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Cell migration through anisotropic microenvironment is critical to a wide variety of physiological and
pathological processes. However, adequate analytical tools to derive motile parameters to characterize
the anisotropic migration are lacking. Here, we proposed a method to obtain the four motile parameters
of migration cells based on the anisotropic persistent random walk model which is described by two
persistence times and two migration speeds at perpendicular directions. The key process is to calculate
the velocity power spectra of cell migration along intrinsically perpendicular directions respectively,
then to apply maximum likelihood estimation to derive the motile parameters from the power spectra
fitting with double exponential decay. The simulation results show that the averaged persistence times
and the corrected migration speeds can be good estimations for motile parameters of cell migration.
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1 Introduction

Cell migration is a basic function that is essential for
many physiological and pathological processes [1], includ-
ing embryogenesis [2, 3], nervous development [4], wound-
ing healing [5, 6], inflammation [7] and immunological re-
sponses [8]. Controlled by complex cellular signaling path-
ways [9–11], the onset of ill-regulated cell motility is in-
volved in many human diseases, among which cancer is
the most typical.
As an essential biological phenomenon, cell motility has

also gained extensive attention of physicists and mathe-
maticians for a long time and has been studied as a ran-
dom walk process [12–14]. In the absence of symmetry-
breaking gradients [15], the motility of bacteria and eu-
karyotic cells has long been described by isotropic Brow-
nian movement [16, 17]. As an inspired model, the persis-
tent random walk (PRW) has been widely used to describe
the isotropic motility of cells in 2D microenvironment [18–
20], which is governed by the following Langevin equation
[21, 22]:
dv
dt = − 1

P
v +

S√
P

· W̃ , (1)

where W̃ ∼ N(0, 1) is Gaussian white noise, v the velocity

vector, P the persistence time of cell migration and S the
migration speed of the Ornstein-Uhlenbeck process [23].

With Eq. (1), the 2D cell migration is fully character-
ized by the motile parameters of migration speed and per-
sistence time [24]. At the single-cell level, the persistence
time quantifies the memory intensity of cell to past veloci-
ties. The PRWmodel can produce several featured proper-
ties of cell migration in the isotropic environment, includ-
ing a Gaussian distribution of velocities, an exponential
decay of the velocity auto-correlation function (VACF),
an isotropic velocity field, and a linear mean squared dis-
placement on a long time scale.

However, different from the normal diffusion, the
anomalous diffusion migration has been found in many
different kinds of cells in experiment. For example, non-
Gaussian diffusion is more prevalent for particles under-
going the thermal jiggling in soft materials [25]. Regu-
lated by chemokine CXCL10, a generalized Lévy walk
is a better choice for CD8+ T cells to find rare targets
in a smaller time [26]. Predators have higher encounter
rates when adopting Lévy-type foraging in natural-like
prey fields compared with purely random landscapes [27].
The distribution of cell velocities following a simple expo-
nential function is found in the long-term cell migration
in low-density monolayer cultures [28]. Tsallis’ distribution
of velocity has also been proposed for endodermal Hydra

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020



Research article

cells in cellular aggregates [29]. The double-exponentially
decaying VACF is discovered in the analysis of motility
of human keratinocytes and fibroblasts [30]. Recent ex-
periments showed that the metastatic breast cancer cells
invade collectively the 3D collagen matrix by exchanging
leaders in the invading front [31, 32], and the motility of
fibrosarcoma cells through 3D extracellular matrices does
not follow a random walk [33, 34].
As a consequence, different kinetic models have been

proposed to explain different kinds of migration behaviors
of cells [35–38]. Some of them are simply modified from
the PRW model [30, 33, 34, 39], while others are essen-
tially different from the PRWmodel [28, 32, 35, 36, 40–42].
Among those modified PRWmodels, the anisotropic PRW
(APRW) is representative to describe the cell migration
in anisotropic collagen matrix [33]. The APRW model can
describe some novel properties, including a better fit of
distribution of displacements, a double-exponentially de-
caying VACF, an anisotropic angular velocity magnitude
and an uneven distribution of angular displacements on
long time scales.
To explain cell migration behaviors by modeling, an-

