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a b s t r a c t   

Micropatterning has been widely applied in electronics, biomaterials engineering, and microfluidics studies. 
A key challenge in using bipolar electrochemistry for fabricating titanium dioxide (TiO2) nanotube micro-
patterns (TNMs) with desired properties is to balance interrelated experimental parameters and define 
experimental boundary conditions. For example, it is challenging to determine the anodization voltage 
boundary as high anodization voltage with certain conditions might induce titanium foils rupture. Here, we 
utilize active learning to facilitate the optimization process of fabricating TNMs with a wide dimension 
range within one sample using bipolar electrochemistry. Starting with a small dataset, the decision tree 
model differentiates normal data from abnormal data (i.e., titanium foils ruptured), which helps define the 
experimental boundaries. Then gradient boosted regression tree (GBRT) model analyzes the data and 
provides predictions and directions for optimizing TNMs. Then predictions are verified by experiments, and 
new results update the training dataset for the next learning loop. Results show that ML algorithms well 
define the experimental boundary conditions. And only within several iterations, we obtained the optimal 
TNMs with a diameter range of 27–470 nm, expanding the gradient to the largest extend without tedious 
experiments. Those results indicate that machine learning algorithms are effective in accelerating materials 
manufacture and optimization. Further silver nanoparticle doping demonstrates that large-scale TNMs are 
effective platforms for high-throughput screening. 

© 2021 Elsevier Ltd. All rights reserved.    

Introduction 

Design/fabricate biomaterials with desirable functions for spe-
cific applications is a critical goal in biomedical research. The in-
herent complexities in the structure-property-function relationships 
of biomaterials raise the challenge of designing and fabricating 
biomaterials. Notably, the traditional evaluation process requires 
multiple samples for evaluation, which is tedious and cumbersome. 

Herein, optimizing biomaterials with desirable properties by fewer 
experiments and materials becomes an essential and urgent task in 
materials genome initiative [1–3]. 

Micropatterning techniques miniaturize and integrate various 
materials with different properties into platforms that are useful for 
high-throughput screening of biomaterials with fewer samples and 
high efficiency [4,5]. Popular micropatterning techniques include 
soft lithography, photolithography, jet patterning, scanning-probe 
lithography, laser-guided patterning, microfluidics, bipolar electro-
chemistry, etc. [6–9] Many of those techniques usually involve 
complicated multi-steps. For example, the photolithography ap-
proach consists of photoresist coating, exposure, development, and 
etching [10]. 

Among all micropatterning techniques, bipolar electrochemistry 
is a simple one-step method and has been widely utilized for 
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constructing chemical/structure gradient micropatterns [11–14], 
including silver micropatterns [14], gold micropatterns [15], copper 
micropatterns [16], etc. As titanium dioxide (TiO2) nanotubes (TNs) 
have been broadly developed and applied in many fields (such as 
biomedical applications, sensing, photocatalysis, etc.), some research 
groups are devoted to constructing TiO2 nanotube micropatterns 
(TNMs) using bipolar electrochemistry for high-throughput appli-
cations [17–19]. By tuning parameters of bipolar electrochemistry 
(e.g., electrolyte type, concentration, voltage, time, etc.), Loget et al. 
obtained TNMs with a diameter range of 200 nm and utilized them 
for photocurrent screening [20]. However, it has been reported that 
the diameter of TNMs from the conventional anodization method 
could be as large as ~750 nm [21]. The remaining question is that 
could we find the optimal TNMs with the widest diameter range for 
thorough high-throughput studying? 

Unfortunately, we found it challenging to achieve this goal by 
traditional statistical methods because of the enormous complexity 
of bipolar electrochemistry. By fixing the electrode cell (the size of 
bipolar electrode, electrolyte volume, and the distance between bi-
polar electrode), we previously obtained TiO2 nanotube micro-
patterns (TNMs) with a diameter range of 20–350 nm [22]. We found 
that even though higher applied voltage could enlarge nanotube 
diameter, it might accelerate the current and ruptures the titanium 
foil during anodization. But a slight change of other parameters 
(temperature, stirring speed, electrolyte concentration, water vo-
lume) might save the foil from break. So we certainly could obtain 
TNMs with a wider diameter range after enormous experiments; 
however, we will always wonder will the diameter range be wider if 
we carry out more tests. Herein, we need other methodology to 
define the optimal gradient or the experimental boundaries to avoid 
the rupture of titanium foils that we can navigate the optimal path 
by least experiments. 

