macroscopic rate k of the transition. Similarly, for A + B → 2A,
h = XAXB and the macroscopic k = cV . If a reaction is called, the corresponding
numbers of participatingmolecule species, X j , j = 1, . . . , K , are updated according
to the stoichiometric factors, which are conveniently placed into amatrix, νi j , defined
as

νi j ≡ change in the number of X j molecules produced

by one Ri reaction. (4.5)

The stochastic algorithm determines the time of the next reaction and which
reaction it will be, given the state X = (XA, XB, . . . ) at the starting time t . Let

http://dx.doi.org/10.1007/978-3-030-00817-8_3
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P0(τ ) be the probability that no reaction will occur in (t, t + τ) and ai = ai (X) the
propensity at time t . Since 1 − ∑

i aidτ is the probability that no reaction will occur
in dτ , where the sum’s index runs over all reactions, we find that

P0(τ + dτ) = P0(τ )

(

1 −
∑

i

aidτ

)

(4.6)

is the probability that no reaction has occurred in (t, t + τ + dτ). The last equation
implies that P0(τ ) = exp(−∑

i aiτ). On the other hand, the probability that the next
reaction is Ri and it occurs in (t + τ, t + τ + dt) is P(τ, i)dt = P0(τ )aidt , i.e.,

P(τ, i) = ai exp(−a0τ), (4.7)

where a0 = ∑
i ai is the sum of all propensities. The probability density P(τ, i)

can be implemented by drawing two random numbers r1 and r2 from a uniform
distribution in the interval [0, 1], and choosing τ and i such that

a0 · τ = ln(1/r1),
i∑

j=1

a j ≤ a0 · r2 <

i+1∑

j=1

a j . (4.8)

This algorithm determines which reaction Ri is executed in the next step and when
it will occur (time τ ). This method is the so-called Direct Method (Gillespie 1976).
Variants, which differ in the application of random numbers, are the First (Gillespie
1976) and Next Reaction Methods (Gibson and Bruck 2000).

The numerical effort can be substantially reduced if there is a strongdisparity in the
amplitude of noise in various parts of the reaction system. If some of the reactants are
strongly fluctuating in their number, while others evolve more regularly, the system
can be split into a stochastic part simulated with one of the methods described above,
and a deterministic part solved by numerical schemes for differential equations.
Both parts then need to be linked in an appropriate way. Previous research followed
a strategy where fast reactions are represented by the deterministic rate equation,
while slow reactions are treated with the exact stochastic algorithm. An example
is the stochastic simulation of the Li-Rinzel Ca2+ model (Li and Rinzel 1994), as
discussed below.

In a similar manner, the evolution of calcium concentration can be treated de-
terministically, while the gating transitions of ion channels need to be simulated
stochastically. However, when combining a deterministic evolution with a stochastic
solver, one may encounter the following problem. Gillespie’s method rests on the as-
sumption that during successive stochastic events, the propensities ai do not change
(Gillespie 1976, 1977; Gibson and Bruck 2000). However, when linking the stochas-
tic reaction dynamics to the deterministic dynamics, we expect the propensity of ai
to change over time due to its dependence on deterministic variables. This effect, as
seen below, will be particularly strong for the opening and closing of channels, since
after such events the local calcium concentration changes dramatically by three or
four orders of magnitude.
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One way to resolve this problem was introduced by Alfonsi et al. (2005) and
applied to the Ca2+ system (Rüdiger et al. 2007). Within this setting, the time τ to
the next stochastic event is determined by solving

∫ t+τ

t
a0(s, c) ds = χ, (4.9)

with χ = ln(1/r1), where the sum of propensities a0 may depend explicitly on both
time s and deterministic variables, here denoted by c. The above equation simplifies
to the equation determining τ in (4.8) for a constant a0. To determine the time τ of
the next reaction, condition (4.9) is conveniently rewritten in differential form by
introducing a variable g(τ ) and solving

ġ(s) = a0(s, c) (4.10)

with initial condition g(t) = 0, alongwith the differential equations for deterministic
variables. A reaction occurs whenever g(s) reaches the random number χ . As before,
the specific event Ri is determined based on a second random number r2 satisfying
the second condition in Eq. (4.8) with propensities evaluated at the event time t + τ .

4.2.3 Two-State Markovian Method

As an alternative, solutions can be obtained by a simple two-stateMarkovianmethod.
By expanding the transition probabilities at the linear order for the small time step δt ,
one can obtain the transition probability P of hopping from i-state to j-state within
δt

P(i | j, δt) = δt × γ j i (4.11)

with the rate γ j i from i-state to j-state, and the probability to remain in the same
state

P(i |i, δt) = 1 − δt ×
∑

j

γ j i (4.12)

This scheme can be expressed directly in terms of a computer algorithm. In detail,
the channel state is updated for every small time step δt . For the toy model (4.1), if
the channel is closed at time t , the probability that it becomes open at time t + δt is
α · δt . If it is open at time t , then the probability that it becomes closed at time t + δt
is β · δt .