other research interest is to apply different methods to
characterize quantitatively the migration trajectories of
cells. For the widely-used PRW process, it is necessary
to derive from the trajectories the two basic motile pa-
rameters, i.e., persistence time P and migration speed S.
These two motile parameters can be fitted out with the
discussion of mean squared displacement (MSD) [39, 43–
47] and VACF [48] of migration trajectories. However, it
has been pointed out that the fitting of P and S with
MSD or VACF may return unreliable errors [49–51]. Con-
sidering that the power spectrum of velocity is the Fourier
Transform [52, 53] (FT) of VACF [54, 55], the motile pa-
rameters can be obtained with least squared fitting or
maximum likelihood estimation with FT of migration tra-
jectories [56].
Different from the isotropic migration characterized by

only two motile parameters in PRW model, the APRW
model for 2D anisotropic migration has four motile pa-
rameters, i.e., two persistence times P and two migration
speeds S at two perpendicular axes. In Ref. [57], a method
has been proposed to obtain the two persistence times by
fitting VACF from APRW trajectories under the condi-
tion that the two migration speeds are always equal for
cell migration. However, it remains unknown how to derive
reliably all the four motile parameters with APRW trajec-
tories in general conditions. In this paper, we propose a
method to solve this problem. We first distinguish differ-
ent types of APRW processes based on different speed-
acceleration profiles and the degree of heterogeneity of
motile parameters. Then, we develop a method to obtain
the four motile parameters with the application of singu-
lar vector decomposition [58, 59], power spectrum analy-
sis [56, 60] and maximum likelihood estimation [49, 61].
The simulation results indicate that our method is effec-

tive and general to obtain the motile parameters of cell
migration which can be described by APRW process.

2 Model and method

2.1 Anisotropic persistent random walk model

In APRW model [33, 34], cell motility is assumed to
display different persistence times and migration speeds
along two perpendicular axes. We regard the perpendic-
ular directions as x and y axes in computer simulations,
respectively. Then the velocities of cell migration along x
and y axes are governed by the following Langevin equa-
tions:
dvx
dt = − 1

Px
vx +

Sx√
Px

· W̃ , (2)

dvy
dt = − 1

Py
vy +

Sy√
Py

· W̃ . (3)

In which Px and Py are persistence times, Sx and Sy are
migration speeds. For a given set of parameters of Px, Sx,
Py and Sy, the displacements of cell location in each time
step of dt are governed by the following equations:

dx(t,dt) = αx · dx(t− dt,dt) + Fx · W̃ , (4)
dy(t,dt) = αy · dy(t− dt,dt) + Fy · W̃ . (5)

Here, dx and dy are the displacements of cell location in
x and y axes in time step of dt. The terms αx, Fx and
αy, Fy describe the migration behaviors of cell in x and y
axes, respectively, defined as follows:

αx = 1− dt
Px

, αy = 1− dt
Py

, (6)

Fx =

√
S2
xdt3
Px

, Fy =

√
S2
ydt3
Py

. (7)

When taking the limit for persistence time, cell migration
ranges from straight motion (P → ∞) to random walk
(P → dt), so the cell movement is the superposition of
straight motion and random walk. When the motile pa-
rameters in x and y axes are the same, the APRW model
becomes the isotropic PRW.

In this work, we define the heterogeneity index (HI)
on the basis of the heterogeneity of motile parameters, as
follows:

ΦP = max
{
Px

Py
,
Py

Px

}
, ΦS = max

{
S2
x

S2
y

,
S2
y

S2
x

}
, (8)

ΦD = max
{
PxS

2
x

PyS2
y

,
PyS

2
y

PxS2
x

}
. (9)

Here, ΦP and ΦS indicate the heterogeneity degree of
persistence time and migration speed, respectively, and
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ΦD represents the anisotropy degree of migratory ability.
Note that all the values of ΦP , ΦS and ΦD are greater
than or equal to 1. Furthermore, we define it as posi-
tive anisotropy if both the persistence time and migration
speed in one axis are larger than those in another axis,
respectively, e.g., Px > Py and Sx > Sy; otherwise, such
as Px > Py and Sx < Sy, the negative anisotropy.

