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ABSTRACT: Targeted analysis of sequential window acquisition of all theoretical mass
spectra (SWATH-MS) requires the spectral library, which can be generated by shotgun
mass spectrometry (MS) or by the pseudo-spectra files directly obtained from SWATH-
MS data. The external library generated by shotgun MS is employed in most SWATH-MS
research. However, performance of the internal library, which is constructed by pseudo-
spectra files, in the targeted analysis of SWATH-MS has not been systemically evaluated.
Here, we show that up to 40% of the peptides detected by the internal library were not
overlapped with those detected by the external library for most SWATH-MS data sets.
However, the internal library did not identify extra phosphopeptides compared with the
external library for phosphoproteomic SWATH-MS data. Therefore, the internal library
should be incorporated into the external library for targeted analysis of non-
phosphoproteomic SWATH-MS, given that it can significantly increase the number of
peptides of SWATH-MS without requiring additional instrument measurement time.
KEYWORDS: SWATH-MS, data-independent acquisition, spectral library, OpenSWATH, DIA-Umpire, Group-DIA,
tumor necrosis factor, L929 cells, plasma, phosphoproteomics

■ INTRODUCTION

In recent years, mass spectrometry (MS)-based proteomics has
shifted from identification of proteins in one sample to
quantification of proteins across multiple samples.1 Identifica-
tion of proteins is typically accomplished by shotgun MS (also
referred to as data-dependent acquisition, DDA), where tryptic
peptides were selected for fragmentation depending on the
peptide MS1 intensity. This undersampling nature of DDA
results in frequent missing values, especially for low-signal
peptides. This drawback of shotgun MS has impaired
application of the MS technique to life science research as
many studies are focusing on quantitative differences between
biological conditions rather than cataloging protein contents. To
alleviate this missing value problem, several alternative MS
workflows have been proposed, such as targeted MS methods
(selected or parallel reaction monitoring2−4) and data-
independent acquisition (DIA).5−8

In DIA mass spectrometry, the peptide ion range is divided
into several predetermined subranges, each of which is
fragmented and scanned as a whole.9 In this scanning mode,
the link between the precursor ion and product ions is missing,
which is challenging for traditional MS search strategies.
Recently, the interception of DIA-MS data is facilitated by the
use of a targeted approach, whereby a preexisting peptide assay
library is used to identify specific peptides.10 Peptide libraries are

typically generated through the collection of shotgunMS results,
which are converted into a spectral library where all peptide ions
are represented by a reference spectrum. Therefore, the targeted
analysis of DIA-MS data is critically dependent on the
composition and depth of the assay library. To build a deeper
peptide library, a common way is to increase the depth of
proteome coverage in DDA by intensive fractionation of
peptides. Several studies have demonstrated that targeted
analysis with the extensive spectral library can identify more
peptides than that with the single DDA run library.11−14

Furthermore, the global or species-specific libraries (SSLs)
generated by large-scale DDA runs are available for targeted
analysis of sequential window acquisition of all theoretical mass
spectra (SWATH-MS).15−18 More recently, a synthetic
proteotypic peptide assay library representing the complete
human proteome has been published.19

Alternatively, the peptide library can also be constructed
directly fromDIA-MS files, and that strategy is also referred to as
the “library-free” strategy.20−23 DIA-Umpire and Group-DIA
are software tools designed for deconvolution of chimeric
tandem mass spectra in DIA-MS data into pseudo-DDA MS
spectra.20,21 Specifically, extracted-ion chromatograms (XICs)
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of MS1 and MS2 ions are first compared. Subsequently, one
MS1 ion, together with the product ions whose XICs show high
similarity with that of the MS1 ion, is constructed into a DDA-
like spectrum. These pseudo-spectra files are searched and built
as a spectral library, which is usually named the internal library.
Internal libraries provide several inherent advantages over the
libraries built from DDA runs: (1) retention times (RTs) of
peptides in internal libraries are the same as those in DIA-MS
data; (2) fragmentation patterns of product ions in internal
libraries are closer to those in DIA-MS data compared with the
DDA libraries. In addition, internal libraries provide many extra
peptides that cannot be detected by DDA libraries.24 However,
several studies showed that internal-library-based targeted
analysis usually identified less peptides compared with a DDA-
library-based strategy.12,24

In an effort to assess the influence of the internal library on
targeted SWATH-MS analysis, we acquired six SWATH-MS
data sets, namely, mouse cell line lysate samples, human cell line
lysate samples, immunoprecipitation samples, human plasma
samples, and phosphoproteomic samples. Two SWATH data
sets are from the mouse cell line lysate samples, so six SWATH
data sets are from five sample types. In all data sets, DDA
libraries yielded more peptide identification compared with
internal libraries. More importantly, the combined libraries,
merged with DDA libraries and internal libraries, can provide
15−58 and 10−15% improvement in peptide and protein
identification, respectively, compared with DDA libraries alone.
In a typical targeted analysis workflow of SWATH-MS, the
external library is generated. We propose that internal libraries
should be merged with the external library, and the combined
library can significantly increase the peptide number without the
need for extra sample and instrument running time.

■ METHODS

Sample Preparation for MS Analysis

(1) L929 100 variable window (VW) samples: Murine L929
cells were seeded at 0.5 × 106 cells per well on the 12-well
plate in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS). After
12 h, L929 cells were treated with tumor necrosis factor
(TNF) at 10 ng/mL for different time points. Cells were
washed with phosphate-buffered saline (PBS) three times,
and 100 μL of lysis buffer [1% sodium deoxycholate
(SDC), 10 mM tris(2-carboxyethyl)phosphine (TCEP),
40 mM chloroacetamide (CAA), 100 mM Tris−HCl, pH
8.5] was added into one well. The lysed cells were
collected into the 1.5mL Eppendorf (EP) tube, which was
subjected to 95 °C heat for 5 min and then sonicated.
Subsequently, 1% SDC was diluted into 0.5% with water.
The protein centration was measured with the Pierce 660
nm protein assay reagent (Thermo). Trypsin (Sigma) was
added at the ratio of 1:100 (trypsin/protein). The tubes
were kept at 37 °C for 12−16 h. Peptides were desalted
with styrene divinylbenzene-reverse phase sulfonate
(SDB-RPS) StageTips.

(2) HeLa samples: HeLa cells were seeded at 1 × 105 cells per
well on the 24-well plate in DMEM supplemented with
10% FBS. After 12 h, HeLa cells were treated with TNF at
10 ng/mL for different time points. Cells were lysed,
collected, and digested as described above.