Such a two-state Markovian method can by applied easily to the complex
DeYoung-Keizer IP3R model (DeYoung and Keizer 1992). Generally, to determine
the state of a channel, random numbers from a uniform distribution on the unit in-
terval [0, 1] are drawn. Each transition represents a subinterval on the unit interval
proportional to the value of its transition probability where the sum of all subintervals
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represents possible transitions. The transition that corresponds to the subinterval into
which the random number falls is actually performed in simulation. An example is
how the two-state Markovian method simulates the stochastic gating dynamics from
the current (100)-state to the three other possible states of (000), (110), or (101) is
explained in Fig. 4.2b.

4.2.4 Gate-Based Langevin Approach

For a large number of channels N , the master equation can be approximated by a
Fokker-Planck equation, which is a linear partial differential equation. For every
Fokker-Planck equation there is a statistically equivalent set of Langevin equations,
i.e., a set of stochastic differential equations (Fox and Lu 1994).

As an example, we discuss the Langevin approach of the Li-Rinzel Ca2+ model
(Li and Rinzel 1994) which is a simplified DeYoung-Keizer model (DeYoung and
Keizer 1992) with two variables only (Chap. 3):

dC

dt
= Jr (C, h, I ) + Jl(C) − Jp(C), (4.13)

dh

dt
= h − h∞

τh
= αh(1 − h) − βhh, (4.14)

with C the intracellular Ca2+ concentration, I the IP3 concentration, and h the
fraction of deinactivated IP3Rs. The first term Jr in Eq. (4.13) denotes the channel
flux density from the ER into the intracellular space, the second term Jl is the leak
flux density and the third term Jp is the pump flux density from the intracellular space
into the ER (Fig. 4.3). Equation (4.14) for h defines the fractions of the subunits in
deinhibited states.

The expressions for the fluxes are given by

Jr = 	C m3
∞ h3 (CT − (1 + ρA)C) , (4.15)

Jp = OP H2 (C, KP) , (4.16)

Jl = 	L (CT − (1 + ρA)C) , (4.17)

with the parameters given as

m∞ = H1 (I, d1) · H1 (C, d5) ,

αh = h∞
τh

= O2Q2,

βh = 1 − h∞
τh

= O2C,

Q2 = d2
I + d1
I + d3

. (4.18)

http://dx.doi.org/10.1007/978-3-030-00817-8_3
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Fig. 4.3 The scheme of the Ca2+ oscillation model. Intracellular Ca2+ is controlled by channel
flux as well as a leak flux from the ER into the intracellular space and the pump flux from the
intracellular space into the ER

The parameters of the model are ρA = 0.185, 	C = 1.11 s−1, 	L = 0.02035
s−1,OP = 0.9µMs−1, KP = 0.1µM, d1 = 0.13µM, d2 = 1.049µM, d3 = 0.9434
µM, d5 = 0.08234µM, and O2 = 0.2µM−1 s−1 (Li andRinzel 1994). Conservation
of Ca2+ implies the constraint of Ca2+ concentration in ER CE = CT − ρC with
CT = 2ρ µM. The concentration I is a control parameter.

Equations (4.13) and (4.14) describe the deterministic behavior averaged for a
large number of channels. The small number of IP3Rs in a single cluster suggests
that a stochastic formulation of these equations is necessary if calcium release from
a single cluster should be considered.

Following the deterministic Li-Rinzel model, one can consider the stochastic
opening and closing process only for the gate h. Each gate h is an inactive binding
site for Ca2+ which is occupied (closing) or non-occupied (opening).We describe the
binding and unbinding of these three sites using an independent two-state Markov
processes with opening and closing rates αh and βh , respectively.

One can simply assume that the stochastic dynamics of the IP3R channels can be
reflected by the fluctuation of the open fraction of channel subunit h. As a result, the
Langevin equation for the fraction of the h-open subunit is expressed as (Shuai and
Jung 2002)

dh

dt
= αh(1 − h) − βhh + Gh(t) (4.19)
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where Gh(t) are zero mean, uncorrelated, Gaussian white-noise terms with

〈Gh(t)Gh(t
′)〉 = αh(1 − h) + βhh

N
δ(t − t ′), (4.20)

Such a gate-based Langevin approach indicates that the stochastic dynamics of the
IP3R open fraction can be treated as a deterministic dynamics disturbed by aGaussian
white noise.

