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Cancer cell motility and its heterogeneity play an important role in metastasis, which is responsible for death of 90% of
cancer patients. Here, in combination with a microfluidic technique, single-cell tracking, and systematic motility analysis,
we present a rapid and quantitative approach to judge the motility heterogeneity of breast cancer cells MDA-MB-231 and
MCF-7 in a well-defined three-dimensional (3D) microenvironment with controllable conditions. Following this approach,
identification of highly mobile active cells in a medium with epithelial growth factor will provide a practical tool for cell
invasion and metastasis investigation of multiple cancer cell types, including primary cells. Further, this approach could
potentially become a speedy (∼hours) and efficient tool for basic and clinical diagnosis.
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1. Introduction
As metastasis leads to the majority of human cancer-

related deaths, tumor dissemination, including invasion and
metastasis, is a great therapeutic challenge.[1,2] During tu-
mor cell metastasis, the sub-group cells must recognize the
extracellular matrix barrier and cross the barrier to achieve
distant proliferation.[3] In addition, cell motility has become
a strategy for anti-tumor invasion and metastasis.[4] There-
fore, cell subpopulation classification based on the motility
of cells will help to identify essential cells in tumor cell
metastasis. Due to the stimulation of epithelial growth factor
(EGF) as a growth factor that promotes cell movement,[5–7]

the cell subpopulations will change. Moreover, it has been
reported that cell heterogeneity together with microenviron-
ment heterogeneity are essential in cancer cell motility and
metastasis.[8] Studies have also suggested that, besides char-
acteristic phenotypes of tumor heterogeneity and other pheno-
types, highly motile invasive cells present great heterogeneity
in their motility.[9–11] In addition, the existence of heteroge-
neous cancer cells during the invasion process, e.g., leader
and follower cells, was proven by both in vivo and in vitro
experiments[12–14] and indicated that several related genes

and pathways are involved.[15,16] Therefore, an easily han-
dled quantitative characterization/classification approach for
tumor cell motility heterogeneity in 3D microenvironments[17]

could provide deeper insights into the differences between
cells within a tumor and promote highly mobile/invasive sub-
group cell identification in cancer invasion, metastasis, and
evolution. Although there are already some approaches to dis-
criminate various cell types[18] and their separations,[19] it still
remains a technical challenge to well characterize cell motility
heterogeneity and identify cell subgroups due to great com-
plexity in tumor cell heterogeneity and usually subtle differ-
ences among cells in each cell-line.

To identify sub-groups of cells with various mobility, we
combined a microfluidic chip inside a 3D microenvironment,
a cell-tracking technique, and an improved method to char-
acterize velocity auto-covariance (VACV) and power spec-
tra of tumor cells. Consequently, cell motility heterogene-
ity in a set of designed and easily controllable medium con-
ditions, i.e., an EGF-supplemented medium, were analyzed.
VACV and power spectra were effective factors to reveal cells
with higher migration persistence, which likely included high-
invasive leader cells[12,20] in collective cancer cell invasion.
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As a demonstration, we applied this method to quantify and
compare motility heterogeneity between high metastatic po-
tential MDA-MB-231 and low metastatic potential MCF-7
breast cancer cells.

2. Materials and methods
2.1. Cell culture

Human breast carcinoma MDA-MB-231 (China Infras-
truture of Cell Line Resource, Beijing, China) were cul-
tured in DMEM (GIBICO, Life Tech) supplemented with 10%
Fetal bovine serum (FBS). Breast cancer cell line MCF-7
(China Infrastruture of Cell Line Resource, Beijing, China)
was cultured in MEM medium containing 10% FBS and 0.01-
mg/mL insulin. All of the medium were containing 1% peni-
cillin/streptomycin (Corning). These cells are cultured in a
37-◦C incubator with 5% CO2.