(3) Tumor necrosis factor receptor 1 (TNFR1) immunopre-
cipitation samples: L929 cells were seeded at 1 × 107 cells

per 15 cm dish in DMEM supplemented with 10% FBS.
After 24 h, the cells were treated with 10 μg/mL 3× Flag-
TNF for different time points. Cells were stimulated with
3× Flag-TNF for 0, 5, 15, 30, 45, and 60 min. For each
time-point experiment, cells in ten 15 cm dishes were
collected. After TNF treatment, cells were immediately
washed twice with PBS and harvested by scraping and
centrifugation at 100 g for 10 min. The harvested cells
were washed with PBS and lysed for 30 min on ice in HBS
lysis buffer (12.5 mM N-(2-hydroxyethyl)piperazine-N′-
ethanesulfonic acid, 150 mMNaCl, 1% Nonidet P-40, pH
7.5) with a protease inhibitor cocktail. Cell lysates were
then spun down at 20 000g for 30 min. The soluble
fraction was collected and immunoprecipitated overnight
with anti-Flag M2 antibody-conjugated agarose at 4 °C.
Resins containing protein complexes were washed three
times with HBS lysis buffer. Proteins were then eluted
twice with 0.15 mg/mL of 3× Flag peptide in HBS lysis
buffer for 15min each time, and elutions were pooled for a
final volume of 300 μL. Proteins in the elution were
precipitated with 20% trichloroacetic acid, and the pellet
was washed twice with 1 mL of cold acetone and dried in
SpeedVac. The protein pellet was dissolved in 1% SDC/
10 mM TCEP/40 mM CAA/Tris−HCl pH 8.5.
Digestion was performed as described above.

(4) Phosphoproteomic samples: L929 cells were seeded at 1
× 106 at one well in a six-well plate in DMEM
supplemented with 10% FBS. After 24 h, cells were
treated with 10 ng/mL TNF for 0, 0.5, 1, 2, 3, and 4 h.
Cells were collected in biological duplicates. After TNF
treatment, cells were washed with ice-cold PBS three
times. A 200 μL lysis buffer was added into one well. The
lysed cells were transferred to 1.5 mL EP tubes, which
were subjected to 95 °C heat for 5 min and sonicated. The
protein centration was measured with a Pierce 660 nm
protein assay reagent (Thermo). Then, 200 μg of proteins
was used for digestion. Trypsin (Sigma) was added at the
ratio of 1:100 (trypsin/protein). The tubes were kept at
37 °C for 12−16 h. After digestion, phosphopeptides were
enriched using TiO2. Briefly, peptide solutions were
added with an equal volume of 4% trifluoroacetic acid
(TFA)/2 mM KH2PO4/isopropanol (ISO).25 After
removing the pellet by centrifugation of 12 000 rpm for
5 min, the supernatants were used for enrichment. Next, 5
mg of TiO2 was added into one digestion solution. The
tubes were incubated at 40 °C and shaken (2000 rpm) for
5 min. Beads were collected by centrifugation, and the
supernatant was discarded. The beads were washed with
500 μL of 2% TFA/50% ISO three times. Phosphopep-
tides were then eluted with 60 μL of 20% NH3·H2O/32%
acetonitrile (ACN), followed by concentration using an
evaporative concentrator. Phosphopeptides were then
desalted using SDB-RPS StageTips.

(5) Human plasma samples: Blood was taken by lancets
(Vitrex Sterilance Lite II) to obtain small quantities of
capillary blood, and 5 μL of blood was transferred to a
PCR tube containing 0.56 μL of 106 mM trisodium
citrate. The blood was centrifuged for 15 min at 2000g,
and plasma was harvested. The protein concentration in
human plasma was measured with the Pierce 660 nm
protein assay reagent (Thermo). For high-pH reverse-
phase fractionation, about 400 μg of proteins was
digested. Two immunodepletion kits (Thermo 85164

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00669
J. Proteome Res. 2020, 19, 477−492

478

http://dx.doi.org/10.1021/acs.jproteome.9b00669


and Bio-RAD 7326708) were used for removal of the high
abundance plasma proteins with the purpose of building a
deep human plasma spectral library. Mouse plasma was
added into 100 μL of lysis buffer [1% sodium
deoxycholate (SDC), 10 mM tris(2-carboxyethyl)-
phosphine (TCEP), 40 mM chloroacetamide, 100 mM
Tris−HCl, pH 8.5]. The tubes were subjected to 95 °C
heat for 5 min. Subsequently, 1% SDC was diluted into
0.5% with water. Trypsin (Sigma) was added at the ratio
of 1:100 (trypsin/protein). The tubes were kept at 37 °C
for 12−16 h. After desaltion, about 5 μg of peptide was
loaded for a single SWATH-MS run.

(6) Mouse plasma samples: Protein concentrations of mouse
plasma samples were measured with a Pierce 660 nm
protein assay reagent (Thermo). First, 1 μL of mouse
plasma was added into 100 μL of lysis buffer (1% sodium
deoxycholate (SDC), 10 mM tris(2-carboxyethyl)-
phosphine (TCEP), 40 mM chloroacetamide, 100 mM
Tris−HCl, pH 8.5). The tubes were subjected to 95 °C
heat for 5 min. Subsequently, 1% SDC was diluted into
0.5% with water. Trypsin (Sigma) was added at the ratio
of 1:100 (trypsin/protein). The tubes were kept at 37 °C
for 12−16 h. Peptides were desalted with SDB-RPS
StageTips.

■ EXPERIMENTAL DESIGN AND STATISTICAL
RATIONALE

L929 25 Da data set: 8 treatment conditions, 3 biological
replicates per condition, 24 samples in total.
L929 100 VWdata set: 10 treatment conditions, 12 samples in

total.
HeLa data set: 7 treatment conditions, 3 biological replicates

per condition, 21 samples in total.
Human plasma data set: 2 biological samples, 3 technical

injections.
Mouse plasma data set: 4 treatment conditions, 2−3

biological replicates per condition, 10 samples in total.
Phosphopeproteomics data set: 6 treatment conditions, 2

biological replicates per condition, 12 samples in total.
All protein or phosphopeptide intensities were input into

Perseus software. The statistical analysis was performed using
the default settings.
SWATH-MS Analysis

Peptides were dissolved in 0.1% formic acid (FA) and analyzed
with SWATH-MS. MS analysis was performed on TripleTOF
5600 (Sciex) mass spectrometry coupled to a NanoLC Ultra 2D
Plus (Eksigent) high-performance liquid chromatography
system. Peptides were first bound to a 5 mm × 500 μm trap
column packed with Zorbax C18 5 μm 200 Å resin using 0.1%
(v/v) formic acid/2% acetonitrile in H2O at 10 μL/min for 5
min and then separated using a gradient from 2 to 35% buffer B
[buffer A: 0.1% (v/v) formic acid, 5% dimethyl sulfoxide
(DMSO) in H2O; buffer B: 0.1% (v/v) formic acid, 5% DMSO
in acetonitrile] on a 35 cm × 75 μm in-house pulled emitter-
integrated column packed with Magic C18 AQ 3 μm 200 Å
resin. The gradient time is 180 min for L929, HeLa, and plasma
data sets, 240 min for the IP data set, and 60 min for the
phosphoproteomic data set. For SWATH-MS, the mass
spectrometer was operated such that a 250 ms survey scan
[time-of-flight mass spectrometry (TOF-MS)], which was
collected in 350−1500 m/z, was performed followed by 32
100 ms MS2 experiments or 100 33 ms MS2 experiments. M2

scans were collected in 100−1800 m/z. The fixed 25 Da MS2
experiments used an isolation width of 26m/z (containing 1m/
z for the window overlap) to cover the precursor mass range of
400−1200 m/z.
The 100 variable isolation windows are “399.5−409.9, 408.9−