In the simulation, theGaussian noise sources are generated at each integration step
by theBox-Muller algorithm. For example, we can simply use the Euler integration to
solve the deterministic terms. Let the time step be δt , and γ1 and γ2 be two uniformly
distributed random numbers in (0, 1]. The Box-Muller algorithm requires that one
should add the following noise term into the Euler integration (Fox 1997)

gh =
√

−2
αh(1 − h) + βhh

N
log(γ1) sin(2πγ2) (4.21)

As a result, the Euler integration of the Langevin equation for the Li-Rinzel model
is given as

h(t + δt) = h(t) + δt (αh(1 − h) − βhh) + gh(t)
√

δt (4.22)

Since h has to be bound between 0 and 1, it is necessary to verify this condition
after each iteration step. The approximate nature of Eq. 4.19 does not automatically
maintain h in the required interval. One can simply put the value of h as 0 or 1 when
it it is out of [0, 1]. Simulation shows that the results are insensitive to the choice of
strategy used to keep h in [0, 1].

Instead of applying three identical h-gates with h3 in Eq. (4.15), one can also
consider three independent h-gates with h1h2h3 in Eq. (4.15) which are disturbed
individually by different Gaussian white noises (Shuai and Jung 2002; Huang et al.
2011).

4.2.5 Channel-Based Langevin Approach

Consisting of three subunits for IP3R of the Li-Rinzel model, each channel has four
possible h-uninhibited states, as shown in Fig. 4.4. Define state fraction xi as the rate
of the channel number in i h-uninibited state among the total channel number with
i = 0, 1, 2, 3. The stochastic channel kinetics can bemodeled as a four-stateMarkov
chain dynamics. Applying a vector X = {xi } to represent the four state fractions, the
evolution of channel state fractions can be traced by the following channel-based
Langevin equation (Fox 1997; Huang et al. 2011)

dX
dt

= AX + S√
N

ξ, (4.23)
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Fig. 4.4 Transition diagram
of IP3R channel state. The
number indicates how many
subunits in the channel are in
the h-uninhibited state

where A is the transition matrix representing the transition dynamics between dif-
ferent channel states. Based on the Markovian chain shown in Fig. 4.4, one has

A =

⎛

⎜
⎜
⎝

−3α β 0 0
3α −2α − β 2β 0
0 2α −α − 2β 3β
0 0 α −3β

⎞

⎟
⎟
⎠ (4.24)

In Eq. (4.23), the matrix S is the square root matrix of diffusion matrix D = SST

which is given by

D =

⎛

⎜
⎜
⎝

3αx0 + βx1 −3αx0 − βx1 0 0
−3αx0 − βx1 3αx0 + (β + 2α)x1 + 2βx2 −2αx1 − 2βx2 0

0 −2αx1 − 2βx2 2αx1 + (α + 2β)x2 + 3βx3 −αx2 − 3βx3
0 0 −αx2 − 3βx3 αx2 + 3βx3

⎞

⎟
⎟
⎠

(4.25)

The vector ξ in Eq. (4.23) is a noise term with four elements. Each noise element
is a Gaussian white noise with zero means and unit variances.

As a result, instead of Eq. (4.15) for channel flux, we have the following expres-
sions for channel flux

Jr = 	C m3
∞x3 (CT − (1 + ρA)C) (4.26)

in which x3 is the h-open fraction of channels. Due to the Gaussian noise terms
added, channel state fractions are no longer guaranteed to lie on the bounded do-
main, but have a probability to violate the meaningful interval [0, 1]. One can allow
for the means of simplicity that fractions evolve unboundedly, and for values out-
side [0, 1] the positive semidefiniteness of the diffusion matrix may not be given
thus hindering the computations of the matrix square roots. One can also keep the
boundary limitation of [0, 1] by simply putting xi = 0 or 1 once they are out of the
bound and calculate x0 = 1 − ∑

i>0 xi to ensure
∑

xi = 1. Some better but complex
constraining methods have also been proposed (Huang et al. 2013).