2.2 Speed and acceleration dynamics

The migration trajectories can be generated by APRW
model with certain motile parameters which are set by
referencing experimental data [33, 62]. In all simulations in
the paper, the time step dt = 0.01 min, and the recording
time interval ∆t = 1 min. Each trajectory is recorded with
a length of 104 min, giving the total number of samples
N = 104.
Figure 1(a) gives a single trajectory generated by

APRW model. With the trajectory r(t), the velocity vec-
tor v(t) can be calculated with

v(t) =
r(t)− r(t−∆t)

∆t
. (10)

The corresponding speeds v(t) =
√
v2x + v2y of individual

migration trajectory are plotted in Fig. 1(b). Figure 1(c)

plots 1000 trajectories exhibiting clearly an anisotropic
distribution. With a larger memory time of Px = 20 min,
the cell migration typically has less stochasticity along the
x axis, so the distance explored by cell along the x axis
is larger than that along the y axis. The averaged speed
⟨v(t)⟩ over 1000 trajectories is shown as a function of time
in Fig. 1(d).
For PRW model described by Eq. (1), the expected

value of the acceleration av for a given speed v can be
given as [30]

⟨av⟩v =

〈
dv
dt

〉
v

= − 1

P
v. (11)

For APRW model, the similar relationships are held for
acceleration components at x and y axes, respectively. As
a result, we have

⟨av⟩v =

〈
dv
dt

〉
v

= − 1

Px
vx − 1

Py
vy. (12)

In simulation, for any two successive velocity vectors of
each migration trajectory, we first compute the compo-
nents of the second velocity vector which are parallel and
orthogonal to the first velocity vector, and then calcu-
late the acceleration components which are parallel and
orthogonal (i.e., ap and ao) to the first velocity vector,

Fig. 1 A single migratory trajectory (a) and the corresponding speed (b), 1000 migratory trajectories (c) and the population-
averaged speed (d) with parameters of Px = 20 min, Py = 10 min, Sx = 1.2 µm/min and Sy = 0.8 µm/min. All the starting
points are located at the origin (0, 0) in (a) and (c). The different colors denote individual migration trajectories in (c).
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respectively. Based on the relationship of parallel acceler-
ation ap(t) and speed v(t) against time, one can obtain
the average parallel acceleration ⟨ap⟩ for each given speed
v, giving a speed-acceleration profile.
Figure 2 discusses the influence of the heterogeneity of

persistence time P and migration speed S on the pro-
files between speed v and parallel acceleration ⟨ap⟩. As
expected, for the case of no heterogeneity of P and S, i.e.,
ΦP = 1 and ΦS = 1, the parallel acceleration decreases
linearly with increasing speed. With the increase of ΦP

but still keeping ΦS = 1, the v–⟨ap⟩ profiles become more
and more nonlinear. However, as shown by Eq. (12), the
change in ΦS has little effect on the v–⟨ap⟩ profiles when
ΦP = 1, as plotted in Fig. 2(b).
Figures 3(a) and (b) show the influence of heterogene-

ity of persistence time (Px, Py) on the v–⟨ap⟩ profiles in
the cases of positive and negative anisotropy, respectively.
With the increase of persistence time Py, the v–⟨ap⟩ pro-
files gradually become nonlinear, giving a concave curve
for positive anisotropy and a convex curve for negative
anisotropy, respectively. As a result, according to the
shape of speed-acceleration profile, one can distinguish the
positive anisotropy from the negative anisotropy.
Figures 3(c) and (d) show the influence of the hetero-

geneity of migration speed on the v–⟨ap⟩ profiles for pos-
itive and negative anisotropy, respectively. With the de-
crease of Sy or Sx(3.0–0.5 µm/min), the v–⟨ap⟩ profiles
move to lower right corner with a larger abscissa and a
smaller ordinate, respectively.

2.3 Cell migration kinetics

2.3.1 Singular vector decomposition

As a fact, the migration directions of Px and Py of cells in
experiment are generally unknown. Thus, as suggested in
Refs. [57–59], we apply the singular vector decomposition
(SVD) to define the intrinsic axes of the migration trajec-

tory. With SVD, the velocity matrix M for a trajectory
can be expressed as

M = UΣV ∗, (13)

where U is the matrix eigenvector of the product MM∗,
V is the matrix eigenvectors of the product M∗M , Σ is
the singular values of the matrix M , and * denotes the
transposed matrix. The first and second eigenvectors of V ∗

indicate the primary direction (p axis) and non-primary
direction (np axis) of the trajectory, respectively. For a
given migration trajectory comprisingN coordinate points
in 2D microenvironment, the matrix M is N × 2 dimen-
sional with the first column of the matrix containing the
abscissa values of N points and the second column con-
taining the ordinate values. The computed matrix V ∗ is
2×2 dimensional in which the first column represents the
primary vector p and the second column represents the
non-primary vector np. Thus, one can define the intrinsic
orthogonal coordinates of p and np axes for each trajec-
tory.