418.9, 417.9−427.4, 426.4−436, 435−443.6, 442.6−450.8,
449.8−458, 457−464.8, 463.8−471.1, 470.1−476.9, 475.9−
482.8, 481.8−488.6, 487.6−494, 493−499, 498−504.4, 503.4−
509.3, 508.3−514.3, 513.3−519.2, 518.2−524.2, 523.2−529.1,
528.1−534.1, 533.1−539, 538−543.5, 542.5−548.5, 547.5−
553, 552−558, 557−562.5, 561.5−567, 566−571.5, 570.5−576,
575−580.5, 579.5−585, 584−589.5, 588.5−594, 593−598,
597−602.5, 601.5−607, 606−611.1, 610.1−615.6, 614.6−
620.1, 619.1−624.6, 623.6−628.6, 627.6−633.1, 632.1−637.6,
636.6−642.1, 641.1−646.6, 645.6−651.1, 650.1−655.6, 654.6−
660.1, 659.1−665.1, 664.1−669.6, 668.6−674.5, 673.5−679,
678−684, 683−688.5, 687.5−693.4, 692.4−698.4, 697.4−
703.3, 702.3−708.7, 707.7−713.7, 712.7−719.1, 718.1−724.5,
723.5−729.9, 728.9−735.3, 734.3−740.7, 739.7−746.5, 745.5−
751.9, 750.9−757.8, 756.8−763.6, 762.6−769.5, 768.5−775.3,
774.3−781.2, 780.2−787, 786−793.3, 792.3−800.1, 799.1−
806.4, 805.4−813.1, 812.1−820.3, 819.3−827.5, 826.5−835.2,
834.2−843.3, 842.3−851.4, 850.4−859.9, 858.9−868.9, 867.9−
878.4, 877.4−888.3, 887.3−899.1, 898.1−910.3, 909.3−922.9,
921.9−936, 935−949.5, 948.5−963.4, 962.4−978.7, 977.7−
994.9, 993.9−1015.6, 1014.6−1042.2, 1041.2−1070.1, 1069.1−
1100.7, 1099.7−1140.7, 1139.7−1196.5.”
Shotgun MS Analysis and the Spectral Library Building

Data-dependent acquisition was performed on two instruments.
DDA for generation of the L929 library and SSL in the TNFR1
IP data set were performed on TripleTOF 5600 (Sciex). DDA
for generation of SSL in the HeLa data set was performed on
TripleTOF 5600 (Sciex) and timsTOF Pro (Bruker Daltonics).
Liquid chromatography used in DDA on 5600 was the same as
that in SWATH-MS described above. For timsTOF pro, an
ultrahigh-pressure nanoflow chromatography system (Elute
UHPLC, Buker) was coupled. Liquid chromatography was
performed on a reversed-phase column (40 cm × 75 μm i.d.) at
50 °C packed with Magic C18 AQ 3 μm 200 Å resin with a
pulled emitter tip. Solution A is 0.1% FA in H2O, and solution B
is 0.1% FA in ACN. In 120 min experiments, peptides were
separated with a linear gradient from 0 to 5% B within 5 min,
followed by an increase to 30% B within 105 min and further to
35% B within 5 min, followed by a washing step at 95% B and re-
equilibration. timsTOF pro was operated in the PASEF
mode.26,27 The Bruker. tdf raw files were converted to mgf
files with vendor convert software.
Wiff files from 5600 were converted to mgf files using the

qtofpeakpicker tool in proteoWizard MSConvert software
(v.3.0.447).28 The mgf files from 5600 and those from timsTOF
pro were converted to mzML files using proteoWizard
MSConvert software. The mzML files were analyzed using
Trans-Proteomic Pipeline (TPP, version 5.0) software.29 mzML
files were subjected to database search using Comet (version
2017.01)30 and X!tandem (version 2013.06.15.1, native and k-
score)31 against Swiss-Prot human (downloaded in September
2018) appendant with common contaminants and reversed
sequence decoys (41 298 entries including decoys for human).
The search parameters were set as follows: parent monoisotopic
tolerance 50 ppm, product ion tolerance 0.1 Da for 5600 and
0.05 Da for timsTOF, modification Carbamidomethyl on
cysteine (57.021464@C), potential modification oxidation on
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methionine (15.994915@M), and maximum missed cleavage
sites 2. The pep.xml search results were validated and scored
using PeptideProphet32 with parameters -OARPd -dDECOY
and combined by iProphet33 with parameters DECOY =
DECOY.Mayu (version 1.07)34 was used to determine iProphet
probability corresponding to 1% protein false discovery rate
(FDR). For the deep human plasma library, the peptides filtered
at 1% protein FDR were input into ProteinProphet35 for
generating a protein list. The peptide ions passing the 1% FDR
were input into SpectraST36 for library building with collision-
induced dissociation (CID)-quadrupole TOF (QTOF) setting.
For phosphoproteomics data, iProphet results were analyzed
with PTMProphet for phosphorylation site localization. The
phosphopeptides with PTMprophet score >0.7 were kept for
spectral library building. The retention time of peptides in the
sptxt file was replaced with the iRT time using spectrast2spec-
trast_irt.py script (downloaded from www.openswath.org), and
the peptides used for retention time normalization were
endogenous peptides or spiked-in iRT peptides. The sptxt file
was made a consensus nonabundant spectral library with the
iRT retention time using spectraST.

Internal Libraries Generated byGroup-DIA andDIA-Umpire
Software

SWATH-MSwiff files were converted to centroid mzXML using
the qtofpeakpicker tool and profile mzXML files using
proteoWizard MSConvert v.3.0.447. Centroid mzXML files
were analyzed with DIA-Umpire.20 DIA-Umpire was run with
default setting except for BoostComplementaryIon = false.
Profile mzXML files were split into a number of MS2 mzXML
files and the 1 MS1 mzXML file according to the SWATH
window using the in-house script. For the L929 25 Da data set,
24 180 min gradient runs were collectively analyzed. For the
L929 100 VW data set, 12 180 min gradient runs were analyzed
together. For the HeLa data set, 21 180 min gradient runs were
analyzed together. For the IP data set, 12 240 min gradient runs
were analyzed together. For the plasma data set, 6 180 min
gradient runs or 10 180 min gradient runs were analyzed
together. Group-DIA software was composed of four modules:
alignment, analysis, identification, and validation. For gen-
eration of the internal library, only “alignment” and “analysis”
modules were performed. Retention time in multiple runs was
first aligned using MS1 intensity. MS1 and MS2 features were
first extracted in a single run and then concatenated across all
runs. Precursors’ and product ions’ XICs similarities were
compared, and the pairs of precursors and product ions were
then extracted. The generated presudo-spectra were stored in
mgf and mzML formats.
The mgf files from DIA-Umpire and Group-DIA were