2.2. Microchip fabrication and cell culturing in chip

Based on soft-lithographic technology, a polydimethyl-
siloxane (PDMS) chip in 300-µm depth was designed for in-
cubation of live cells on a microscope. As shown in Fig. 1(a),
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Fig. 1. The microfluidic chip structure and cell classification steps. (a) Struc-
ture hierarchical diagram of the polydimethylsiloxane (PDMS) microfluidic
chips. The PDMS scaffold (top layer) is bonded to a glass substrate (bot-
tom layer), forming three channels (middle layer) separated by two arrays
of micro-sized pillars (upper sides 200-µm long, bottom side 400-µm long,
and high 200 µm) that center spacing 400 µm. Tumor cells are injected into
the middle channel (7200-µm long and 3000-µm wide) with a collagen solu-
tion, which gelatinizes after incubation for 30 min at 37 ◦C and 5.0% CO2.
The two shoulder channels are supplied with culture medium pools in exper-
iments. This is also illustrated in the middle-right insert. Bottom-right insert
displays a representative photo of a microfluidic chip. (b) and (c) Images of
cell movement in collagen (scale bar, 50 µm) and trajectory diagram, respec-
tively. (d) and (e) Cell classification process diagram, based on VACV with
different persistent times (τp) of cells and power spectra, respectively.

the chip[8] consisted of three parallel PDMS channels on a
glass substrate, with four medium reservoirs on top. Two
micro-sized pillars arrays separated the side channels, where
media with various components could be added for mi-
croenvironmental control and exchange of nutrition/signaling
biomolecules. In experiments, the middle channel was used
for cell injection in the final density of 2 mg/mL and the
PH value of 7.2 Collagen I (Corning, #354236, U.S.A) ad-
justed by 1-mol/L NaOH (Fluka), which forms a 3D network
microenvironment[21] after gelatinization for 30 min at 37 ◦C.
Subsequently, two side channels were filled with medium or
medium containing the final concentration 25-ng/ml EGF, and
the entire chip was kept in an incubator with 5.0% CO2 at
37 ◦C during cell tracking.

2.3. Cell tracking

Cells were monitored in the bright-field mode by an
inverted fluorescence microscope Ti (Nikon, Tokyo, Japan)
with 20× objective. Time lapse videos were captured us-
ing a charge-coupled device (CCD) camera (HAMAMATSU,
MODEL C11440-22CU) head DS-Ri 1, and the interval time
is 2 minutes. Data collection and imaging analysis were per-
formed using the ImageJ (National Institutes of Health). The
acquired images were then processed with ImageJ first and
CellTracker[22] (Hungarian Academia of Sciences, Hungary)
to acquire the trajectories of individual cells in the x–y plane.
Therefore, the trajectories were the projections of the 3D mo-
tions, a simplified representation with the well characteristics
of the latter. The coordinates data were obtained in the semi-
automatic tracking model with two tunable parameters, the
maximal cell displacement and the cell diameter. The dis-
placement was chosen between 20 µm and 50 µm, and the
cell diameter was chosen between 20 µm and 40 µm, for dif-
ferent tracking cell, which will have better tracking effect by
changing the parameters multiple times.

3. Data analysis
3.1. Mean square displacement (MSD)

In order to quantify the differences, the average MSD
versus time trajectories is calculated for both cells as shown
in Fig. 2, and it is larger for MDA-MB-231 cells than MCF-7
cells in all respective media.

For a rough understanding of the ability of cells migra-
tion, we computed the MSD during a time-lapse of duration t,
and which is defined in Eq. (1)

d2
MSD (t) =

〈
(𝑟 (t)−𝑟(0))2〉 , (1)

where d2
MSD (t), 𝑟 (t), and 𝑟 (0) are, mean square displacement

at time t, the position-vector at time t, and the position-vector
at time 0, respectively. Because the cells move in the x–y
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plane, we could only record the x–y coordinates, the above
equation (1) is changed as follows:

MSD(τ) = (x(t + τ)− x(t))2 +(y(t + τ)− y(t))2 , (2)

where τ = n ·∆t and n = 1,2, . . ., and ∆t is the time interval of
each frame, and 〈· · · 〉 denotes averaging over time t.

