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Enhanced vibrational resonance in a single neuron with chemical
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Many animals can detect the multi-frequency signals from their external surroundings. The understanding for under-
lying mechanism of signal detection can apply the theory of vibrational resonance, in which the moderate high frequency
driving can maximize the nonlinear system’s response to the low frequency subthreshold signal. In this work, we study
the roles of chemical autapse on the vibrational resonance in a single neuron for signal detection. We reveal that the vi-
brational resonance is strengthened significantly by the inhibitory autapse in the neuron, while it is weakened typically by
the excitatory autapse. It is generally believed that the inhibitory synapse has a suppressive effect in neuronal dynamics.
However, we find that the detection of the neuron to the low frequency subthreshold signal can be improved greatly by the
inhibitory autapse. Our finding indicates that the inhibitory synapse may act constructively on the detection of weak signal
in the brain and neuronal system.

Keywords: neuronal dynamics, autapse, vibrational resonance, synchronization, time delay

PACS: 87.19.lj, 05.45.Xt, 87.19.lm DOI: 10.1088/1674-1056/abb7f9

1. Introduction

The multi-frequency signals are prevalent and act an im-
portant role in biology.[1–3] For hunting and communication,
many animals can receive and send out signals with differ-
ent amplitudes and frequencies. For instance, the high fre-
quency signal with a low frequency envelope is more common
in the weakly electric fish who communicates with electric sig-
nal with a high frequency about 500–1000 Hz, while the low
frequency signals (< 20 Hz) are resulted from external envi-
ronment and small prey items. These signals can be sensed by
the electroreceptors located on the skin surface, which is im-
portance for the fish’s electro-communication, navigation, and
electrolocation.[4] Middleton reported a high frequency signal
compounded by a low frequency envelope transmission in a
electrosensory system,[5] and the response of the pyramidal
cell to a high-frequency signal with the social envelope has
also been investigated in weakly electric fishes.[6] To under-
stand how animals succeed in getting the useful information
from the hybrid signals, the neuronal system responding to the
high frequency signal with a low frequency envelope has been
widely investigated.

Indeed, the detection of weak signal is a challenging
task,[7,8] because weak signal may be concealed easily by
noise. However, the finding of stochastic resonance shows

that noise can improve greatly the detection of subthreshold
signal in many nonlinear systems.[9,10] Similar to the role of
noise in stochastic resonance, the high-frequency signal has
a similar effect.[11–13] The response of a system to the sub-
threshold signal with a low frequency can be amplified by the
optimal amplitude of the high-frequency signal. This phe-
nomenon was first observed in 2000, and is called a vibra-
tional resonance.[11] Since multi-frequency signals are ubiqui-
tous in many fields, vibrational resonance has been intensively
investigated also.[14–18] The vibrational resonance has been
discussed in the CA1 neuron model[19] and the relationship
between vibrational resonance and phase locking in Hodgkin–
Huxley model was investigated.[20] It is of great significance
to understand the detection of a weak signal in a nonlinear sys-
tem, and so the effects of stochastic resonance and vibrational
resonance have been widely investigated and analyzed in the
single neuron[21–23] and the neuronal networks.[24–29]

As a major structural connection in neuronal systems,
synapses also play an extraordinary effect in information prop-
agation, which are classified into electrical synapse and chem-
ical synapse. Autapse, as a special synapse, has been found
originally in neocortex by Van der Loos and Glaser in 1972.[30]

The autapse, which connects a neuron to itself by a branch of
its own axon, has been evidenced in the cerebellum, striatum,
hippocampus, and neocortex.[31,32] Since then, many studies

∗Project supported partially by the National Natural Science Foundation of China (Grant Nos. 11675112, 11705116, 11675134, and 11874310) and the National
Natural Science Foundation of China for the 111 Project (Grant No. B16029).
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have revealed that the autapses have a significant impact on
brain functions. For example, Bekkers found that the excita-
tory autapses can maintain persistent electrical activity in the
cerebral cortex.[33] The artificial GABAergic autaptic conduc-
tances can enhance the precision of firing time in pyramidal
neurons,[34] and elevate the threshold of evoking action po-
tentials to inhibit the repetitive firing.[35] As a fact, a plethora
of interesting phenomena have been found with the effect of
autapse in the neuronal networks.[36–48]