Orio et al. proposed a simple structure of the square root matrix to solve the
stochastic differential equations of the Hodgkin-Huxley neuronal model (Orio and
Soudry 2012), which can also be applied here to the Li-Rinzel Ca2+ model. In this
approach, the Cholesky decomposition was extended to solve the stochastic terms
of complex kinetic schemes of the four-state channel. In detail, the random term
for i is equal to the square root of the sum of the forward (i → j) and backward
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(i ← j) transition probabilities for the transition pair i � j , scaled by the inverse
of the channel number. As a result, one has

dX
dt

= AX + SOξ, (4.27)

Here, the square root matrix SO in Eq. (4.27) is directly given by

SO = K F√
N

(4.28)

where K is a 4 × 3 matrix given by

K =

⎛

⎜
⎜
⎝

1 0 0
−1 1 0
0 −1 1
0 0 −1

⎞

⎟
⎟
⎠ (4.29)

and F is a 3 × 3 diagonal matrix with the diagonal elements given by

diag(F) =
⎛

⎝
3αx0 + βx1
2αx1 + 2βx2
αx2 + 3βx3

⎞

⎠

Such a simple expression for the square root matrix naturally fulfills the requirement
of SST = D. Note that X is a vector with four elements, but ξ here it is a noise
vector with only three elements and SO is a 3 × 4 matrix. With the method proposed
by Orio and Soudry (2012), the expensive matrix square root calculation is avoided,
largely reducing the total computational cost during the numerical simulation.

4.3 Stochastic Ca2+ Puff Dynamics

4.3.1 Limitation of Modeling with Homogeneous Ca2+
Concentration Within IP3R Clusters

One can simply use the Markov version of the Li-Rinzel model (Li and Rinzel 1994)
to study the statistical properties of Ca2+ puffs released from a cluster of IP3Rs
with stochastic gating dynamics. In this simple stochastic Li-Rinzel model, spatial
aspects of the formation and collapse of localized Ca2+ elevations are ignored. The
Ca2+ diffusion between the cluster and the environment is ignored so that an isolated
cluster can be discussed. On the other hand, the channels are assumed to be close
enough and the instantaneous Ca2+ diffusion within a cluster to be so fast that the
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calcium concentration within a cluster is assumed to be always homogeneous. The
small size of the IP3R clusters introduces strong stochasticity for puffs, resulting in a
distribution of puff amplitude, lifetime and inter-puff interval (Shuai and Jung 2002).

However, experimental and theoretical work (Roberts 1994; Rüdiger et al. 2007)
suggests that even at steady state the Ca2+ diffusion at a Ca2+ release site may lead
to inhomogeneous profiles even in a very small region. Simply assuming that the
ER membrane acts as a flat boundary to limit the Ca2+ diffusion in a half three-
dimensional space and Ca2+ ions diffuse from a point release source of IP3Rs, a
solution of the linearized reaction-diffusion equation indicates that a sharp distribu-
tion around the release point can be established (Smith 1996; Neher 1998),

c(r) = II P3R
4πr FDCa

exp(−r/λ) + c0, (4.30)

where II P3R is the current of IP3R, DCa is the diffusion coefficient for free Ca2+, and
c0 is the Ca2+ concentration at resting state. The parameter λ is an important factor
which accounts for the Ca2+ diffusion and binding to buffers. The term exp(−r/λ)/r
indicates that the decay of Ca2+ concentration with distance is even sharper than the
exponential function.

As shown in Fig. 4.5, a numerical simulationwith the finite elementmethod shows
a sharp decay of the stationary Ca2+ concentration against distance from the channel
center. The Ca2+ concentration at the channel pore is about 110µM. It decreases
to about 20 µM at a distance of 15nm which is about the size of the IP3R channel,
and decreases to about 0.7 µM at a distance of 200nm, which is about the size of
the IP3R cluster. These data indicate that the homogeneous Ca2+ concentration for
clustered IP3Rs is not a suitable assumption, for a puff simulation with a cluster size
of a few hundred nanometers.

Fig. 4.5 The stationary
Ca2+ concentration against
distance for an open channel
directly along the ER
membrane (solid) and
perpendicular to the
membrane (dashed) as
calculated with finite
element discretization
(Rüdiger et al. 2010b)
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4.3.2 Two-Scale Modeling of Ca2+ Concentration Within
IP3R Clusters

Considering the sharp decay around the open channel, a puff model with two-scale
Ca2+ concentration was proposed (Rüdiger et al. 2010a). In fact, if a channel is open,
the local Ca2+ concentrations reach values above 100 µM, while closed channels
in a cluster are subjected to much lower concentrations. For simplicity, one may
introduce a domain Ca2+ concentration for all the closed channels in a cluster. As
shown in Fig. 4.6b, it can be seen that the domain Ca2+ , cd , can be well described
by a linear relationship with the number of open channels, n as

cd(n) = c0 + c1n, (4.31)

where c0 is the rest level concentration and c1 is a coupling constant (Rüdiger et al.
2010a).

The dynamics for N channels in a cluster can then be simulated by using discrete
Markovian gating transitions and using equations for the Ca2+ concentration such
as Eq. (4.31). Various schemes have been studied and have been shown to produce
Ca2+ dynamics resembling experimentally observed Ca2+ puffs (DeRemigio et al.
2008; Rüdiger et al. 2010a; Cao et al. 2013; Rüdiger 2014b).