2.3.2 The velocity power spectrum

With the intrinsic orthogonal coordinates processed for
each trajectory individually, the velocity components on
primary and non-primary axes can be calculated as a
function of time. With the Fourier-transform, the speed
power spectra on primary and non-primary axes can be
obtained for each trajectory individually. Finally, the av-
eraged speed power spectra on primary and non-primary
axes can be calculated with 1000 trajectories for a given
APRW model. In the following, we propose that the four
motile parameters of APRW model can be estimated by
fitting the averaged speed power spectrum to the theoret-
ical speed power spectrum.

It has been suggested that the power spectrum of ve-
locity of cell migration with OU process can be given by
[48]

Fig. 2 The influence of the heterogeneity of persistence time P (a) and migration speed S (b) on the speed-acceleration
profiles. (a) Keeping Px = 20 min and Sx = Sy = 0.5 µm/min (ΦS = 1) constant, and decreasing Py from 20 min to 1 min
(ΦP = 1–20). (b) Keeping Px = Py = 10 min (ΦP = 1) and Sy = 0.5 µm/min constant, and increasing Sx from 0.5 µm/min to
3.0 µm/min (ΦP = 1–36). Each curve is obtained with the average of 1000 cell trajectories.
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Fig. 3 The influence of the heterogeneity of persistence time P (a), migration speed S (c) on the speed-acceleration profiles
in the case of positive anisotropy and the influence of the heterogeneity of persistence time P (b) and migration speed S (d)
in the case of negative anisotropy. Keeping Px = 20 min, Sx = 1.0 µm/min, Sy = 0.5 µm/min (ΦS = 4) (a) and Sy = 1.0
µm/min, Sx = 0.5 µm/min (ΦS = 4) (b) constant, and decreasing Py from 20 min to 5 min (ΦP = 1–4). (c) Keeping Px = 20
min, Py = 10 min (ΦP = 2) and Sx = 3.0 µm/min constant, and decreasing Sy from 3.0 µm/min to 0.5 µm/min (ΦP = 1–36).
(d) Keeping Px = 20 min, Py = 10 min (ΦP = 2) and Sx = 3.0 µm/min constant, and increasing Sx from 0.5 µm/min to 3.0
µm/min (ΦS = 36–1). Each curve is obtained with the average of 1000 cell trajectories.

Pu(fk) = P (true)
u (fk) +

4σ2
pos

∆t
[1− cos(πfk/fNyq)], (14)

where the first term on the right side of Eq. (14) is the true
expression of power spectrum, with the following form

P (true)
u (fk) =

(1− c2)

c

(
P

∆t

)2

P (aliased)
v (fk)

+ 4D

(
1− 1− c2

2c

P

∆t

)
, (15)

in which the term P
(aliased)
v (fk) is defined by

P (aliased)
v (fk) ≡

⟨|v̂|2⟩
tmsr

=
(1− c2)2D∆t/P

1 + c2 − 2c cos(πfk/fNyq)
,

(16)

and the second term on the right side of Eq. (14) is an
additional noise term when considering the effect of lo-
calization noise. Here, c = exp(−∆t/P ), fk = k · ∆f ,
∆f = 1/tmsr, tmsr = N ·∆t and fNyq = 1/(2∆t). N is the

total number of recording time, ∆t is the sampling time
interval with N = 104, and ∆t = 1 min here. Considering
the absence of localization noise in computer simulation,
the noise parameter σpos is set as 0.0001 in our simulation.
As a fact, the trajectory of APRW process is the overlap

of two independent PRW processes in x and y axes. Thus,
the true expression of power spectrum of cell speed in
APRWmodel should be the summation of two exponential
decays, giving a double exponential decay, i.e.,

Pu(fk) = P 1
u(fk) + P 2

u(fk), (17)

where P 1
u(fk) and P 2

u(fk) are given by Eq. (14) with two
decay modes.

Such a double exponential decay for speed power spec-
trum will typically generate the double exponential de-
cays for power spectra both in primary and non-primary
directions if these directions are different from the origi-
nal x and y axes of APRW model. As a result, our goal
is to fit the theoretical expression of Eq. (17) with ex-
perimental power spectra in primary and non-primary
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directions, which will return a set of motile parameters
θ = (D1, P1, D2, P2) in each direction.
In this paper, we apply the maximum likeli-

hood estimation to obtain the motile parameters of
θ = (D1, P1, D2, P2). For a given power spectrum{
|û|2