converted to mzML files, which were analyzed with Trans-
Proteomic Pipeline (TPP, version 5.0) software. mzML files
were subjected to database search using Comet (version
2017.01) and X!tandem (version 2013.06.15.1, native and k-
score) against Swissprot mouse or human (both downloaded in
September 2018) appendant with common contaminants and
reversed sequence decoys (34 492 entries including decoys for
mouse; 41 298 entries including decoys for human). The search
parameters were set as follows: parent monoisotopic tolerance
50 ppm, product ion tolerance 0.1 Da, carbamidomethyl on
cysteine (57.021464@C), potential modification oxidation on
methionine (15.994915@M), and maximum missed cleavage
sites 2. The pep.xml search results were validated and scored
using PeptideProphet with parameters -OARPd -dDECOY and

combined by iProphet with parameters DECOY = DECOY.
Mayu (version 1.07) was used to determine iProphet probability
corresponding to 1% peptide FDR. The peptide ions passing the
1% FDR were input into SpectraST for library building with
CID-QTOF setting. The retention time of peptides in the sptxt
file was replaced with the iRT time using the spectrast2spec-
trast_irt.py script (downloaded from www.openswath.org), and
iRT peptides used for retention time normalization were
endogenous peptides. The sptxt file was made a consensus
nonabundant spectral library with the iRT retention time using
spectraST.

Merging of Internal Library and DDA Libraries

We found that the combined library generated with
SpectraST,36 regardless of the option employed in SpectraST
such as -cJU, -cJI, -cJS, -cJH, and -cJA, can miss a fraction of
peptides that has been detected by the separate library (Figure
S15A). This result was apparently not reasonable. Thus, we
wrote an in-house script to merge different libraries. Briefly, the
peptides that have been identified byOpenSWATH at 1% global
protein FDR were extracted from the separate library, followed
by combination. When the repeat peptides were encountered,
the peptides in the internal library were taken in priority. The
combined library was subsequently subjected to OpenSWATH-
PyProphet-TRIC workflow analysis.
To examine whether the precursor ions in the combined

library passed the threshold of 1% protein FDR, we re-searched
all raw files including 286 DDA files and 24 pseudo-DDA files
(for fixed windows SWATH-MS data set), resulting in 8531
proteins at 1% protein FDR as determined by Mayu. The
precursors in the combined library were compared with those in
the 8531 proteins. In the re-search library, 97.6% (19 011 of
19 486) of the total peptides in the combined library were
included, while 98.5% (2973 of 3013) of the proteins composed
of proteotypic peptides in the combined library were found in
the re-search library (Figure S15B). Although we cannot
conclude that 1% protein FDR was achieved for the combined
library, these results showed that the vast majority of precursors
in the combined library have high confidence.

Targeted Analysis of SWATH-MS Using
OpenSWATH-PyProphet-TRIC Workflow

The consensus sptxt files were converted to tsv using
spectrast2tsv.py script, which was then converted to a TraML
file with a TargetedFileConverter tool, which is integrated into
OpenMS software (version 2.2.0).37 In OpenSWATH analysis,
ciRT peptide38 and iRT peptides39 were used for retention time
normalization. The XIC extraction window is 20 min. An
extended version of PyProphet40,41 (PyProphet-cli v0.19,
https://github.com/PyProphet) was employed for FDR
estimation. Then, 1% protein FDR at the global level was
applied in the nonphosphoproteomic data set, and 1% global
peptide FDR was set for the phosphoproteomic data set. The
filtered results were input into TRIC software for cross-run
alignment. The parameters in TRIC42 were set as follows:
--method LocalMST --realign_method lowess_cython
--max_rt_diff 60 --mst:useRTCorrection True --mst:Stdev_-
multiplier 3.0 --target_fdr 0.01 --max_fdr_quality 0.05.
It has been reported43 that the comprehensive spectral library

contains many peptides (named false-negative peptides) that do
not exist in the DIA data, for which the multiple testing in the
data analysis needs to be corrected. This issue leads to the loss of
many true signals, thereby reducing the confidence of the
original peptide assignment. The issue of false-negative peptides
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can be partially alleviated by applying a subset of the
comprehensive library, which only contained the proteins
detected in the samples. This strategy is similar to our approach,
by which we extracted the proteins from the library filtered by
1% global protein FDR. Although there are two steps of targeted
DIA data analysis in our approach, the final results have been
rigorously filtered.

Protein Inference and Quantification

The TRIC results were used for protein inference and
quantification. First, proteins with proteotypic peptides were
considered as “uniquely identified”, and the proteotypic
peptides accounted for about 90% of all identified peptides
(Table S1). Second, the peptides mapped to more than one
protein entry were handled as follows:

1. The peptides shared with the proteins with proteotypic
peptides were excluded for protein inference and
quantification.

2. The peptides without evidence of unique protein
mapping were considered as “from one protein
representing the gene locus and expressed as the
alphabetically first entry of the protein database (gene
locus identification).”

To generate a complete quantitative matrix of the IP data set,
peptides identified in all biological replicates of at least one time
point were kept for extraction of quantitative information.

Peptide intensities were directly from TRIC output results,
where peptide intensities were calculated by summing the top
five most intense fragment ion peak areas. In each data set, all
identified peptides from the specific protein are ranked by the
average intensity in all runs. Subsequently, the top three intense
peptides of the specific protein are selected, and the sum of these
three peptide intensities represents the protein intensity in each
run. Where <3 peptides were detected, the available peak groups
were summed.
We found that a large number of missing values of protein

quantitation was detected when the comprehensive library was
used. This was caused neither by stochastic precursor ion
selection as in shotgun MS because SWATH-MS recorded all
precursor ions, nor by false-positive identification as 1% protein
FDR at the global level was applied. The intensity of a specific
peptide that is not detected by OpenSWATH was calculated as
zero, and “zero” values were obviously inconvenient for
downstream bioinformatics processing. Instead of missing
value imputation, we used “background intensity strategy” to
address this issue. The background intensity strategy was
performed as follows:

1. If one peptide was detected in run A but not in run B, the
retention time (RT) of the peptide in run A was used for
location of the peptide in run B. The peptide RT in run A
was transformed into an iRT value, which was also
considered as an iRT value in run B. iRT in run B was then
transformed into the actual RT in run B. Considering that

Figure 1. Peptides detected by the extensive external library covered those by the internal library for fixed-window SWATH-MS data. (A) Cumulative
identification of protein and peptide numbers across 286 DDA runs during building of the L929 library. (B) Experimental scheme of L929 cells under
TNF treatment for various time points. (C) Overlap of quantified peptides or proteins by the internal library and the L929 library at 1% global protein
FDR. (D) Heatmap of quantified protein intensities by the combined library across 24 samples.
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this RTmay not be precise, the RT window of the peptide
in run B was taken. The RT window of the peptide in B
run was calculated by extending 10 min at the center of
the RT value.