When a channel switches from the open state to the closed state, the domain
Ca2+ concentration will be influenced by its diffusion and binding and unbinding
with various buffers before it reaches the equilibrium value cd. To incorporate the
collapsing dynamics, one can consider the following differential equation for cd
around the closed channels (Rüdiger et al. 2014)

Fig. 4.6 FEM simulation of Ca2+ release from nine channels in a cluster (Rüdiger et al. 2010a).
a The box of dimension 8 × 8 × 5µm3 represents the cytosolic space. Channels are located on the
ERmembrane. b The domain calcium concentrations are obtained by averaging the closed channels
for a given total number of open ones
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dcd
dt

= γ (c0 + c1n − cd). (4.32)

Here γ is the decay rate for the domain Ca2+ collapse, which in general depends on
many factors such as cluster size and buffer content. As an example, the temporal
evolution of the open channel number and the corresponding cluster domain Ca2+
is given in Fig. 4.7. The stochastic channel opening and closing in the cluster causes
the occurrence of puffs and blips.

To further address the possible equivalence within a differential equation ap-
proach, one needs to replace n in Eq. (4.31) with the product of the total number of
channels, N , and the fraction of channels in the open state a. Substituting the discrete
number of channels for its continuous counterpart, Na, entails that cd can be larger
than c0 even if less than one channel is open. This misrepresentation is a source of
inadequate continuous modeling and in Rüdiger (2014b) a function that possesses a
step at the crucial transition from zero to one open channel was introduced:

cd(a) = c0 + c1Na
1

2
[1 + tanh((Na − 1)/ε))]. (4.33)

Fig. 4.7 The temporal evolution of open channel number (top) and the corresponding cluster
domain Ca2+ (middle). The arrow marks a blip. Two puffs (Puff A and Puff B) and a blip are
depicted in the enlarged drawing (bottom) (Qi et al. 2015)
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Here, the parameter ε characterizes the “discreteness” of the 0-1 step and was chosen
as 0.1 in Rüdiger (2014b).

4.3.3 Puff Dynamics in a Langevin Model

In Rüdiger et al. (2010a) a Markov chain of four states was used, which basically
represent the four states obtained from activation and inhibition, see Fig. 4.8. The
simulations based on this scheme and other schemes suggested a dynamics similar
to the excitable behavior well known from models for neuronal action potentials
including the Hodgkin-Huxley equations (Hodgkin and Huxley 1952).

Rate equations with Langevin noise for each gating state can be derived from
the reaction scheme in the standard way (Shuai and Jung 2003). For example, the
fraction of channels in the state a is given by

da

dt
= k+

a cz − k−
a a + k−

i g − k+
i csa + Gza + Gag. (4.34)

The G .. terms are Langevin noises representing stochasticity of channel open-
ing/closing. Following the approach of Fox and Lu (1994) one obtains, for in-
stance, for Gza(t) a zero mean, Gaussian white noise term with 〈Gza(t)Gza(t ′)〉 =
(k+

a cdz + k−a
a )δ(t − t ′)/N . In Rüdiger (2014b) these equations were simulated to-

gether with ODEs for the cluster domain Ca2+ concentration. It was found that an
excitable trajectory, similar to those in other systems such as action potentials in the
FitzHugh-Naguma system, underlies the puff dynamics, see Fig. 4.8b.

Fig. 4.8 a Four-state model based on single channel activation and inhibition. The rest state is
denoted by z. Activation of the channel by Ca2+ binding corresponds to its opening (state a).
Further Ca2+ binding results in the closing of the channel (states g and h). b Excitable trajectory
(solid black line) in a two-dimensional ODE based on the model shown in (a) and Eq. (4.33). Here
the green and red lines show the nullclines of the activator and inhibitor variables, respectively
Adapted from Rüdiger (2014b)
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4.3.4 Ca2+ Dynamics with Clustered Channels in a 3D Model

Ca2+ release from a group of IP3R channels has also been studied in three-
dimensional models of the cytosolic space. The main problem encountered here
is the strongly localized distribution of Ca2+ within the cell, which requires a very
high spatial resolution in numerical modeling. Related to the clustering of IP3R
channels, there are two basic domain sizes to be considered. It was first recognized
that the clustering of channels and release of Ca2+ produces a local elevation of
Ca2+ to values between 1 and 10 µM. The spatial extent of these domains roughly
follows that of the cluster (less than or close to 1 µM) and hence the domains are
called microdomains. It was therefore suspected that the microdomain provides a
homogenous local reaction space, so that all Ca2+ channels within the domain "feel"
equal Ca2+ concentrations. Later, however, using more advanced methods of numer-
ical spatial discretization, it appeared that Ca2+ is distributed very unevenly within
a microdomain. This follows from the evidence that channels within a cluster are
distanced at a few tens or hundreds of nm, so that after the opening of channels,
gradients of [Ca2+] (roughly 1/r , where r is the radial distance from the channel
pore) result. Thus, around an open channel, values of concentration of up to hundreds
of µM result, while the concentrations at adjacent channels due to the open channel
are much lower. Hence for a realistic modeling of local Ca2+ signals the assumption
of a common reaction space for all channels is not valid (Rüdiger et al. 2010a).

