
November 10, 2020 16:15 WSPC S1793-2920 2030005

NANO: Brief Reports and Reviews
Vol. 15, No. 11 (2020) 2030005 (15 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793292020300054

Memristors: Understanding, Utilization and Upgradation
for Neuromorphic Computing

Mohanbabu Bharathi∗,‖, Zhiwei Wang∗, Bingrui Guo†, Babu Balraj‡,
Qiuhong Li§, Jianwei Shuai¶ and Donghui Guo,∗,∗∗

∗Department of Electronic Engineering
Xiamen University, Xiamen 361005, P. R. China

†Department of Applied Mathematics
Computer Science, University of California, San Diego USA

‡Department of Physics, NCHU University
Taichung City 402, Taiwan

§Pen-Tung Sah Institute of Micro-Nano Science
and Technology Xiamen 361005, P. R. China
¶Department of Physics, Xiamen University

Xiamen 361005, P. R. China
‖mohanbabu@xmu.edu.cn
∗∗dhguo@@xmu.edu.cn

Received 6 July 2020
Accepted 28 September 2020
Published 12 November 2020

The next generation of artificial intelligence systems is generally governed by a new electronic
element called memristor. Memristor-based computational system is responsible for confronting
memory wall issues in conventional system architecture in the big data era. Complementary
Metal Oxide Semiconductor (CMOS) compatibility, nonvolatility and scalability are the impor-
tant properties of memristor for designing such computing architecture. However, some of the
concerns, such as analogue switching and stochasticity, need to be addressed for the use of mem-
ristor in novel architecture. Here, we reviewed a number of important scientific works on mem-
ristor materials, electrical performance and their integration. In addition, strategies to address
the challenges of memristor integration in neuromorphic computing are also being investigated.
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1. Introduction

Contemporary computing systems are unable to
address the critical challenges of size reduction
and computing speed in the Big Data era.1 How-
ever, the same conventional systems are generally
used for day-to-day activities such as document
preparation, streaming audio and video and playing
games. These systems are essentially designed on
the basis of the von Neumann architecture method

and reformed in such a way that computers are
convenient to use for general purposes. However,
the restructured systems are highly incompetent
for intensive information processing. The von Neu-
mann bottleneck2 is referred to as a hindrance in
data transfer through the bus connecting proces-
sor and memory cell. Conversely, the memory wall
limitation of the von Neumann machine is highly
motivating recent research activities on alternative
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computing architectures. This gives an opportunity
to create alternative architectures based on a biolog-
ical neuron model. Neuromorphic computing3 is one
of such alternative architectures that mimic neuro-
biological brain architectures as a way out of the
von Neumann bottleneck.

The humanoid neural brain system comprises
approximately 100 billion neurons and numerous
synapses of connectivity.4 An efficient circuit device
is therefore essential for the construction of a neu-
ral network that mimics the human brain. Williams’
demonstration of the new memristor element in his
workroom gave rise to new possibilities for hardware
implementation in alternative architecture.5 The
development of memristor, with several distinctive
features such as scalability, in-memory processing
and CMOS compatibility, significantly facilitated
the implementation of neural network hardware.6–9

The basic electrical component memristor, which
is a two-terminal component, works as a nonlinear
resistor property along with the memory function.10

Memristor is a capable electronic component to find
applications especially for memory devices, logical
circuitry networks and neuromorphic systems. The
ability to memorize the current and current direc-
tion can be used effectively to reduce the size of the
device and increase the processing speed in neu-
ral networks.7 In addition, the memristor is used to
manufacture memory cells in the same processing
unit chip in the neural network. As in the cerebral
nervous system, parallel calculations are made with
the support of memristor devices in a novel com-
puting architecture.

This paper is presented as follows: Sec. 2 begins
with the notion of a memristor and its properties.
Neuromorphic computing is concisely discussed in
Sec. 3. Section 4 contributes to the various sig-
nificant behaviors of memristors in neuromorphic
applications. The challenges of integrating memris-
tor into neuromorphic computing are outlined in
Sec. 5 with promising strategies for augmenting the
network system. Suggestions for improved perfor-
mance of memristor devices have been illustrated
in Sec. 6. Finally, Sec. 7 explores the possibility of
harnessing the properties of memristor devices to
achieve a rapid computing system, such as a biolog-
ical computing method.