In this work, motivated by the biological function of au-
tapse mentioned above, we study the effects of autapse on
the response of a single neuron to external multi-frequency
signals. Similar work about the effect of autapse on signal
transmission in the neuronal network was discussed in our
paper.[49] We here are interested in the problem how the in-
hibitory autapse enhances signal detection and information
processing in a signal neuron? Thus, we will investigate the
effect of chemical autapse on vibrational resonance in a signal
neuron level. We show that the vibrational resonance can be
enhanced greatly by an inhibitory autapse for signal detection,
while weakened vibrational resonance is observed in the neu-
ron with an excitatory autapse. Such an observation contra-
dicts a popular view that the inhibitory synapse plays typically
a suppressive role in neuronal dynamics.[50,51]

The structure of the paper is as follows. In Section 2,
a mathematical model for a neuron with an autapse is intro-
duced, and a quantitative measurement for vibrational reso-
nance is also included. Section 3 presents the main numerical
results. Finally, Section 4 give our conclusions and discussion.

2. Model
To reveal the effect of autapse on the neuronal dynam-

ics, we will investigate vibrational resonance in the Hodgkin–
Huxley neuron model, the equations are written as[52]

Cm
dV
dt

= −(gKn4(V −VK)+gNam3h(V −VNa)

+gl(V −Vl))+ Iaut + I0 + Istimu, (1a)
dm
dt

= αm(1.0−m)−βmm, (1b)

dn
dt

= αn(1.0−n)−βnn, (1c)

dh
dt

= αh(1.0−h)−βhh, (1d)

where Cm is the cell capacitance, V represents the membrane
potential of neuron, gNa, gK, and gl correspond to the max-
imum conductances of the sodium, potassium, and leak cur-
rents, respectively. VK, VNa, and Vl stand for the potassium,
sodium, and leakage reversal potentials, respectively. I0 is a
stimulus current. Istimu = Acos(ωt)+Bcos(Ω t) is the multi-
frequency periodic signal, the frequency ratio N = Ω/ω . The
m and h are gating variables which control the activation and

inactivation of the sodium current, the gating variable n regu-
lates the activation of the potassium current. These dynamics
of the gating variables are controlled by the voltage-dependent
rates αx(V ) and βx(V ) (x = m,n,h), which read

αm =
0.1(V +40)

1− e−(V+40)/10 , (2a)

βm = 4e(−V−65)/18, (2b)

αn =
0.01(V +55)

1− e(−(V+55)/10) , (2c)

βn = 0.125e−(V+65)/80, (2d)

αh = 0.07e−(V+65)/20, (2e)

βh =
1.0

1+ e−(V+35)/10 . (2f)

The Iaut is an additional delayed stimulus which stands
for the self-feedback current. We only study the effect of the
excitatory chemical and inhibitory chemical autapse since it
was found in experiment. The electrical autapse is not con-
sidered in our work. Different models have been proposed to
simulate the chemical synapse, such as the fast threshold mod-
ulation (FTM) scheme,[53] the sigmoidal function model,[54]

and the exponential function model.[55,56] In the paper, we use
the chemical autaptic current with monoexponential functions
which is fitted by experimental data,[57] it is written as

Iaut =−G(t− τ)(V −Vsyn). (3)

Here G(t − τ) is the autaptic conductance function, τ rep-
resents the time delay, and Vsyn is the autaptic reversal po-
tential. For excitatory synapse, Vsyn is larger than the rest-
ing potential for generating an inward current. For inhibitory
synapse, Vsyn is close to potassium’s reversal potential.[55] As
a result, the values of Vsyn = 0.0 mV and Vsyn = −80.0 mV
for excitatory and inhibitory synapses are typically used in
research, respectively.[56,58] The equation of autaptic conduc-
tance is modeled as

G(t) = gsynα(t− tfire), (4)

with

α(t) =
t
td

e−
t

td , (5)

where tfire (∼ms) is the spiking time of the neuron, gsyn is the
maximum conductance of the autaptic channel, and the pa-
rameter td = 2.0 ms represents the decay time of the function.
Table 1 presents the values of the parameters in our model.