3.2. Migration speed

After obtaining migratory trajectory, we could directly es-
timate corresponding velocity vectors by

𝑣 (t) =
𝑟 (t)−𝑟 (t−∆t)

∆t
, (3)

where 𝑟 (t) is the position-vector of the cell at time t and ∆t
is the time interval of each frame. According to Eq. (3), we
could calculate migration speed

v(t) =
√

v2
x (t)+ v2

y (t). (4)

3.3. Velocity auto-covariance function

On the basis of velocity vectors, the velocity auto-
covariance function is defined as follows:

Vacv
(
tlag
)
=
〈
𝑣 (t) ·𝑣

(
t + tlag

)〉
, (5)

where tlag = ℓ ·∆t is the time lag between any two velocity vec-
tors calculated from one migratory trajectory. Symbol 〈· · · 〉
denotes averaging over time t for individual cell.

3.4. Cells classification based on VACV

After obtaining the relationship between the velocity
auto-covariance function and time, we have found that there
are two kind of exponential decays of auto-covariance func-
tion, one is bi-exponential decay, another mono-exponential
decay for the same type of cells in same micro-environment.
To determine which decay mode the velocity auto-covariance
function obeys, we take a few steps as follows: first, fitting ex-
perimental velocity auto-covariance function of all cells with
Eqs. (6) and (7)

Vacvd (t) = ae−t/P1 +be−t/P2 ,

if t = 0 ·∆t, Vacvd (t) = ae−t/P1 +be−t/P2 +2 ·σ2
pos,

if t = 1 ·∆t, Vacvd (t) = ae−t/P1 +be−t/P2 −σ
2
pos, (6)

Vacvs (t) = ce−t/P,

if t = 0 ·∆t,Vacvs (t) = ce−t/P +2 ·σ2
pos,

if t = 1 ·∆t, Vacvs (t) = ce−t/P−σ
2
pos, (7)

and obtaining motile parameters
{

a,P1,b,P2,σ
2
pos,Resd

}
and{

c,P, σ2
pos,Ress

}
, respectively (the meaning of these parame-

ters is given in Table 1), second, setting thresholds of phys-
ical quantities computed from parameters derived from fits

of velocity auto-covariance function, then, according to these
thresholds, classifying population of cells into two types (the
detail process is given in Table 2). If velocity auto-covariance
function of individual cell obeys bi-exponential decay, we
called this cell as active cell, otherwise, we called normal cell.

Table 1. The meaning of the obtaining motile parameters.

a,b,c are constant coefficients, they quantify the weight of each
decay mode.

P1, P2, P are called persistent times, which reflect the memory in-
tensity of the current velocity of the cell over the past, the subscripts
“1” and “2” correspond to the first and second decay modes in the
case of double exponential decay.
σ2

pos is called localization error
Res are residuals, which reflect differences between experimental
and fitted values.

Table 2. The thresholds of physical quantities.

Step 0 removing the erroneous trajectory

Step 1 if P1<1.0or
P1−P2

P1
< 0.2, mono- exponential

Step 2 if
∣∣∣∣Resd−Ress

Ress

∣∣∣∣> 0.005
and Resd<Ress, bi-exponential

else, mono- exponential

Step 3 if
∣∣∣∣Resd−Ress

Ress

∣∣∣∣< 0.05
and, log10

(a
b

)
<−2, mono-exponential

else, bi-exponential

3.5. Power spectrum

Due to the highly correlation of values of auto-covariance
function in time, a least-squares fit to those data does not return
reliable estimates, what’s more, fits of VACV function cannot
return migration speeds of cells. However, the power spectrum
can be decoupled from time and not only return persistent time
P but also return the speed of cell migration, thus a fit to power
spectrum can make up the defect and return reliable values.