As a particular case of machine learning, active learning (AL) 
actively chooses the data samples on which it wants to learn from 
and addresses the issue of large dataset labelling [23]. Supervised 

machine learning models usually require a large training dataset to 
achieve satisfactory accuracy. However, labeling a large dataset is 
expensive and time-consuming, or even need to be accomplished by 
a human expert of a specific domain. With active learning, we only 
need to label the most informative subset of the whole dataset. 
Active learning takes an iterative process to improve the accuracy of 
the model; it trains the model on an initial data subset and queries 
more data labeling in the next round according to the evaluation 
results in this round. So it has been widely applied in many research 
areas [23,24]. For example, Yuan et al. expedited the discovery of 
new Barium titanate (BaTiO3) based piezoelectrics with large elec-
trostrains with the aid of active learning [25]. 

Herein, active learning might be a great tool to solve the afore-
mentioned difficulties in optimizing large-scaled gradient TiO2 na-
notube micropatterns (TNMs) with a wider diameter range. In this 
paper, we apply machine learning methods to confine the experi-
mental boundary conditions of bipolar electrochemistry and ex-
pedite the optimization of fabricating TNMs by active learning. 
Through several active learning iterations, we obtain the optimal 
TNMs (with a diameter range of 27–470 nm) using the least ex-
periments. Further silver nanoparticles (AgNPs) doping was applied 
as a case study for high-throughput studying. 

Results and discussion 

Optimizing TiO2 nanotube micropatterns with active learning 

Fig. 1 illustrates the active learning loop, which shows the 
learning methodology to lead bipolar electrochemistry experiments 
to optimize TNMs. To initiate the machine learning iteration, we 
collect both experimental parameters (features) and results (max-
imum diameter of each TNM) from the fabrication process. After 
data collection, the initial data (training data) are imported for active 
learning. Machine learning algorithms study/analyze/classify the 
pattern of training data and build prediction models. Experiments 

Fig. 1. An overview of active learning iteration for accelerating optimization process of TiO2 nanotube micropatterns (TNMs). The relationships between the maximum diameter 
(y) of TNMs on gradient sample and experimental parameters x (i.e., temperature, time, voltage, stirring speed, water volume, electrolyte concentration) are analyzed by machine 
learning algorithms, which further predict optimal parameters for testing. For the experimental features, temperature represents the temperature of the circulating water, time 
stands for the anodization time for fabricating TNMs, voltage represents the applied anodization voltage, speed means the stirring speed of the magnetic stirring bar, water and 
NH4F represent the water volume and the mass fraction of NH4F in the electrolyte. 
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validate predicted data, and new results further update the training 
dataset for the next learning loop. By looping machine learning and 
experimental validation, we can maximize the diameter range of 
TNMs by the least experiments. 

The first step of the active learning iteration is to perform bipolar 
anodization experiments. It is well known that nanotube diameter 
increases with applied voltage. So at the beginning we focused on 
escalating applied voltage. Sometimes, during the anodization pro-
cess, titanium foils rupture from the middle when the anodization 
current rises too high. We found that even though higher applied 
voltage could enlarge nanotube diameter, it might accelerate the 
current and ruptures the titanium foil during anodization (pink areas 
in Fig. S1a). Then there are no measurable results for the maximum 
diameter of TNMs. But this information is precious as it indicates 
that there is a experimental boundary. Herein, we collect not only 
valid data with measurable maximum nanotube diameter, but also 
"unwanted" data without measurable nanotube diameter (hereafter 
identified as "cut-off" points). 

There are more than twenty popular learning algorithms in 
machine learning algorithms [26–29]. To differentiate cut-off points 
from the standard dataset, we compared several suitable classifica-
tion algorithms, including K-Nearest Neighbor (KNN) [30], Bayes  
[31], Support Vector Machine (SVM) [32], Decision tree (DT) [1], 
Gradient Boosting Decision Tree (GBDT) [33] (Section S4 in the 
electronic supplementary information, ESI†). As shown in Fig. S2a, 
both DT and GBDT have higher accuracy than other methods. 
However, compare the learning curves of GBDT to that of DT 
(compare Fig. S2b and c), GBDT has a large gap between training and 
cross-validation curve, indicating slight overfitting of the GBDT 
model. Therefore, the decision tree is adopted as a classifier to 
classify cut-off points from the typical dataset as shown in Fig. S3.  
Fig. 2a shows the correlation of experimental features after dimen-
sion reduction with the t-distributed stochastic neighbor embedding 
(t-SNE) method in the Scikit-learn library (Section S1.4 in the ESI†)  
[34]. The clear boundary between valid experimental features (black 
dots) and cut-off points (red dots) illuminates the success of clas-
sification. More importantly, this boundary sets the boundaries for 
the regression model, i.e., it helps define experimental boundaries of 
each feature in fabricating a typical TNM without sample rupture. 