An accurate description of intracellular Ca2+ dynamics takes into account Ca2+
diffusion and binding to buffers as well as transport to and from the intracellular
storage compartments, mainly in the ER. Diffusion of Ca2+ and binding of Ca2+ to
buffer proteins or endogenous buffers is modeled by reaction-diffusion equations,
while transport through the ER membrane is given by influx conditions on the ER
surface. In the following we consider the sample case of one buffer only, where c
and b respectively denote the free cytosolic and bound buffer Ca2+ concentrations.
Assuming simple reaction kinetics this leads to the following system of PDEs:

∂c

∂t
= Dc∇2c + b k− − c k+(B − b) (4.35)

∂b

∂t
= Db∇2b − b k− + c k+(B − b). (4.36)

Dc, Db and B denote the diffusion coefficients of free Ca2+, bound buffer and the
total buffer concentration, respectively.

The equations are solved within a domain denoted 	 as shown below. Influx
through the channels is given by boundary conditions on the domain boundary ∂	M

that represents the ER membrane:

Dc�n �∇c =
{
J, at ∂	M

0, at ∂	 \ ∂	M
(4.37)

Db�n �∇b = 0, at ∂	. (4.38)
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Here, �n denotes the outer normal vector of the boundary of the domain denoted by ∂	.
J describes the flux through the ER membrane and comprises three contributions:

J = PcS (�r , t) (E − c) − Pp
c2

K 2
d + c2

+ Pl (E − c) , (4.39)

where �r = (x, y, z) denotes the spatial position on themembrane and E is the [Ca2+]
in the ER lumen. Since the ER was estimated to not be depleted during puffs (Ullah
et al. 2012), one often assumes E to be constant.

The first term on the rhs of Eq. (4.39) models current through the IP3R channels
from the ER to the cytosol. This term is controlled by the channel state through
the factor S (�r , t), which is non-zero in small areas representing the open channels.
The source areas should be chosen to be small to realistically model pore regions
and the large Ca2+ gradients around open channels.

The second term in Eq. (4.39) models SERCA pumps. Standard models such as
the one in Eq. (4.39) are of the Hill equation type with Hill coefficient 2 (Lytton et al.
1992). Kd is the dissociation constant of the pumps. The maximal pump current, Vp,
was estimated to be 10–16µM s−1 (Falcke 2004). This number is based on a volume
source and needs to be cast into a flux through a boundary by multiplying the volume
current by the domain extension dz . This results in units of moles per surface area
and time, as is required for the boundary flux.

The last term in Eq. (4.39) models a small leakage of Ca2+ from the luminal to
the cytosolic domain. Besides its physiological relevance, it also serves to balance
the system in the rest state, i.e., it compensates the SERCA pumps when there are no
open channels. To achieve a resting [Ca2+] of a few tens of nM (c0) in the cytosolic
domain and a few hundreds of µM in the ER (E), equating the two last terms of
Eq. (4.39) provides a dependence of Pl on Pp:

Pl = Ppc20
(E − c0)

(
K 2

d + c20
) . (4.40)

Due to the multiple spatial scales, special care has to be given to spatial discretiza-
tion in the numerical schemes. In one line of research, three-dimensional simulation
software (Rüdiger et al. 2007, 2010b; Rückl et al. 2015) was established using the
finite element method. The PDE-solver is based on locally grid-adapted finite el-
ements in space that resolve the extreme spatial gradients of Ca2+ concentrations
around an open channel. Typically, a spatial grid of less than 1nm is needed in the
close neighborhood of a channel, while the grid distance relaxes to around 500nm
further from the channels.