2. In the RT window of the peptide in run B, the product ion
mz intensities were extracted and summed at each cycle
since no peaks were detected across the window. The
summedmz intensity values were ranked, and the median
value was taken. Because there is no peak in the retention
time range, the summed intensity of the baseline was
significantly lower than other peptide peak intensities.
Thus, we compare intensities of 100 peaks to the summed
intensities of their baseline in a 20 min retention time
window. We found the ratios of “peak intensity” to “the
summed intensity of baseline” about 5.5−6.0, and we take
the average number “5.7”. The median value was
multiplied with 5.7 and considered as background
intensity.

Raw MS Data and Spectral Library Availability

The rawMS data and spectral libraries have been deposited into
the PeptideAtlas with identifier PASS01314 and can be accessed
at http://www.peptideatlas.org/PASS/PASS01314.
Animal Plasma and Human Plasma Samples

All animal experimental protocols were approved by the
Institutional Animal Care and Use Committee at Xiamen
University. Human plasma samples were obtained with approval
of the research ethics boards of Xiamen University and Xiamen
First Hospital.

■ RESULTS

Internal Library Supplements Peptides Detected by the
Extensive Spectral Library for Fixed-Window SWATH-MS
Data

In our previous study, we attempted to identify all expressed
proteins in the murine cell line L929.21 Through extensive
fractionation techniques at protein and peptide levels coupled
with shotgun MS (Figure S1), we generated a spectral library
(referred to as the L929 library hereafter) with 286 DDA runs,
which contained 109 323 striped peptides corresponding to
8599 mouse proteins. As shown in Figure 1A, the number of
identified proteins dramatically increased within 50 runs, and
then the increase slowed down from 50 runs to 200 runs. When
DDA runs were over 200, the number of proteins identified
came to saturation, suggesting that it reached the maximum
number of proteins identified in the DDA data set in the murine
L929 cell line.
We used OpenSWATH44 to analyze the SWATH-MS data

from L929 cell lysates. Wild-type L929 cells were treated with
TNF for different time periods in biological triplicates (Figure
1B). The SWATH-MS data were acquired in the fixed-window
(32W × 25 Da) mode. We also analyzed one biological replicate
(8 of 24 samples) using shotgunMS, which has been included in
the L929 library. Collectively, 2949 proteins were quantified
across 24 samples at 1% global protein FDR (Table S1 and
Figure S2A). To compare the performance of targeted analysis
using the L929 library or the internal library, we applied Group-
DIA and DIA-Umpire to generate the pseudo-spectra files
directly from SWATH-MS files. The pseudo-spectra files were
subjected to database searches, and an internal library was made.
Targeted analysis with OpenSWATH using the internal library
revealed that 2456 proteins were quantified across 24 samples

(Table S1 and Figure S2B). The coefficients of variations (CVs)
of protein intensities in biological replicates were computed.
CVs identified by the internal library (Figure S2D) were
marginally lower than those by the L929 library (Figure S2C).
Pearson’s correlation coefficients between two samples using the
internal library were slightly higher than those in the L929
library (Figure S3A), suggesting that protein quantification
based on the internal library has better reproducibility. We
noticed that the correlation between protein intensities using the
internal library and those with the external library is relatively
poor. Since the protein intensities were calculated by summing
the peptide intensities, we extracted the intensities of common
peptide precursors identified by both libraries (Figure 1C).
Similar to the correlation of proteins from two libraries, the
peptide intensities also show a relatively poor correlation
(Figure S3B). This indicates that the poor correlation between
protein intensities by two libraries might perhaps stem from the
discrepant factors of the assay libraries such as retention time or
product ions for the same peptide precursor. The top six intense
fragment ions of the peptides in spectral libraries will be selected
to assemble the assay libraries. The peptide precursors in L929,
internal assay libraries as well as identified by both libraries are
shown in Figure S4A. We focused on the 10 747 precursors that
are identified by two libraries. First, we compared the iRT values
of these peptides. iRTs from two libraries were highly
reproducible (Figure S4B), suggesting that the retention time
is not the cause of the poor correlation of protein intensities.
Second, we examined the product ions of the peptides from two
libraries. The percentages of the peptide with indicated
overlapped product ions from two libraries are shown in Figure
S4C. Unexpectedly, the percent of peptides with the same six
product ions between two libraries is only about 5%. About 62%
of the peptides have three or four overlapped product ions
between two libraries. Twenty-eight percent of peptides have
five shared product ions. This result suggested that the majority
of product ions of peptides that were selected for quantification
from two libraries were different. To further demonstrate that
the poor correlation of protein intensities results from the
different product ions from two libraries, we manually checked
the XICs of product ions for several common peptides in two
libraries. As shown in Figure S5, different product ions from two
libraries showed largely varying intensities. This result
confirmed that poor correlation of protein intensities is caused
by varying product ions from two libraries.
Subsequently, the quantified peptides and proteins were

compared, showing that the L929 library approach can cover
85% (10 292 of 12 118) of the peptides and 91% (2231 of 2456)
of the proteins from the internal library strategy (Figure 1C).
This result demonstrated that the L929 library was pretty
complete for these SWATH-MS data. However, when we used
the combination of the L929 library and the internal library,
3123 proteins were quantified (Figure 1D), which is about 7.6%
(225 of 2949) and 12% (1826 of 15 849) improvement in the
number of quantified proteins and peptides, respectively. The
CVs from the combined library are similar to those from the
internal library (Figure S6A), which are both lower than those
from the L929 library. We compared the proteins and peptide
precursors identified by the combined library with those by
individual libraries. The combined library covers 99.9% of the
proteins detected by the L929 library and 93.1% of the proteins
by the internal library (Figure S6B). Moreover, the combined
library contains 100% of overlapped proteins of the individual
libraries. At the peptide level, the combined library offers 93.6%

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00669
J. Proteome Res. 2020, 19, 477−492

482

http://www.peptideatlas.org/PASS/PASS01314
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.9b00669


of the peptides detected by the L929 library and 66% of the
peptides by the internal library (Figure S6C). Importantly, the
combined library includes 95.8% of the overlapped peptides of
the individual libraries. Thus, the internal library supplements
the external library no matter how extensively the external
library was generated.