2. Memristor

The memristor was introduced as a “memory-
like resistor” where the background of the applied

Fig. 1. Symbol of memristor.

inputs (voltage or current) would alter the resis-
tance status of the device. Various curves of the
input applied produce a different dynamic response
and final resistance.7 In addition, if the input is
removed for some time, the device will restart the
operation from the last resistance state from where
it is left. In addition, the memristors often react to
the current direction, i.e., polarity. The memristor
symbol in the electronic diagrams as in Fig. 1 clearly
shows this polarity in the device. The interrelation
between response behavior and nonvolatility of the
system determines its usability as a storage device
or as a neuromorphic computer.9

A memristor, which is a passive component,
works like a nonlinear memory resistor. The fourth
key element memristor after resistor, capacitor and
inductor was theoretically anticipated in 1971.10

However, scientists in HP labs have demonstrated
the fabrication of devices with electronic properties
such as this memristor device.10,11 The novel elec-
tronic component is called memristor because it is
associated with both the resistor and the memory
function. The memory of past resistance history is
the most elementary function of this memresistance
device. The resistive switching mechanism raises the
application of the memristor device to neuromor-
phic computing.

The following list of new and established com-
panies is more involved in emerging device tech-
nology for memristors. Companies that we know
include Intel, Samsung, HP, IBM, IMEC, Fujitsu,
SMIC, Sharp, TSMC, NEC, Panasonic, Macromix,
Crossbar Inc., Qimonda, Ovonyx, KnowM, 4DS
Memories Ltd., Global Foundaries, Western Digi-
tal (previously called SanDisk), Toshiba, Macronix,
Nanya, NEC, Rambus, ST Microelectronics, Win-
bond, Adesto Technologies Corporation, HRL Lab-
oratories LLC and Elpida. This memory device
allows the storage of data with low resistance for
Boolean 1 and high resistance for Boolean 0. Resis-
tance switching from high to low is represented by
SET operation and RESET operation is considered
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Fig. 2. SET and RESET operation of TiO2 memristor.12

to be a transition from LRS to HRS. Figure 212

depicts the SET and RESET operation of the TiO2

memristor for a clearer understanding of the opera-
tion. Deep knowledge of the properties of memristor
is a prerequisite for exploring many physical mech-
anisms of device fabrication.

The memristor, as demonstrated by HP Lab,11

is a structure-like capacitance. The bilayer dielectric
titanium dioxide material is layered between two
platinum electrodes, as shown in Fig. 3. The bilayer
consists of doped TiO2−x and undoped TiO2. The
doped TiO2 layer has more positively charged ions
with oxygen vacancy. Thus, two different regions
of resistance are formed. The external voltage bias
is used to modify the region’s resistance. Oxygen
vacancy moves accordingly with the applied electri-
cal field, which at the same time shifts the boundary
between low and high resistance.13

The applied positive signal voltage moves oxy-
gen vacancy from the doped oxide region to the
undoped oxide region. As a result, the width of the
insulating layer decreases. Consequently, the con-
ductivity of the entire switch increases as shown in
Fig. 4.13 The conductivity of the device depends
on the positive voltage applied whereas the nega-
tive signal attracts oxygen vacancy and the insulat-
ing layer widens. The increased width of the insu-
lating layer makes the device less conductive. If

Fig. 3. Biased circuit of memristor.

Fig. 4. Movement of boundary for different biasing
voltages.13

the input signal is switched off, the boundary is
stationary due to no migration of vacancies. The
conductance/resistance of the device is therefore
constant. Thus, memristor remembers the voltage
applied or its resistance.

After restarting the charge flow in the circuit,
the memresistance begins to change. These char-
acteristics need to be discussed more clearly in
order to understand the memristor device. Multi-
state resistance properties are therefore commonly
understood by studying the characteristic curve of
I–V . The I–V study is performed by applying volt-
age sweeps between positive and negative signals.
The memory resistive switching of NiZn was stud-
ied by Wu et al.14 Figure 5 shows the properties of
the NiZn memristor. The important properties of
resistance in the device vary from low resistance
to high resistance and high to low resistance to

Fig. 5. Characteristic curve of NiZn memristor.14
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applied continuous voltage sweeps. As a result, the
device exhibits different resistance behaviors. The
device was in ON condition until the applied volt-
age reached 5 V. This formation is also referred to
as “set” action. The “reset” action occurred with
the backward voltage sweep from 5 V to 0 V. As a
result, the data can be stored, read and restored by
applying voltage/current pulses to the device. This
switching action is essential for the synapse emula-
tor in neuromorphic applications.

Generally, metal–insulator–metal stacked stru-
cture is used for the design of a memristor device
similar to the structure used by the HP lab.5 The
memristor can be made of any combination of
metals and insulators. The insulating layer is the
most important material for the memristor. The
insulating material has important properties such
as switching mechanism, resistance ratio, working
voltage polarity and working speed. A lot of insula-
tors and semiconductors could be used as an insu-
lating layer. A lot of metals, alloys and semicon-
ductors are used as electrodes. The electrodes are
carefully selected as they significantly affect the per-
formance of the memristor device.