The stochastic gating transitions are described by schemes defining the states,
the transitions and transition rates. As described above, the standard method to nu-
merically time-advance such states’ variables is the Gillespie method. The Gillespie
method needs to be coupled to the time stepping of a reaction-diffusion equation
using a hybrid method such as that given by Eq. (4.10).
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The three-dimensional simulation tool permitted investigation of the interior Ca2+
distribution of clustered channels by taking into account the spatial separation of
channels (Rüdiger et al. 2010a, b; Rückl et al. 2015). Previous publications had
assumed all the channels of a cluster form a shared disk-shaped source area without
allowing passive space between the channels. It was found that Ca2+ distributions
around open channels are non-homogeneous at the scale of a cluster for realistic
channel distances. This leads to a separation of Ca2+ scale into a large self-coupling
value (concentration at the channel pore of an open channel), and the much smaller
cluster domain values, defined as an appropriate averageCa2+ concentration at closed
channels while others are open. It is then clear that incorporating spatial separation
(as opposed to a tight cluster model) leads to models which allow a much better
description of experimentally observed puffs see Sect. 4.3.2.

4.3.5 Simulations with Discrete Ca2+ Ions

The modeling approaches described above recognized the importance of number
fluctuations in the binding to the channels and formulated hybrid models where the
deterministic Ca2+ concentration is coupled to stochastic channel binding model-
s (Rüdiger et al. 2007). More recently, however, it was found that local fluctuations
stemming from diffusive noise of Ca2+ ions may also have a crucial influence in
Ca2+ dynamics. Diffusive noise of Ca2+ regards the fluctuating number of ions that
are in the neighborhood of the receptors and are available for binding to them. This
noise source is similar to the noise in the diffusion of a chemoattractant that was
considered in the classic work of Berg and Purcell (Berg and Purcell 1977).

A straightforward method to take diffusive noise into account involves tracking
the exact diffusive paths of each individual ion in the computational domain. Doing
so in the complete domain is computationally very intensive and, therefore, Flegg et
al. applied spatial stochastic multiscale modeling in order to accurately incorporate
diffusive noise (Flegg et al. 2013). In the two-regime method (Flegg et al. 2011),
Brownian trajectories of the particles and binding events are followed in a small
space surrounding the receptor cluster, while further away from the cluster the fluc-
tuating numbers of ions in larger three-dimensional compartments are calculated.
This method saves a considerable amount of simulation time while not compromis-
ing the microscopic detail needed for the binding dynamics close to the receptors.
Flegg et al. showed that this approach can be used to calculate interpuff intervals for
a cluster of nine channels.

A compartment-based approach was also used in the simulation of Wieder et al.
(2015). There the influence of fluctuations in Ca2+ ion number on the equilibri-
um behavior of a single channel was studied and it was found that those fluctua-
tions increase the open probability compared to the standard deterministic model.
In an investigation of fluctuations in the number of Ca2+ ions in a single com-
partment in contact with the bulk, Weinberg and Smith found that mobile Ca2+
buffers may increase the size of fluctuations of [Ca2+] around its equilibrium value
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(Weinberg and Smith 2014). Together, these studies hint at the presence of discrete
Ca2+ noise, but further research is needed to draw clear conclusions regarding their
relevance to Ca2+ release models.

4.4 Stochastic Intracellular Ca2+ Signals

Global synchronization of release results in cell-wide oscillations or waves (Berridge
1990; Lechleiter et al. 1991; Camacho and Lechleiter 1993) that can last up to several
tens of seconds.Despite the ubiquity ofCa2+ oscillations inmany cell types andmany
years of experimental and modeling research, there is still no consensus on the basic
mechanism of the regenerative discharges. Here we would like to briefly look at the
most widely discussed models and a few aspects in computational modeling that
have been in focus recently. For a thorough discussion of the possible physiological
mechanisms, we refer readers to the excellent review by Dupont et al. (2011).

Models of Ca2+ oscillations, just as any other kind of oscillation in biology,
including cell cycle and circadian rhythms, rely on a number of nonlinear feedback
processes (Nov’ak and Tyson 2008). Limiting the present discussion to intracellular
IP3-controlled oscillations, two groups of mechanisms have been put forward. One
group is based on the observation that IP3R is biphasically regulated by Ca2+. In
its essence, oscillations are obtained by an alternation of activating and inhibiting
binding to the receptor, which is obtained by various channel gating schemes such as
for instance the DeYoung-Keizer scheme. This way, the global oscillations build on
the same processes as the local signals discussed above and this suggests viewing the
global signals as synchronized local signals. However, the times between the Ca2+
puffs are much shorter than those of the Ca2+ oscillations. In particular, recovery of
the receptor from inhibition takes a few seconds at most, whereas oscillation periods
can be longer than one minute. This and the very different durations of puffs and
waves point to a shortcoming of this family of models.

A further group of models take into account the fact that in many cell types
the concentration of IP3 is also variable and may therefore drive Ca2+ oscillations.
Several possibilities have been proposed including stimulation of IP3 synthesis by
released Ca2+ (Meyer and Stryer 1988) and Ca2+-activated down-regulation of G-
protein-coupled IP3 production (Cuthbertson and Chay 1991). Other studies featured
passive IP3 variability (Dupont and Erneux 1997) or included several types of the
mentioned mechanisms to allow a detailed quantitative comparison (De Pitt’a et al.
2009).