Combination of Internal Library and External Library
Largely Extends the Identification Depth for
Variable-Window SWATH-MS Data

It was reported that a variable-window setup in SWATH-MS
could providemore identified and quantified peptides compared
with the fixed-window setup.45,46 Thus, we acquired 12 L929 cell
lysate samples using SWATH-MS with 100 variable-window

setting (100 VW) (Figure 2A). With OpenSWATH analysis
using the L929 library, 4787 proteins were quantified across 12
samples (Table S1). We also employed DIA-Umpire and
Group-DIA to build an internal library directly from SWATH-
MS data. With this internal library, 4790 proteins were
quantified (Table S1). We compared the quantified peptides
and proteins (Figure 2B). Remarkably, 44.2% of the total
peptides (18 995 of 42 941) were covered by both libraries, and
36.6% (16 621 of 42 941) were detected exclusively by the
internal library. At the protein level, 74.1% of the total proteins
(4077 of 5500) were identified by both libraries, and 13% (713
of 5500) were exclusively detected by the internal library. The
gain in the number of identified proteins by the internal library

Figure 2. Large number of peptides detected by the internal library were not detected by the L929 library for variable-window SWATH-MS data. (A)
Experimental scheme of L929 cells under TNF treatment for various time points. (B) Overlap of quantified peptides or proteins by the internal library
and the L929 library at 1% global protein FDR. (C) Intensity distribution of peptides exclusively detected by the internal library or the L929 library or
both libraries. (D) Heatmap of quantified protein intensities by the combined library across 12 samples. (E) Percent of proteins with peptide numbers
per protein detected by the combined library compared to the L929 library.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00669
J. Proteome Res. 2020, 19, 477−492

483

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.9b00669


was less pronounced compared with that of the peptides,
suggesting that most of the extra peptides identified by the
internal library belonged to the proteins identified by the L929
library. To investigate the property of these peptides exclusively
identified by the internal library, we compared the peptide
charges and hydrophobicity. No significant differences in
charges and hydrophobicity between the peptides detected by
two libraries were observed (Figure S7A,B). We subsequently
extracted the peptide intensities. Unexpectedly, while most
peptide intensities by the internal library ranged from 14 to 18 at
the log 2 scale, the number of peptides identified by the L929
library and common peptides in this intensity range was
significantly fewer. These results indicated that the internal
library tends to identify low-abundance peptides compared with
the L929 library. To enable in-depth interpretation of SWATH-
MS data, we combined the L929 library and the internal library.
In total, 45 143 peptides that corresponded to 5544 proteins
were quantified across 12 samples with the combined library
(Figure 2D). Compared with the L929 library, the combined
library provided a 61% (16 232 of 26 709) increase in peptide
identification and a 15% (713 of 4787) increase in protein
identification. In addition, the number of peptides per protein
increased in about 70% of the proteins identified by the
combined library compared with the L929 library (Figure 2E).
To further demonstrate the advantages of the internal library

for analyzing SWATH-MS data from complex samples, we

acquired 21 HeLa cell lysate samples using 100 VW SWATH-
MS (Figure 3A). In parallel, we fractionated the peptides derived
from the combined 21 samples using SDB-RPS StageTips. The
three peptide fractions were analyzed with shotgun MS. DDA
runs were subsequently searched, and a consensus spectral
library was built (referred to as the sample-specific library, SSL),
which consisted of 68 169 peptides and 6308 proteins at 1%
protein FDR. We also built an internal library based on 21
SWATH-MS files. The internal library was composed of 3571
proteins and 19 798 peptides. The previously published
SWATH-MS spectral library (referred to as the human library
hereafter) containing peptide query parameters mapping to
10 000+ human proteins was also used for targeted analysis of
HeLa SWATH-MS data. The peptides in three libraries were
compared (Figure 3B). Although the human library was
generated by combining as many as 331 DDA runs derived
from various human samples, a large number of peptides from
proteins of HeLa cells (8930 and 46 433 in the internal library
and SSL, respectively) were missing in that library. The internal
library and SSL were applied to targeted analysis for 21
SWATH-MS runs, resulting in 3530 and 3479 quantified
proteins, respectively (Table S2). Next, we used the human
library to analyze HeLa SWATH-MS data, which produced
3670 proteins (Table S2). The peptides and proteins identified
with three libraries were compared (Figure 3C). Although the
overlap of peptide identifications of three libraries was relatively

Figure 3. Large number of peptides detected by the internal library were not detected by the external library for 100 VW SWATH-MS data. (A)
Experimental scheme of HeLa cells under TNF treatment for various time points. (B) Overlap of peptides in the internal library, SSL, and human
library. (C) Overlap of peptides or proteins detected by the three libraries at 1% global protein FDR. (D) Heatmap of quantified protein intensities by
the combined library across 12 samples.
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small, the three libraries produced almost 80% identical protein
identifications. More importantly, the human library identified
the highest number of proteins, while the internal library
provided more extra peptide identifications, which is consistent
with the case of the L929 study. Compared with SSL, the
internal library provided 48% (8076 of 16 878) extra peptide

identifications. Even for the combined peptides from the human
library and SSL, the internal library still provided 21% (4759 of
23 142) extra peptide identifications. Next, we combined the
three libraries to analyze the SWATH-MS data, which resulted
in the quantification of 4344 proteins and 30 780 peptides
(Figure 3D and Table S2). Similarly, the peptide number per

Figure 4. Combination of the internal and the external library enabled in-depth identification of IP SWATH-MS data. (A) Experimental scheme of
immunoprecipitation of TNFR1 complexes in L929 cells under TNF treatment for various time points. (B) Comparison of protein numbers in the
internal library, the sample-specific library, and the L929 library and protein numbers detected by three libraries. (C) Overlap of peptides or proteins
detected by the three libraries at 1% global protein FDR. (D) Heatmap of quantified protein intensities by the combined library across 12 IP samples.
(E) Differential expression analysis revealed that some regulated proteins depended on TNF treatment. Several well-known TNFR1 component
proteins are labeled in red. (F) The peptide numbers per well-known TNFR1 protein detected by three libraries were compared.
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protein of most proteins by the combined library significantly
increased compared with SSL (Figure S8A) and the human
library (Figure S8B).

In-Depth Exploration of IP SWATH-MS Data through
Combining Internal and External Libraries

After the effect of the internal library on the analysis of SWATH-
MS data derived from cell lysate samples was investigated, we
sought to examine the effect of the internal library on the analysis

of SWATH-MS data of IP, which only contained a small fraction
of the total proteome. We used Flag-TNF to treat L929 cells for
six time points in biological duplicates and employed anti-Flag
beads (M2 beads) to immunoprecipitate tumor necrosis factor
receptor 1 (TNFR1) complexes (Figure 4A). Twelve IP samples
were analyzed with shotgun MS and 100 VW SWATH-MS. We
first used the L929 library to analyze the SWATH-MS data. In
total, 1547 proteins were quantified across 12 IP samples (Table
S3). Subsequently, we built a sample-specific library (SSL) from

Figure 5. Internal library improves peptide identifications for plasma samples. (A) Building of a deep human plasma spectral library. The undepleted
plasma samples and depleted plasma samples were digested and fractionated with high-RP PH liquid chromatography, followed by shotgun MS. (B)
Overlap of peptides or proteins detected by the internal library and the human plasma library. (C) Quantitative values of 330 plasma proteins ranked
according to their abundance. Several proteins are exemplified labeled in green over the abundance range. (D) Experimental scheme of mouse plasma
samples under different treatments. (E) Heatmap of quantified protein intensity using the internal library.