/
tmsr

}
k=0,··· ,N−1

, the log-likelihood function is

ℓ

(
θ

∣∣∣∣∣
{
|ûk|2

tmsr

}
k=0,··· ,N−1

)
= 2

N∑
k=1

log
(

2

Pu(fk)

)
+

N∑
k=1

log
(
|ûk|2

tmsr

)
−

N∑
i=1

(
2

Pu(fk)
· |ûk|2

tmsr

)
, (18)

where Pu(fk) is theoretical power spectral value depend-
ing on APRW model with θ = (D,P, σpos). The relation-
ship between diffusion coefficient D and persistence time
P is given as follows:

S =

√
2D

P
. (19)

As a result, the four motile parameters of P1, P2, S1 and
S2 can be obtained with such a fitting method for each
power spectrum in primary or non-primary direction.

3 Results

Now we apply our method to derive the motile parame-
ters of APRW trajectories. In the simulation, we consider
different migration models with different combinations of
motile parameters, including high heterogeneity and low
heterogeneity, as shown in Table 1.
The power spectra for APRW model with high and low

heterogeneities are shown in Figs. 4(a) and (b), respec-
tively.
As shown in Fig. 4, the power spectra can be divided

into two parts: the horizontal part at low frequency range
and attenuating part at high frequency range. The hori-
zontal part denotes the power spectrum of Gaussian white

noise, while the attenuating part manifests the persistence
migration of cells which can be characterized by P and S
with Eq. (17).
For a large HI in Fig. 4(a), the values of power spectrum

of the horizontal part in p axis are larger than those in np
axis, denoting that the value of diffusion coefficient D in p
axis is larger than that in np axis. The nonlinearity of the
attenuating part reveals the anisotropy of cell migration
of APRW model. For a small HI in Fig. 4(b), the overlap-
ping of the power spectra indicates that the related motile
parameters may be similar in both directions.
With Eq. (17), the attenuating part of power spectrum

is fitted with two exponential decays in each axis. As a
result, we have two sets of fitted parameters of P and S

Table 1 Different heterogeneous motile parameters set in
APRW model.

High heterogeneity Low heterogeneity
No. Px Sx Py Sy ΦD Px Sx Py Sy ΦD

1 5 0.3 2 0.1 22.5 5 0.1 2 0.3 3.60
2 8 0.5 4 0.3 5.56 8 0.3 4 0.5 1.39
3 13 0.7 6 0.5 4.25 13 0.5 6 0.7 1.11
4 17 0.9 8 0.6 4.78 17 0.6 8 0.9 1.06
5 20 1.2 10 0.8 4.50 20 0.8 10 1.2 1.13

Fig. 4 The power spectra for APRW models with (a) a large heterogeneity (ΦD = 4.5) with motile parameters of Px = 20
min, Py = 10 min, Sx = 1.2 µm/min, Sy = 0.8 µm/min and (b) a small heterogeneity (ΦD = 1.13) with Px = 20 min,
Py = 10 min, Sx = 0.8 µm/min respectively. The solid points and hollow points are for speed power spectra in primary and
non-primary axes, which are averaged over 1000 trajectories, and the corresponding fitting results are plotted with red and blue
lines, respectively.
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Fig. 5 The motile parameters fitted from power spectra for positive anisotropy and high heterogeneity. The larger (a), the
smaller (b) persistence times and the corresponding migration speeds (c) and (d) obtained from power spectra in p and np axes
are plotted as a function of theoretical values of P and S, respectively. The larger persistence times in both directions are marked
with subscript “1”, the smaller with “2”. The subscript “p” denotes primary direction, and “np” non-primary direction. For
example, the subscript “p1” signifies the larger persistence time in p axis, the same notation for other subscripts of persistence
time P . The black dashed lines are theoretical values of corresponding quantities and the green triangle indicates the corrected
results.

in each direction. Figure 5(a) plots the two larger fitted
P in p and np directions, and 5(b) plots two smaller P ,
as a function of theoretical P . Then, the final two persis-
tence times are defined as the average of the two large and
two small fitted persistence times, respectively, which are
shown with triangles in Figs. 5(a) and (b), respectively.
Figures 5(c) and (d) plot the corresponding migration

speeds S calculated by Eq. (19), respectively, as a function
of theoretical value of S. Obviously, the fitted results of
migration speeds all give certain deviations from the the-
oretical values. As a result, we furthermore consider an
adjustment for the parameter of migration speeds，which
is given as

Sp =
√
S2
p1 + [γp · (Sp2 + Snp1)]2, (20)