As the classification builds the experimental boundaries, only 
valid data are imported as a training dataset for further regression. 
We need another machine learning algorithm to generate a "model" 

from the data, that is, a "regression algorithm". Among all, we only 
present six representative algorithms based on the logic of "linear 
model, nonlinear model, integrated model and neural network", 
including linear regression [35], polynomial regression [36], support 
vector regression (SVR) [37], decision tree (DT), gradient boosted 
regression tree (GBRT) [38], and neural network (NN) [39,40] 
(Section S5 in the ESI†). 

A statistical inference model = +y f x( ) uncertainties is trained 
to predict the maximum diameter y of the nanotubes on the TNMs 
from experimental features x, where f represents learned relation-
ships between y and x. The uncertainties are associated with the 
model fitting, such as mean absolute error (MAE) and coefficient of 
determination (R2), which will be addressed in detail later. Among 
all six regression models, the neural network is a powerful tool in 
many fields, including computer vision. However, we found that it 
may not be the most suitable model for small datasets (ESI† Figs. S4 
and S5). On the contrary, the GBRT model presents best in estimating 
f with the least errors and it is further employed for prediction and 
optimization. 

Fig. 2b compares the experimental results (maximum diameter 
of TNMs characterized from scanning electron microscope images) 
to the predictions from the empirical value ("exploration data", ob-
tained from linear regression of experimental results) and machine 
learning. Seven different test conditions are randomly chosen from 
our dataset for comparison. Apparently, the empirical prediction is 
far from satisfactory, whereas prediction from the machine learning 
algorithm has a better fit with experimental results. 

Fig. 3a shows the maximum diameter of TNMs obtained by ex-
periments and machine learning prediction from each iteration. 
Apparently, at the beginning of the loop, the actual test value is 
distinct from prediction. The poor prediction at the beginning is 
understandable as the dataset is small. It has been widely approved 
that, with a large dataset, machine learning can precisely predict 
material property under certain conditions [41]. If we only need to 
predict material property, traditional machine learning is a perfect 
tool for prediction when sufficient data is collected. But this is not 
the optimal strategy in our case as we are aiming at optimizing 
TNMs by fewer experiments (i.e., higher efficiency). Thus, we start 
applying the GBRT methodology with a small amount of data and 
predicting the potential optimal parameters. Therefore, it is in-
evitable that the accuracy of the initial fitted model is low with high 
bias or uncertainty. Given the circumstance, the performance of the 

Fig. 2. (a) Diagram shows effective experimental features surrounded by cut-off points. (b) Experimental comparisons of exploration data and machine learning data showing that 
machine learning can provide more reliable guidance. 
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GBRT model is not ideal with low regression score R2 (Fig. 3a) at the 
beginning. Then we carry out experiments and update the training 
dataset iteratively. After each training loop, the collected new data 
replenish the training data for a better regression and design (Fig. 1). 
And with more data updated in each iteration, the R2 value of the 
GBRT model increases to 0.78, which is apparently no perfect for the 
machine learning algorithm. But giving our dataset is small (only 158 
samples for the GBRT model in the last loop, ESI†), the increment of 
R2 with the growing amount of training data proves that the GBRT 
model's accuracy can be improved with the increasing amount of 
training data. More importantly, with the help of active learning, the 
tested maximum diameter of TNMs from each iteration escalates 
with forecast until it reaches the plateau (~470 nm) after five 
learning loops. This is about a 34% increase compared to the be-
ginning value of ~350 nm. As the maximum diameter has reached a 
plateau, we did not keep carrying out more experiments. It is worth 
mention that even though we might obtain this optimal TNM after 
enormous experiments, we will not be able to confirm the obtained 
result is optimal owing to the complexity of bipolar chemistry. But 
with the classification model, which builds up experimental 
boundaries for each feature, we can affirm the extreme value is the 
optimal value. 