Journal of Proteome Research Article

DOI: 10.1021/acs.jproteome.9b00669
J. Proteome Res. 2020, 19, 477−492

486

http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.9b00669/suppl_file/pr9b00669_si_001.pdf
http://dx.doi.org/10.1021/acs.jproteome.9b00669


DDA runs of IP samples, which was composed of 14 302
peptides and 1968 proteins at 1% protein FDR. The SSL-based
analysis resulted in quantification of 1192 proteins (Table S3).
Finally, the internal library was applied to analyze these
SWATH-MS data. With the internal library, 1428 proteins
were quantified (Table S3). The L929-library-based method
yielded the highest number of quantified proteins, but the L929
library contained a large number of proteins that did not exist in
SWATH-MS data. Remarkably, nearly 90% of proteins in the
internal library were detected in SWATH-MS data (Figure 4B).
We compared the peptides and proteins identified by the three
libraries (Figure 4C). L929-library-based analysis resulted in the
highest number of protein identifications, whereas the internal
library approach producedmost extra peptide identifications. To
enable in-depth exploration of IP SWATH-data, we combined
these three libraries. The combined library led to the
quantification of 1847 proteins and 17 750 peptides (Figure
4D). Differential expression analysis revealed that some proteins
were upregulated in the TNFR1 complex (Figure 4E). Some of
the upregulated proteins were well-established component
proteins of the TNFR1 complex. The peptide numbers of

these proteins identified by the three libraries were compared.
The internal-library-based approach was able to identify a
dramatically higher number of peptides compared with that
based on the L929 library (Figure 4F and Table S3). The
internal library also provided a 20−100% increase in the number
of identified peptides per protein compared with SSL.

Internal Library Improves the Identification Depth of
SWATH-MS Data from Plasma Samples

Plasma proteome is characterized by a vast dynamic range and
high complexity, which imposes a serious challenge for deep
proteome coverage and biomarker discovery. To explore the
effect of the internal library on analysis of SWATH-MS data
from plasma samples, we used SWATH-MS to analyze
undepleted human plasma samples. First, we generated a deep
human plasma library through high-PH reversed-phase
fractionation of undepleted and depleted plasma (Figure 5A),
which contained 2604 proteins and 20 558 peptides at 1%
protein FDR (Table S4). We subsequently acquired two
undepleted plasma samples using SWATH-MS in three
technical replicates. Targeted analysis of these SWATH-MS

Figure 6. Targeted analysis of phosphoproteomic SWATH-MS data was not benefited from the internal library. (A) Experimental scheme of
phophoproteomics in L929 cells under TNF treatment for various time points. (B) Overlap of phosphopeptides between SSL and the internal library.
(C) Overlap of phosphopeptides detected by SSL and the internal library at 1% peptide FDR. (D) Differential expression analysis of regulated
phosphopeptides in individual TNF treatment time. The phosphosites that were documented to be regulated in the TNF-treatment way were labeled
in red.
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data using the human plasma library resulted in quantification of
308 proteins (Table S4). DIA-Umpire and Group-DIA were
used to analyze the SWATH-MS data, and the mgf files
generated were employed to build an internal library (Table S4).
Targeted analysis using the internal library revealed that 256
proteins were quantified. The peptides and proteins detected by
the internal library and the human plasma library were
compared, showing that 20% (885 of 4338) of peptides were
exclusively detected by the internal library (Figure 5B). The
library merged with the internal library and the human plasma
library identified 330 proteins (Figure 5C and Table S4). The
lowest protein abundance in human plasma detected by
SWATH-MS is about 1−10 ng/mL (Figure 5C).
In addition, we acquired 10 undepleted mouse plasma

samples using SWATH-MS (Figure 5D). The internal library
was used for targeted analysis of these SWATH-MS data,
resulting in quantification of 642 proteins and 7007 peptides
across 10 mouse plasma samples (Figure 5E and Table S4). The
dynamic range of the intensities of quantified proteins was about
105 (Figure S9). We compared the identified proteins with
mouse plasma proteins that were available at www.peptidealtas.
org and found 50% of them were overlapped (Figure S10).

Internal Library Did Not Benefit Phosphopeptide Detection
from Phosphoproteomic SWATH-MS Data

To further investigate whether analysis of phosphoproteomic
SWATH-MS data benefits from the internal library, we acquired
12 phosphoproteomic samples using SWATH-MS (Figure 6A).
Twelve DDA runs were searched, resulting in 7,687
phosphopeptides at 1% peptide FDR (Table S5). The
phosphopeptide enrichment efficiency is 95.9% (7687 of total
8012), and localized phosphopeptides are 6773 (PTMprophet
probability ≥ 0.7) (Figure S12). These localized phosphopep-
tides were constructed as the sample-specific library (SSL).
Twelve SWATH-MS runs were analyzed by Group-DIA and
DIA-Umpire, and the generated mgf files were searched, which
resulted in 2719 localized phosphopeptides (Figure S11 and
Table S5). These localized phosphopeptides were built as an
internal library. The phosphopeptides were compared between
SSL and the internal library. SSL covered 85% phosphopeptides
of the internal library (Figure 6B). These libraries were used for
targeted analysis of SWATH-MS data. In total, 5292
phosphopeptides were quantified across 12 samples using SSL,
while 2371 phosphopeptides were quantified using the internal
library (Table S5). Phosphopeptides from SSL covered 85% of
that from the internal library (Figure 6C). Intensities of
phosphopeptides between the two samples were compared,
showing that there was good reproducibility for phosphopro-
teomic SWATH-MS data (Figure S12). Differential expression
analysis revealed that many phosphopeptides were upregulated
in L929 cells under TNF treatment, among which some were
well-established TNF-induced phosphosites (Figure 6D).

■ DISCUSSION

Targeted analysis of SWATH-MS data is almost entirely
dependent on the spectral library, which includes the external
library and the internal library. The external libraries can be
divided into the sample-specific spectral library (SSL) and the
extensive spectral library. The former is constructed by shotgun
MS analysis of the specific samples that are subjected to
SWATH-MS analysis, whereas the latter is typically referred to
as the species-specific spectral library that is generated through
extensive fractionation of protein or peptides. However, the

internal library is built on DDA-like files directly generated from
SWATH-MS. Targeted analysis of SWATH-MS in most
research is usually performed by use of the external library. In
this study, we investigated the effect of the internal library on the
targeted analysis of SWATH-MS from various kinds of samples.
First, we generated a comprehensive external spectral library

of the murine L929 cell line. We acquired L929 cell lysate
samples using SWATH-MS. Two SWATH-MS settings were
adopted in this study. One has fixed width of 25 Da with 32
windows, and the other has variable width with 100 windows,
where the minimum window is about 5 Da. Much less precursor
ions were isolated in one Q1 window in variable windows,
leading to significantly fewer interference product ions in one
MS2 scan. Therefore, specificity and sensitivity of XICs of
product ions can be largely improved, which resulted in better
match of precursor−product pairs in DIA-Umpire or Group-
DIA software. As expected, the internal library from SWATH-
MS with variable windows identified much more peptides than
that with fixed windows. More importantly, a large fraction of
peptides (38%, 16 232 of 42 941) by the internal library cannot
be detected in the L929 library for 100 VW SWATH-MS data.
This result suggested that the L929 library is not complete at the
peptide level for L929 SWATH-MS data. Similarly, the extensive
human library only yielded 59% (16 498 of 27 901) of the total
peptides for SWATH-MS fromHeLa lysate samples. In contrast,
71% (19 818 of 27 901) of the total peptides were detected by
the internal library alone. Indeed, the combined peptides from
SSL and the internal library already accounted for 90% (24 974
of 27 901) of the total peptides for HeLa SWATH-MS data
(Figure 3C). These results suggested that the comprehensive
external spectral library is probably incomplete at the peptide
level for SWATH-MS from complex samples, such as cell lysate
and tissues.
We next investigated the effect of the internal library on the