According to Wiener–Khinchin theorem, the power spec-
trum of velocities of cell migration is the Fourier transforma-
tion (FT) of the velocity auto-covariance function. There is a
definition of discrete FT as follows:

𝑣k = ∆t
N

∑
j=1

e i2π fkt j𝑣 j = ∆t
N

∑
j=1

e i2πk j/N𝑣 j, (8)

where fk = k ·∆ f , ∆ f = 1/tmsr, tmsr = N ·∆t, k = 1,2 . . . ,N/2,
∆t is the time interval of each frame, N is the total steps in the
tracking trajectory. Thus

Pu ( fk) =
〈|𝑣k|2〉

tmsr

=
(∆t)2

tmsr

N

∑
j1=1

N

∑
j2=1

e
i2π fk(t j1−t j2

) 〈
𝑣 j1 ·𝑣 j2

〉
. (9)

On the basis of velocity vectors derived from cell trajectories,
we could compute experimental power spectrum that fitted by
maximum likelihood method (See Supplementary material for
detail) using above Eq. (9).
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4. Results and discussions
4.1. EGF enhances the motility difference between high

metastatic MDA-MB-231 cells and low metastatic
MCF-7 cells

In order to study the motility of high-metastatic MDA-
MB-231 cells and low-metastatic MCF-7 cells, the individ-
ual cell trajectories and the changes of MSD over time can be
used to illustrate the average motility of the two types of cells
[Fig. 2(b)]. Both the broader migration range and larger MSD
of MDA-MB-231 cells (See Supplementary material, Fig. S1)
clearly show the higher motility of this metastatic breast can-

cer cell line. In addition, the motility of MDA-MB-231 cells
is significantly improved by the addition of EGF [Fig. 2(c)],
which EGF is a growth factor that can induce tumor cell in-
vasion. It is noteworthy that uniform EGF environment was
constructed by introducing medium of the same concentra-
tion into the channels on both sides of the chip, which ef-
fectively avoided cell movement caused by EGF gradient.[23]

Obviously, the average speed of MDA-MB-231 cells is raised
in the presence of EGF, while the change of MCF-7 cells is
almost unobservable, in consistent with their metastatic po-
tential.
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Fig. 2. Motility of the two breast cancer cell lines. (a) Trajectories of MDA-MB-231 breast tumor cells show a larger range of motion after EGF addition.
(b)The average MSD vs. time for MDA-MB-231 cells and MCF-7 cells in EGF- and EGF+ medium conditions. (c)The speed histograms of MDA-MB-231
and MCF-7 cells in two medium conditions.

The velocity power spectrum is the Fourier transform
of the VACV function, and is uncorrelated between various
frequencies,[24] so is better for the quantification of cell motil-
ity and comparison. To determine factors in cell migration fac-
tor contributing to the high mobility of MDA-MB-231 cells,
VACV and power spectrum of each cell is analyzed in de-
tails. Figure 3 illustrates the average VACVs and power
spectra of two cell-lines in two medium conditions. Specifi-
cally, EGF addition differentiates the average VACVs between
MDA-MD-231 and MCF-7 cells. For MDA-MB-231 cells,
the average VACVs remains positive until 20 min in EGF-
supplemented medium [Fig. 3(b)]. For MCF-7 cells, the aver-
age VACVs is approximately zero for two medium conditions
[Figs. 2(a) and Fig. 2(b)]. This reflects the larger persistence
time for MDA-MD-231 cell migrations, indicating it as an ap-
propriate parameter to highlight the diverse mobility between
these two cell-lines.

To further confirm and quantify the persistent time dif-
ference, velocity power spectra are analyzed. As displayed
in Figs. 3(c) and 3(d), the average power spectra of two cell-
lines demonstrate significant differences. At the low frequency
region, i.e., < 0.02 min−1 (corresponding to long persistent
time), power is higher for MDA-MB-231 cells, and the differ-

ence is enhanced with EGF addition. In contrast, the velocity
power for MCF-7 cells shows limited changes with EGF ad-
dition and stays at a low level in the whole frequency region
analyzed. Therefore, both VACV and power spectra well char-
acterize distinct persistence in migration between two cell-
lines. Moreover, they also showed that MDA-MB 231 cells
were more active than MCF-7 cells.
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Fig. 3. Velocity auto-covariance (VACVs) and power spectra of two breast
cancer cell-lines. (a) and (b) Average VACVs of MDA-MB-231 (blue) and
MCF-7 (red) cells in two medium conditions, as indicated. The dashed line
refers to t = 20 min. (c) and (d) The corresponding power spectra of MDA-
MB-231 (blue) and MCF-7 (red) cells. Higher power in the low frequency
part of the spectra is found for MDA-MB-231 cells in two medium condi-
tions, and its highest power spectrum is found in EGF+ medium. The dashed
line highlights the frequency of 0.02 min−1, which is referred to as the low
frequency region in the discussion.
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4.2. There are subpopulations in each cell line showing dif-
ferent migration modes