To determine the response of the neuron to a low fre-
quency signal, we calculate Q defined by

Q =
√

Q2
s +Q2

c ,

Qs =
2

nT

∫ T0+nT

T0

V (t)sin(ωt)dt,

Qc =
2

nT

∫ T0+nT

T0

V (t)cos(ωt)dt, (6)

where T = 2π/ω . We have chosen large values for the tran-
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sient evolution T0 and the average time T with n = 500.
Clearly, the signal transfer is optimized when the output fir-
ing is synchronized by the low frequency signal. Thus,
there is a very large value of Q when such a synchronization
occurs.[19,20] It is noteworthy that the value of Q is a propor-

tional function of the Fourier transform coefficient F(ω ′) at
ω ′ = ω (F(ω ′) =

∫ +∞

0 e−iω ′tV (t)dt). The advantage of cal-
culation of Q is that it is convenient and fast. As a fact, we
have also calculated the Fourier transform spectrum at ω , and
it does not change the results.

Table 1. Parameter values.

Parameter Description Value

Cm cell membrane capacitance 1.0 mF/cm2

gNa the maximum conductance for sodium 120.0 mS/cm2

gK the maximum conductance for potassium 36.0 mS/cm2

gl the maximum leakage conductance 0.3 mS/cm2

VK the reversal potential for potassium −77.0 mV
VNa the reversal potential for sodium 50.0 mV
Vl leakage reversal potential −54.0 mV
I0 the constant stimulus current 1.0 µA/cm2

Vsyn the autaptic reversal potential 0.0 or −80.0 mV
τ time delay 0–10 ms

gsyn the maximum conductance of autaptic channel 0–6 mS/cm2

A the amplitude of weak signal 1.0 µA/cm2

B the amplitude of high-frequency force 0–600 µA/cm2

ω the frequency of weak signal 0.5 ms−1

Ω the frequency of high-frequency force 0.6–10 ms−1

3. Results
First, we investigate the effect of chemical autapse on the

response of a single neuron to the low frequency signal. Fig-
ures 1(a) and 1(b) illustrate the value of Q versus B with ex-
citatory and inhibitory autapse and without autapse. For the
rows from top, middle to bottom, Ω = 1.5,3

√
3, and 10.0, re-

spectively. For the columns from left to right, τ = 2.0 and 5.0,
respectively. In the paper, gsyn = 0.0 indicates non-autapse.
One can see that Q increases with increasing amplitude B and
then decreases after reaching to a maximum, indicating clearly
the phenomenon of vibrational resonance. Interestingly, we

find that the values of Q for the neuron with inhibitory autapse
become larger than those without autapse, and the resonance
windows for the optimal value of B with Q > 25 get wider,
and the optimal response window for vibrational resonance is
shifted to the higher values of B. The inhibitory autapse can
enhance the response of the neuron to the low-frequency sub-
threshold signal [Fig. 1(a)]. Whereas the value of Q is very
small for the excitatory autapse (solid green circles). From
these figures, one can also find that the strengthening effect
of inhibitory autapse on vibrational resonance is general, no
matter what value of the frequency ratio N = Ω/ω is.
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right columns, τ = 2.0 and 5.0, respectively. Here, gsyn = 5.0.
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To compare globally the deferent effects of excitatory au-
tapse and inhibitory autapse on vibrational resonance, the de-
pendency of Q on amplitude B and time delay τ is shown for
excitatory and inhibitory autapses in Fig. 3, where the color
wine represents the occurrence of vibrational resonance with
large value of Q (i.e., Q > 25). From the series of V (t) of neu-
ron without autpase in Fig. 2, we find Q> 25 (Q= 16.76 when
B = 14.5, Q = 29.49 when B = 16.) stands for the situation
that the spiking of the neuron is synchronous with the low-
frequency signal. In the paper we suggest that Q > 25 stands
for the situation that the information of the low-frequency sig-
nal can be detected. From Fig. 3, the multiple vibrational reso-
nance which depends sensitively on τ and B is observed clearly
for neurons with excitatory or inhibitory autapse. Comparing
any three subfigures in each row, however, we find that the size
of resonance region which is marked by wine is much bigger
for the neuron with the inhibitory autapse than that with the
excitatory autapses, showing a stronger response of the neu-
ron with inhibitory autapse to the low frequency signal. Fur-
thermore, we find that the size of the wine region decreases
with increasing gsyn for the excitatory autapses, indicating that
vibrational resonance is not favored with excitatory autapses.
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Fig. 2. (a)–(b) Time series of V (t) of neuron without autapse (gsyn = 0.0)
for B = 14.5 and 16, respectively. ω = 0.5 and Ω = 1.5.
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To gain a deeper understanding of the inhibitory-autapse-
enhanced vibrational resonance, figure 4 presents the depen-
dence of Ti, which is defined as the inter-spike interval as a
function of B, for inhibitory (Figs. 4(a)–4(c)) and excitatory
autapses (Figs. 4(d)–4(f)). For the columns from left, middle,
to right in Fig. 4, gsyn = 0.4, 2.0, and 5.0, respectively. From
these figures, one can find that Ti is multi-valued, indicating
aperiodic spiking activities. We have checked carefully the