analysis of SWATH-MS from IP samples, which are less complex
than cell lysate samples. IP experiments were conducted in L929
cells. In this case, the internal library contributed to 80% (12 734
of 16 045) of the total peptides, while the L929 library produced
54% (8713 of 16 045) of the total peptides. Similarly, the
combined peptides from SSL and the internal library already
made up 88% (14 198 of 16 045) of the total peptides. For
SWATH-MS data from the human plasma samples, the internal
library still produced 25% (885 of 3453) of the extra peptides
compared with the extensive external library.
Finally, we evaluated the influence of the internal library on

analyzing SWATH-MS from phosphoproteomic samples. The
internal library identified significantly fewer phosphopeptides
than SSL, and the phosphopeptides from the internal library
were almost covered by those from SSL. The result showed that
SSL is efficient for analysis of phosphoproteomic SWATH-MS
data. The poor performance of the internal library on
phosphoproteomic SWATH-MS is probably due to low
intensities of phosphopeptides,47 which hampers precursor−
product ion matching in pseudo-spectra file generating software.
The DIA-Umpire papers published in Nature Methods of

2015 proposed the notion of the internal library, which is
directly generated from DIA files.20 The Proteomics papers in
2016 described an improved version of DIA-Umpire, which can
be applied to DIA data acquired onOrbitrap instrument.48 They
compared the identifications of the internal libraries and project-
specific libraries as well as library-based quantitative results of
targeted DIA analysis using DIA-Umpire. However, they did not
compare the results of targeted DIA analysis using the internal
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spectral libraries and those using public source libraries with the
stringent FDR cutoff at the protein level. Besides, no library
combination procedures were performed in the papers.
Furthermore, the data set presented in the two studies is
relatively small. The study in Nature Biotechnology compared
performance of four library-based software as well as DIA-
Umpire in analyzing SWATH-MS data.24 The authors mainly
focused on the highly convergent results obtained by the five
software, demonstrating their robustness of DIA-based label-
free quantitative proteomics. Similar to DIA-Umpire papers, the
authors used the project-specific libraries or internal libraries,
instead of the public source library, to analyze the SWATH-MS
data. They did not perform any library combination. When
comparing the quantitative results obtained from different
software, FDR estimate strategies used in different tools may
have introduced the identification bias. The very recent study
from the Spectronaut team published in Molecular Omics49

described the use of library combination in analyzing DIA data,
supporting that the combined library provides an improved
result. The details regarding FDR estimation in Spectronaut
were unavailable in all manuscripts. In contrast, OpenSWATH,
PyProphet, and TRIC, which are latest and sophisticated open-
source tools and have successfully been employed in large-scale
DIA data,41,50 are utilized in our study. It is much easier to
reproduce the results obtained by the open-source tools
compared with those obtained by the commercial ones.
Collectively, our study presents a comprehensive and strict
comparison of different libraries in analyzing a variety of DIA
data and shows the improved performance of the combined
library.
In addition, our SWATH-MS-based qualitative proteomics

reveals the biological implications for the TNF-signaling
pathway. We examined the quantitative protein intensities in
the 100-VWL929 data set. TNF stimulation is known to activate
the NF-κB pathway, leading to production of a variety of
proteins including cytokines and chemokines. We compared the
protein intensities at 3 h to those at 0 h and used a ratio of 3 as
the upregulation cutoff. Eighty-seven proteins were found to be
upregulated (Table S1), of which several TNF-induced
cytokines and chemokines such as CCL2, TNF, CCL7, and
CXCL1 were found. Besides, JUNB, MAPK9, and MAP2K7,
which are involved in the TNF-signaling pathway, also exist in
the upregulation list. We clustered the biological pathways of
these 87 proteins and found the top1 pathway is the TNF
pathway (Figure S13A). For the HeLa data set, we extracted
TNF-induced proteins at TNF 180 min treatment (log2(fold
change) > 1 and −log10(p-value) > 1.5) Figure S13B). From
these upregulated proteins, we did not observe the TNF-
induced cytokines or chemokines, as detected in the TNF-
treated L929 cells. However, JUNB and NFKB2, which are the
proteins targeted by NF-κB, are in the TNF-induced protein list.
These results could be attributed to the different mechanism of
two cells in response to TNF treatment, but we cannot rule out
the possibility that less coverage of HeLa proteome relative to
that of L929 cells (5544 proteins vs 4344 proteins) results in the
phenomena.
In the L929 phosphoproteomics data set, phosphorylation of

Serine 63 on Jun and Serine 11 on TRAF2 showed significant
upregulation uponTNF stimulation (Figure 6D). S63 of Jun was
reported to be phosphorylated by JNK2,51,52 which was
activated by TNF stimulation. Phosphorylation of S11 on
TRAF2, which was phosphorylated by IKKi,53 was essential for
TNF-induced secondary IKK activation.54

In our experiment, Flag-TNF was used to treat L929 cells, and
Flag-TNF can bind to TNFR1 (tumor necrosis factor receptor
1) and form a compact complex. Flag-TNF is also frequently
employed in the purification of the TNFR1 complex in other
studies.55−59 From the differential expression analysis (Figure
4E), we selected all TNF-induced proteins in TNF IP
experiments and plotted dynamic change curves. Almost all of
them are well-established TNFR1 interacting proteins.60 As
shown in Figure S14, different proteins are recruited to TNFR1
at different TNF stimulation times. TRADD and RIP1 are
recruited to TNFR1 at 5 min and dissociated from the complex
after 15 min, whereas TRAF2 is recruited to TNFR1 and
remains unchanged over treatment time. A20 is recruited to
TNFR1 at 60 min, but TNIP2, an A20 interacting protein,
apparently shows a distinct pattern with A20. Overall, these
different patterns by which proteins are recruited to the TNFR1
complex are probably tightly connected to their functions in the
TNF pathway.
In summary, the internal library yielded a large number of

peptides that cannot be detected by the external library for
SWATH-MS data from immunoprecipitations, cell lysates, and
plasmas. The internal library has no significant benefits on
phosphoproteomic SWATH-MS data. In nonphosphoproteo-
mic SWATH-MS data, the peptides exclusively detected by the
internal library should not be ignored. Therefore, the internal
library is highly recommended to be incorporated into the
external library, which can improve identification depth on the
peptide level without extra peptide samples and additional
instrument measurement time.
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