The scatter diagram in Fig. 3b compares the prediction results 
and actual measurements. All data points scatter around the diag-
onal, indicating high consistency between prediction results and 
actual measurements. Moreover, it also suggests that our model does 
not overfit the data. And the concurrence between prediction and 
result is reasonable. The illustration obtained by GBRT in Fig. 3c 
represents the importance of each experimental feature. Apparently, 
time is one of the essential features as nanotubes' formation requires 
a certain amount of time. But it is unnecessary to prolong reaction 
time over 5 h as the nanotube diameter reaches a plateau after 5 h 
(ESI† Fig. S6). It seems as if stirring speed has the least effect (feature 
importance is 3.65%) on the maximum nanotube diameter of TNMs. 
But it is crucial to the formation of TNMs. Under certain conditions, 
increasing stirring speed will lower the reaction current. A low 
stirring rate may cause high current flow because the solution dis-
sipates too slowly, and the temperature escalates. With the anodi-
zation current boosting, titanium foil consumes fast and eventually 
ruptures. On the contrary, when the stirring speed is too high, the 
stirring bar starts floating without stirring the electrolyte that the 
current boosts instantaneously and breaks the foil. 

Table S2(ESI†) compares the optimal experimental conditions 
from the initial and final loop. The optimal anodization is only 160 V, 
which is much lower than our expectation. Based on our previous 
researches and publications from the literature, nanotube diameter 
usually increases with anodization voltage within a certain range. 
Therefore, at the beginning of the learning loop, we expected the 
optimal anodization voltage to be higher than 200 V that we focused 

on increasing the applied voltage and avoiding destroying the tita-
nium foils at the same time. But the optimization results demon-
strate that we need to compromise anodization voltage with other 
parameters to obtain a wider gradient. It also shows that machine 
learning algorithms can efficiently analyze electrochemistry data, 
build experimental boundaries, and optimize materials manu-
facture. 

Characterization of optimal gradient TiO2 nanotubes 

Typical SEM images in Fig. 4a and S7a show self-organized na-
notubes integrated within one gradient sample which is obtained 
from the optimal parameters of bipolar anodization. The outer dia-
meter of TNMs boosts from ~27 to 470 nm (Fig. S7b) with nanotube 
length rises from 0.17 to 3.28 µm, and the nanotube wall thickens 
from ~5 to 22 nm (Fig. S7c), indicating the formation of gradient TiO2 

nanotubes with a wide diameter range. 

Application of TNMs for high-throughput study of Ag doping 

TiO2 nanotubes have been numerously employed as a platform/ 
vehicle for drug delivery, metal doping, and sensing. However, not 
much is known about how nanotube diameter affects the surface 
modification processes (e.g., silver doping, drug immobilization) 
owing to the diversity of TNs. Here, we apply optimal TNMs for a 
high-throughput case study of how nanotube diameter affects silver 
nanoparticles (AgNPs) doping (Fig. 4b) and the corresponding bac-
terial (Fig. 4c and d) and cell (Fig. 5) responses. We choose silver 
nanoparticle doping and its antibacterial application as a case study 
as it is a facile, easily visible, and verifiable method and we have 
strong expertise in this antibacterial field [14,42–46]. It is a good 
proof-of-concept demonstration of the machine learning algorithms 
as an effective method for accelerating materials manufacture, op-
timization, and high-throughput screening, paving the way for its 
broad applications. AgNPs are doped by electrochemical deposition 
and the high-resolution X-ray photoelectron spectroscopy (XPS) 
spectra presented in Fig. S8(ESI†) verified the existence of the me-
tallic form of doped AgNPs. Fig. 4b shows that the doping process 
retains the nanotubular structure of TNMs. The size and the amount 
of AgNPs increase with the growth of nanotube diameter, suggesting 
large-size nanotubes are more active in silver doping than small-size 
nanotubes. Besides, the doping is not even as more particles dis-
tribute at the top of the nanotubes. But some nanoparticles could be 
found within the nanotubes' interior surfaces, indicating the silver 
nanoparticles can deposit at any active spot. 