data of Ti, but could not find period doubling or expansion with
parameter changes. We can observe clearly that some period-
ical synchronization states occur for excitatory and inhibitory
autapses with ω/ω ′ = 1 : 1 or 3 : 2, where ω ′ is defined as the
frequency of spiking. Interestingly, comparing the three sub-
figures in each row with increasing gsyn, the periodic synchro-
nization window for ω/ω ′= 1 : 1 (i.e., frequency synchroniza-
tion) gets longer for the neuron with the inhibitory autapse,
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while such frequency synchronization is destroyed for the neu-
ron with excitatory autapse. The figures in the middle column
show that Ti decreases tardily to T (T = 2π/ω = 12.56) with
increasing B, which results in the synchronization of the neu-
ron with low-frequency subthreshold signal in the resonance
interval.

Further, we show the dynamical phase diagrams on the
(B,τ) space for excitatory (Figs. 5(a)–5(c)) and inhibitory
(Figs. 5(d)–5(f)) autapses with gsyn = 0.4,2.0, and 5.0 respec-

tively. Based on the observation of spiking, the neuron exhibits
three primary features: non-exciting state (NE), aperiodic state
(AS), and phase locking state (PL). In Fig. 5, the green region
corresponds to AS state, the gray region stands for NE state in
which the potential V (t) fluctuates around a steady state, and
the PL states for ω/ω ′ = 3 : 2,3 : 4,1 : 2, and 1 : 1 (frequency
synchronization) are marked by dark cyan, pink, yellow, and
wine, respectively. The other ratios are marked by orange.
Comparing Fig. 5 with Fig. 3, one can find that the regions
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with high value of Q (wine region) are almost the same as
those of frequency synchronization, which can be enhanced
by the inhibitory autapse, and depend on τ and B. This result
suggests that the strengthening effect of inhibitory autapse on
vibrational resonance results from the frequency synchroniza-
tion.

Then, we explore the effect of the maximum conductance
of autapse gsyn on the size of the synchronization region in
(B,τ) space with the rational or irrational ratio of Ω/ω . To
quantify the synchronization region, we introduce a normal-
ized scaling factor R = SFS/S, where SFS stands for the area
of the synchronization region, and S represents the total area
of (B,τ) space with [0,80]× [0,10] (a), [0,200]× [0,10] (b),
and [0,600]× [0,10] (c), respectively. The results are shown
in Fig. 6 for Ω = 1.5, 3

√
3, and 10.0. For excitatory autapse,

R decreases to a small value with the increase of gsyn. Thus,
the strong excitatory autapse does not favor the frequency syn-
chronization. Differently, R holds on a large value for the arbi-
trary autaptic weight gsyn. The strengthen effect of inhibitory
autapse on frequency synchronization is verified again.