Above results clearly display differences in motility by
average between two cell lines. It is necessary to analyze the
VACV of single cells to look into the details in their motil-
ity variations. At the individual cell level, persistence displays
great heterogeneity, which could be used as a characteristic for
cell mobility heterogeneity. In contrast to clear differences in
average trajectories, significant overlap in VACV and power
trajectories of individual cells smears the difference between
cell-lines. Even for the same cell line, these trajectories from
various medium are also overlapping. Nevertheless, we be-
lieve that the broad distributions of VACV and power spectra
for individual cells could become one of the aspects to char-
acterize heterogeneous cell mobility. Analysis of individual
VACV trajectories reveals two behavioral types. Some VACV
trajectories could be well fitted by mono-exponential decay,
and the others are better fitted by bi-exponential decay (see
data analysis section for detailed fitting protocol).
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fitting curves (solid lines). (c) and (d) Comparison between active and nor-
mal cells in EGF+ medium: average VACVs of active cells (red or blue)
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for MDA-MB-231 and MCF-7 cells, respectively. (e) and (f) Corresponding
power spectra for MDA-MB-231 and MCF-7 cells. These VACVs and power
spectra show similar trends for normal cells of both cell-lines.

Figures 4(a) and 4(b) present typical mono- and bi-
exponential VACV trajectories, where bi-exponential trajec-
tories display an additional component with a persistent time
longer than that for mono-exponential trajectories. According

to this aspect, individual cells are categorized into two sub-
groups: normal cells (mono-exponential VACV) and active
cells (bi-exponential VACV). The general steps of cell subpop-
ulation separation are shown in Figs. 1(b)–1(e). Normal cells
show a fast decay to zero in their average VACVs, regardless
of cell-line [Figs. 4(c) and4(d)]. In contrast, average VACVs
remain positive for ∼ 20 min and ∼ 10 min for active groups
of MDA-MB-231 and MCF-7 cells in EGF+ medium, respec-
tively. Furthermore, the average power spectra [Figs. 4(e) and
4(f)] for normal cells from both cell-lines remain at a low level
over the whole frequency range, while those for active cells
are well separated from normal cells with significant higher
power in the low frequency region (i.e., < 0.02 min−1). Sim-
ilar trends in average VACVs and power spectra for each cell
group have been obtained for other medium, regardless of cell-
lines (See Supplementary material, Fig. S3). This validates the
above categorization of cell subgroups by persistence hetero-
geneity.

4.3. The heterogeneity in motility positively correlates to
the invasive potential of the two cancer cell lines

To further verify cell categorization and to characterize
migration persistence, the power spectrum of each cell is fitted
following the reported protocol[24] (See Supplementary mate-
rial, Fig. S4). Figures 5(a)–5(c) and 5(d)–5(f) show histograms
of persistent time from power spectra fitting for MDA-MB-
231 and MCF-7 cells in EGF+ medium, respectively. Clearly,
persistent times for normal cells demonstrate similar narrow-
ranged distributions within the experimental time resolution
(2 min), irrespective of cell types. This suggests a similar lim-
ited memory in the motion of these cells. For active cells,
two distinct persistent times are identified. The other persis-
tent time P2 (See Supplementary material, Fig. S5) is longer
and indicative of “active” cells, i.e., advancing much further
with a better persistence than normal cells. Consequently, the
migration mode of P2 is expected to contribute significantly to
the higher motility potential of invasive cancer cells. These
results demonstrate that aforementioned classification of cells
into two subgroups is a successful step toward clarifying their
mobility heterogeneity.