Fig. 4c and d represent biofilm formation after four hours culture 
of Gram-positive S. aureus and Gram-negative E. coli bacteria. A si-
milar attachment pattern could be found for those two bacteria. A lot 
of aggregated S. aureus (Fig. 4c) and E. Coli (Fig. 4d) bacteria anchor 

Fig. 3. (a) Effects of validation data on ML models for the maximum diameter (of TNMs), which converges as iteration increases. R2 represents that the performance of the GBRT 
model increases with the iteration number. (b) A comparison between the predicted and the measured maximum diameter of TNMs validates the GBRT model. (c) The importance 
of each experimental feature in GBRT. 
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on the small-size nanotubes. With the increment of nanotube size, 
the number of attached bacteria dramatically reduces that the 
number of adherent bacteria on the largest nanotubes has been 

highly suppressed, implying antibacterial property increases with 
nanotube diameter. Most of the adherent S. aureus cells are spherical 
and there is no significant difference in the morphology of adherent 

Fig. 4. (a) Top SEM images of opened TiO2 nanotubes captured from different locations on a single gradient sample, starting from the cathode edge to the anode edge of the TNMs. 
(b) SEM images of deposited silver nanoparticles captured at different positions on TNMs. (c, d) Typical SEM morphologies of attached S. aureus cells and E. coli cells on the silver 
nanoparticle deposited TNMs (4 h). 

Fig. 5. Fluorescence images (a) and statistic results (b, c) of MC3T3-E1 cells on silver gradients after 1-day and 3-day culture. *p  <  0.05 and **p  <  0.01 indicates the significant 
difference. 
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cells across the gradient. Likewise, most adherent E. coli cells 
maintain their rod-like shape. However, some ruptured morpholo-
gies (indicated by red arrows) could be observed, suggesting AgNPs 
can kill bacteria through membrane rupture [14]. 

We further investigate MC3T3-E1 cell adhesion and proliferation 
on the silver gradient. On day 1, attached cell number and cell size 
are highest on the smallest TNs region (3 mm: 106 ± 5.5 cells/mm2) 
and lowest on the largest TNs region (33 mm: 42 ± 7.3 cells/mm2), 
whereas there is no noticeable difference among TNs in the middle 
area of the gradient. After 3 days of culture, cell density boosts across 
the entire silver gradient compared to day 1. On the smallest TNs 
region, cell density escalates from 106 ± 5.5 cells/mm2 on day 1 to 
357.7 ± 28.1 cells/mm2 on day 3 without full confluence. The at-
tached cells in this region of the gradient display better spread 
morphology, with the spreading area enlarges from 531 ± 50.1 µm2/ 
cell on day 1 to 900 ± 66.0 µm2/cell on day 3. Cell density and size 
decrease with the increment of nanotube dimension that even 
though cell number at the largest TNs region increases from 
382 ± 19.4 µm2/cell on day 1 to 461 ± 22.5 µm2/cell on day 3, the 
proliferation rate is much lower compared to that of small-size TNs. 
Overall, TNMs present a promising platform for high-throughput 
studying of TiO2 nanotube-based materials. 

Conclusion 

In summary, we apply the active learning methodology to assist 
the optimal process of fabricating TNMs with a wide gradient. Results 
show that the DT model is well suited for the classification task to 
separate the cut-off points from valid data, building up the experi-
mental boundary conditions. GBRT model learns the data pattern and 
further guides innovative design and fabrication. With the help of 
active learning, only within several learning loops, we obtain the 
optimal TNMs with the widest gradient of 27–470 nm. High- 
throughput studying of silver gradient proves that TNMs are practical 
platforms for high-throughput screening/study of TiO2 nanotube- 
based materials. Herein, our results illustrate that machine learning 
algorithms provide an optimal criterion for guiding experiments in 
materials design/optimization. The optimal TNMs could be further 
utilized for thigh-throughput studying in biomedical devices, drug 
delivery, metal doping, photocurrent screening, corrosion resistance, 
photovoltaic cells, sensors, photoelectrochemical water splitting, and 
microfluidics fields. 

It should be noted that, as machine learning models' accuracy 
relies on data, a certain amount of data will be required to achieve 
acceptable model accuracy, i.e., the optimization process is either 
tedious or has low model accuracy. To avoid tedious experiments 
throughout the learning process, the empirical, experimental de-
signs from the beginning are crucial as the experimental data steer 
the model accuracy. Thereafter, a combination of a comprehensive 
understanding of the material fabrication mechanisms and appro-
priate machine learning algorithms can provide an efficient route for 
materials development. 
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