Finally, we focus on the regions with a large Ω , and
discuss the effects of frequency Ω on vibrational resonance
and frequency synchronization for the neuron. Figures 7(a)
and 7(b) give the normalized scaling factor R as a function
of ratio N = Ω/ω for gsyn = 2.0 and 5.0, respectively. As
shown in Fig. 7, multiple peaks of factor R are located at inte-
ger numbers for excitatory and inhibitory autapses, suggesting
that there exists a resonance to the high-frequency force at the
driving frequency. One can also find in Fig. 7 that the values of
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peaks for the inhibitory autapse are larger than those for the ex-
citatory autapses at the special frequencies with integer num-
ber. Besides these peaks, with the increase of N, the envelope
of R for the inhibitory autapse increases when N is over a criti-
cal value, while R for the excitatory autapse vanishes. One also
finds inhibitory autapse enhanced vibrational resonance for the
large ratio N. Figures 7(c)–7(h) show the two-dimensional
contour plots of Q as a function of B and N with inhibitory
autapse (Figs. 7(c)–7(e)) and excitatory autapse (Figs. 7(f)–
7(h)), respectively. From these figures, the strengthened vi-
brational resonance can also be observed for the arbitrary Ω

with inhibitory autapses, while the weakened effect of excita-
tory autapse on the vibrational resonance can be verified for
the general and incommensurable frequency Ω , and the VR
with sensitive frequency dependence is justified.

4. Conclusions
We studied in detail the effects of excitatory and in-

hibitory autapses of a single neuron on the response to the
multi-frequency signal. The vibrational resonance can be ob-
served in such a neuron with different autapses, and sensi-
tively depends on system’s parameters. Surprisingly, the res-
onance response of the neuron with an inhibitory autapse be-
comes stronger than that without autapse. The resonance win-
dow gets wider with the inhibitory autapse, while the reso-
nance region is reduced with the excitatory autapse. Thus the
vibrational resonance is enhanced by the inhibitory autapse,
indicating a strengthened detection of the neuron to the low-
frequency signal.

The phase-locking is one of the best known phenom-
ena in the nonlinear system with periodic stimulus. It has
been shown that the vibrational resonance can be induced by
phase-locking modes in the excitable system.[20] The vibra-
tional resonance closely relates with the frequency matching
relationship between the neuron with low frequency signal,
which is called phase-locking induced vibrational resonance.
We find that the inhibitory autapse can achieve 1 : 1 phase-
locking mode, which leads to the enhanced vibrational reso-
nance. However, the strong excitatory autapse exterminates
the 1 : 1 phase-locking mode. The enhancement of vibrational
resonance by the inhibitory autapse is of great interest and may
be helpful for us to understand the dynamics of biological sys-
tems. Our results present a method to effectively detect the
low-frequency signal for neurons with autapse.

The autapse has been found in 80% of cortical pyrami-
dal neurons.[59] The biological function of autapse has at-
tracted many researchers’ interest and has been extensively in-
vestigated. For example, the self-adaption to stimulus can be
strengthened by the autapse which is formed due to the contri-
bution of the injury of the neuron.[60] The bursting oscillation
can be inhibited by the autapse, indicating the improvement of

the adaptive ability of neurons.[61] However, what is the role
of the autapse in the brain and neural systems is still not com-
pletely comprehended. Although the finding of inhibitory-
autapse-enhanced vibrational resonance is based on a purely
numerical study in the paper, the constructive role of inhibitory
autapse on neuronal dynamics, including the vibrational reso-
nances, may be expected to be observed in experiment.

Data availability statements
The data used to support the findings of this study are

available from the corresponding author on reasonable request.

References
[1] Maksimov A 1997 Ultrasonics 35 79
[2] Victor J D and Conte M M 2000 Vis. Neurosci. 17 959
[3] Gherm V, Zernov N, Lundborg B and Vastberg A 1997 J. Atmos. Sol.

Terr. Phys. 59 1831
[4] Heiligenberg W 1991 Neural Nets in Electric Fish (Cambridge: MIT

Press)
[5] Middleton J, Longtin A J B and Maler L 2006 Proc. Natl. Acad. Sci.

USA 103 14596
[6] Stamper S A, Fortune E S and Chacron M J 2013 J. Exp. Biol. 216 2393
[7] Wang G Y and Chen D J 1999 IEEE Trans. Ind. Electron. 46 440
[8] Modestino J W and Ningo A Y 1979 Trans. Inform. Theory. 25 592
[9] Wiesenfeld K and Moss F 1995 Nature 373 33

[10] Gammaitoni L, Hanggi P, Jung P and Marchesoni F 1998 Rev. Mod.
Phys. 70 223

[11] Landa P S and McClintock P V E 2000 J. Phys. A: Math. Gen. 33 L433
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