Snp =
√
S2
np2 + [γnp · (Sp2 + Snp1)]2. (21)

The adjusting formulas are for migration speeds in p and
np axes, respectively. Here, γp and γnp are two adjusting
factors. For positive anisotropy in Figs. 5(c) and (d), γp =

max{γ, 1− γ} and γnp = min{γ, 1− γ}, and for negative
anisotropy in Figs. 6(c) and (d), γp = min{γ, 1 − γ} and
γnp = max{γ, 1−γ}, in which γ is a weighing factor given
by

γ =
S2
np1

S2
np1 + S2

np2

. (22)

Note that the value of γ in each direction differs from each
other. The corrected migration speeds are shown in green
triangle in Figs. 5(c) and (d), presenting a better fitting
to the theoretical values.
To discuss the universality of the method in dealing

with different migration heterogeneity, we also analyzed
the case with a low heterogeneity. The calculation results
are shown in Fig. 6. Figures 6(a) and (b) show that there
are certain deviations between the fitted persistence times
and theoretical values both in p and np axes. However, the
average of two fitted persistence times is closer to the theo-
retical value, which is shown as the triangles in Figs. 6(a)
and (b). The calculated migration speeds are plotted in
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Fig. 6 The motile parameters fitted from power spectra for negative anisotropy and low heterogeneity. The larger (a), the
smaller (b) persistence times and the corresponding migration speeds (c) and (d) obtained from power spectra in p and np
axes. The notations of subscripts are the same as those in Fig. 5.

Figs. 6(c) and (d), in which the corrected S with Eqs. (20)
and (21) are well close to the theoretical values indicating
the generality and effectiveness of the adjusting method
for migration speed.

4 Conclusions and discussion

Cell migration is a critical process in the development and
maintenance of multicellular organisms. The cell migra-
tion in anisotropic microenvironment can be described by
APRW model which is characterized by four motile pa-
rameters, i.e., two persistence times and two migration
speeds at perpendicular directions. Thus, it is of impor-
tance to derive these motile parameters from the migra-
tion trajectories, in order to characterize the features of
cell migration. In this work, we develop a method to ob-
tain motile parameters of APRW trajectories.
We first analyze the migration trajectory produced by

APRW model and find a nonlinear relationship between
speeds and accelerations of cell trajectories in the forward
direction, which is different from the linear relationship
corresponding to PRW model. Second, we show that one
can distinguish the positive and negative anisotropy from

the shape of speed-acceleration profile, which reflects dif-
ferent relationships between persistence time and migra-
tion speed. Then the singular vector decomposition is ap-
plied to each migration trajectory individually to define
the intrinsic primary and non-primary axes. Furthermore,
one can calculate the speed power spectra in the intrinsic
primary and non-primary axes for each migration trajec-
tory. We indicate that the motile parameters of APRW
model can be fitted with the averaged speed power spec-
tra to the theoretical expression based on the maximum
likelihood estimation.
APRW process generates two different single exponen-

tial decays for speed power spectra in original x and y
axes, respectively, giving typically the double exponen-
tial decays for speed power spectra in all other directions.
Thus, if the calculated primary and non-primary direc-
tions are different from the original x and y axes of APRW
model, which is usually the case, the averaged speed power
spectra in calculated primary and non-primary directions
should be fitted by double exponential decays.

As a result, fitting with the speed power spectrum ei-
ther in primary direction or in non-primary direction, one
can obtain the four motile parameters of APRW process.
With two sets of fitted motile parameters, our simulation
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results indicate that the direct average of the two large
persistence times and the two small persistence times can
give reliable values of the true persistence times. How-
ever, the migration speeds have to be corrected according
to Eqs. (20) and (21) in order to obtain a good estimation
of the parameters.
In the paper, to characterize the moving behaviors of

cells, we propose a method to derive the motile parame-
ters of cell migration in anisotropic microenvironment. In
our simulation, the fitting results are obtained from an
average of a large number of computer trajectories, which
may be different from the experimental situation where
short trajectories are recorded for not so many cell tra-
jectories. In detail, we consider a length of 104 min with
104 points for 1000 trajectories for a better estimation
of motile parameters. In the typical experiment, trajec-
tories with a length of about 300 min for less than 100
cells are recorded. Our simulations show that with such
trajectories, one could not derive reliable motile param-
eters. Furthermore, various noises are always presented
in experiment, which is not considered in the simulation.
Thus, how to improve the method to deal with the bio-
logical experimental data of cell migration is the future
research interest.
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