Next, we investigated differences in subgroup ratios be-
tween the two cell-lines. Figure 5(g) illustrates that active
cells generally occupy at least 40% of the overall cells in two
medium conditions. The ratio of active cells (ract) is con-
sistently higher for high-invasive MDA-MB-231 cells in all
tested medium, i.e., ract close to or above 60%. In addition, the
ract (> 70%) for MDA-MB-231 cells in EGF-supplemented
medium is higher than (∼ 60%) without EGF. In contrast, the
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ract is only around 40% for MCF-7 cells and does not rise upon
EGF addition. Furthermore, in EFG+ culture medium, more
cells in the MDA-MB-231 active subgroup possess a P2 longer
than 10 min [Figs. 5(c) and 5(f)]. This suggests ract as a good
quantitative parameter for mobility heterogeneity among each
cell line. Additionally, it quantifies differences in persistence
time between these two cell-lines.
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Fig. 5. Persistent time of cells in EGF+ medium with and ratio of active
cells. (a)–(f) Histograms of persistence times from maximum likelihood es-
timation fitting of power spectra for MDA-MB-231 (blue) and MCF-7 (red)
cells: (a) and (d) persistent time of normal cells, (b) and (e) short persistent
time component of active cells, (c) and (f) long persistent time component of
active cells. (g) Ratio of active cells in four media types for MDA-MB-231
(blue) and MCF-7 (red) cells.

Reasonably, ract could be positively correlated to the
metastatic potential of cancer cells, potentially making it a use-
ful reference. It has been reported that in collective invasion of
MDA-MB-231 cells, leader and follower cells co-exist.[12,25]

The leader cells are expected to possess higher motility and
better directionality in comparison to follower cells. Obvi-
ously, better persistence increases the chance of tumor cells to
migrate further from the original site, and thus extraordinarily
mobile leader cells are likely to evolve from the active cell sub-
group. In this way, cancer cell heterogeneity in migration per-
sistence could significantly influence invasion processes, and
thus the ratio of active cells (ract) is an essential indicator. At
the same time, the above approach to obtain the ratio ract has
the following advantages: (i) while it evaluates mobility and
heterogeneity of cells, ract focuses more on active cells with
a large migration persistent time, i.e., potential leader cells in
collective invasion; (ii) ract provides a relative scale from 0
to 100% that could be useful in comparison across cell-lines
and types; (iii) the absolute ract is independent of other cells;
(iv) acquisition of ract is fast (as short as 4 hours), in contrast
to no less than 24 hours in conventional methods to evaluate
cancer cell invasiveness; (v) the approach could identify ac-
tive cells while keeping them alive for further investigations,
including, but not limited to, the molecular mechanisms (e.g.
cell contractive force, cell adhesion to collagen, secreted pro-
tease, etc.) of cancer cell invasion,[16,26–28] impact of phys-

iological conditions, and environmental factors (e.g. growth
factor gradient, matrix fiber orientation, etc.[29,30]

5. Conclusion
In order to quantify the motility of breast tumor cells

and identify the subgroup of more mobile cells (potentially
high invasive) for cancer metastasis investigation and future
clinic application, we developed a rapid and unique approach
in combination of the microfluidic chip, 3D tracking analysis
and cell sub-group identification to distinguish the higher inva-
sive MDA-MB-231 and the low invasive MCF-7 cells by their
motility and heterogeneity. Significant heterogeneity among
the motility of individual cells in each cell group is success-
fully quantified by the ratio ract of active cell subgroup iden-
tified with our approach. It turns out that the EGF is a good
promoter to differentiate active cells from normal cells and en-
hances the ratio ract of high-metastatic potential cells, but not
low- metastatic potential cells. The higher population of active
MDA-MD-231 cells together with its much enhanced motility
and persistence, are positively correlated to the high invasive-
ness of MDA-MD-231 cells in contrast to MCF-7 cells. Thus,
the method of identify active cell population, ract, in an EGF+
media introduces a new, rapid and effective way to evaluate
the invasive potential of cancer cells. In addition, the separa-
tion of active motile cells from normal cells also provides a
well-defined approach for cancer invasion and metastasis in-
vestigation. We believe that the above approaches may apply
to primary tumor cells in clinics and potentially provide physi-
cians with a quantitative reference.
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