More recently a detailed study of release from a receptor cluster has been used
to explain the dichotomy of puffs and waves observed in many cell types including
Xenopus oocytes. Rückl et al. analyzed the modified DeYoung-Keizer model previ-
ously used to study the Ca2+ puffs and found that it is capable of producing both
short-lived release as well as wave-like release that lasts for several seconds (Rückl
et al. 2015). In the model, long-lasting events are accompanied by unbinding of IP3
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from the receptor. Since these long events have a much larger total Ca2+ release,
they are more likely to stimulate neighboring clusters and thus tend to synchronize
release as observed during a wave. Since the large events are less frequent than the
short events, the model produces periods of global events in the order of the exper-
imentally observed inter-spike intervals. Interestingly, the unbinding of IP3 occurs
with a short delay compared to the peak position, resulting in a delayed peak of free
IP3 concentration that has also been observed experimentally (Tanimura et al. 2009;
Gaspers et al. 2014).

The mechanisms described above can in principle be used within a deterministic
differential equation model. This has frequently been done to analyze whole-cell
oscillations. However, with the increasing spatial resolution and characterization of
local Ca2+ release in experiments, the role of noise in the appearance and generation
of global Ca2+ signals has been recognized. This has prompted a way of modeling
in accord with noise-driven, excitable local release, which thus shares similarities to
the behavior found in the propagation of neuronal action potentials.

A number of experimental studies characterized puffs as the basic building block-
s of global signals (Parker et al. 1996; Smith and Parker 2009). Since puffs are
noise-driven as discussed above, Falcke and co-workers postulated that their inher-
ent randomness carries over to waves (Skupin et al. 2010). According to this picture,
a random opening of channels in one or several clusters triggers the activation of
adjacent clusters, thus facilitating the spreading of a wave through the cell. These
ideas also provide an explanation of the inherent randomness of Ca2+ oscillations,
which is apparent most clearly in their fluctuating inter-spike period.

Besides the duration of an event, stochastic modeling addresses the different inter-
puff times (a few seconds) and inter-wave times (several tens of seconds to minutes).
In the approach by Falcke and co-workers the long periods of global oscillations
are created by the waiting time for a sufficiently large local event encompassing
several clusters (a nucleation event) (Thurley and Falcke 2011). Alternatively, it has
also been suggested that the amplitude of elementary release events is distributed
randomly. Accordingly, only the largest events would have sufficient potency to
spread to adjacent clusters (Rückl et al. 2015). The latter model also explains why a
cluster stays refractory after a wave for several seconds while it admits puffs shortly
after termination of a prior puff (Marchant and Parker 2001).

4.5 Outlook of Intercellular Ca2+ Waves with Stochastic
IP3R Dynamics

Intercellular Ca2+ waves (ICWs) can be induced in response to bath application
of glutamate or ATP in glial cells. Mechanical or electrical stimulation can also
generate ICWs. Experimental data showed that the permeability of intracellular IP3
messenger or Ca2+ ions through gap junctions and the spreading of extracellular ATP
messengers are important mechanisms for ICWs.
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Currently, many simulationmodels discussed for ICWs are based on deterministic
signal dynamics. The biologically realistic features, such as the clustering distribution
of IP3R and the stochastic channel dynamics have been paid less attention. It has been
found that the application of stochastic methods is necessary and useful to describe
intracellularCa2+ signaling. In this chapterwehavepresentedhowvarious theoretical
concepts such asMarkov chains, the Gillespie algorithm, the Langevin approach and
hybrid modeling can be applied to the study of intracellular Ca2+ dynamics. Thus
it is necessary to discuss the intercellular Ca2+ waves with stochastic dynamics of
clustered IP3R channels.

One can expect that the stochastic dynamics of clustered IP3R channels can affect
not only the intracellular Ca2+ signals, but also the intercellular Ca2+ waves. The
ICWs model with stochastic and clustered IP3R channels will be considerably closer
to experimental observations and provide more quantitative insights into ICWs. For
the coupled glial cells, it raises themodel’s complexity by integration of grouped-cell
processes which spanmany scales, from single IP3R channel dynamics and clustered
channels, to intracellular cells and intercellular cells. Thus, a challenge is to develop
an ICW model which is complex enough to account for the stochastic and clustered
IP3R channel dynamics, and at the same time is simple enough to be computationally
efficient for numerical modeling. We believe that such an ICW model can lead to a
deeper understanding of the ICW mechanisms of glial cells.
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