Numerous studies have been conducted on NiO
dielectric material for the fabrication of resistive
switching devices.15 NiO-based memoristors have
a large SET/RESET ratio and unipolar switch-
ing properties. However, they are not appropriate
for reducing power consumption as high current
is needed for RESET operation. However, another
material Al2O3 is widely used for power efficiency.16

The unique optical properties of ZnO facilitate the
fabrication of transparent substrates in memristor
devices.17,18 Wang et al. successfully fabricated a
memristor based on MoS2−xOx with graphene as
an electrode for flexible electronic applications.19

Memristor devices based on CuO and SiO2 are good
for CMOS compatibility.20

3. Types of Memristors

Since the emergence of the memristor theoretical
concept and experimental evidence of memristor,
various types of memristor devices have recently
been reported. Most memristor devices are included
in redox-based random-access memory (ReRAM),
magneto-resistance RAM (MRAM), phase-change
RAM (PRAM) and ferroelectric RAM (FeRAM)
types. Each of these memristors has special advan-
tages and disadvantages, respectively. These mem-
ory devices have been mainly used in memory

equipment due to their nonvolatility, high speed,
higher density and reliability properties as well.21–24

3.1. ReRAM

ReRAMs usually operate under nanoionic systems
and have a structure like metal–isolator–metal.
Such devices operate under both the ion motion
and the redox reaction mechanism.25 These device
mechanisms have been detected in different mate-
rials, e.g., metal oxides, chalcogenides, nitrides and
organic materials.26–28 The advantage of ion motion
under external field is that ions have a much higher
mass than electrons and are therefore electronically
resistant to other noises and more stable. ReRAM
equipment is fabricated by sandwiching the active
material between two metal electrodes. In gen-
eral, ReRAM devices can be categorized as Valance
Change Memory (VCM) and Electrochemical Met-
allization Memory (ECM) for the ReRAM oper-
ating mechanism. The difference is that the con-
ductivity changes in the active layer of the device
are subject to the movement of oxygen vacancy
in VCM as well as metal-based cation movements
in ECM devices. The migration of oxygen and
metal ion vacancy in the active layer is shown
in Fig. 6.

For VCM memristors, the active material gen-
erally consists of metal, metallic complex and non-
metallic oxides. In such devices, the conductive fil-
ament is formed or annihilated by electrical field
effect and thermal effect. The structural defects of
the active material cause oxygen vacancy in the
layer. Oxygen ion and positively charged oxygen
vacancy causes the active layer to migrate easily.
Such migration of ions causes the filaments to be
formed in the active layer and thus the device shows
the characterization of the memristor. With regard

Fig. 6. Switching mechanism of VCM- and ECM- based
memristor devices.
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to nonmetal oxides, SiO2 is one of the most impor-
tant active materials for memoristors due to its
exceptional CMOS compatibility. Kim et al. have
successfully fabricated a ReRAM crossbar configu-
ration memristor device.29 Al2O3 is another widely
used dielectric material. This is usually used to
combine Al2O3 with a different switching layer to
reduce system current in low-current applications.
Kai et al. introduced the Al2O3 active layer together
with InGaZnO to reduce the complaint current from
the milliampere scale to the microampere scale.30

The resistive switching mechanism of the VCM
device can also be discussed with ECM. In the first
place, oxygen ions are considered solely responsi-
ble for the resistive switching mechanism in mem-
ristor devices.31 However, the recent research work
confirms that metal cations also participate in the
filament formation in ECM device structure.32

Such ECM devices are also referred to as RAM
for solid electrolyte or conductor bridging. Metal
cations in ECM systems are responsible for varia-
tions in resistance between the two electrodes in the
active layer. They are believed to be mobile species
in ECM devices. The metal cations of the elec-
trode are movable through the solid active material
and modify the conductivity. Occasionally, metal
cations may originate from the doped metal ion
in the active material. Zhuge et al. studied metal
conducting filament growth in the active layer in
the memristor device based on ECM.33 The Cu fil-
ament’s rupture and rejuvenation occurred in the
active material. In addition, doping atoms have also
had an impact on memristor performance.34

3.2. Spintronic and magnetic
memristors

In addition to redox-based memristors, spin-based
memristors offer advantages over other memristors
with endurance, high density and energy efficiency
for nonvolatile memory devices and bio-inspired
computing applications. Zhang et al. demonstrated
a magnetic memristor device using a spin–orbit
torque.35 The domain wall is continuously drifted
forward and backward inside the active layer by
applying positive and negative current pulses. This
result paved the way for the development of an
energy-efficient memristor for neuromorphic com-
puting. Perovskite material has characteristics such
as massive magnetoresistance, spinal orbit load
order, spinal polarization and electrical phase sep-
aration. They are therefore recently attracted to

the fabrication of magnetic memristor.36 Chen and
Wang demonstrated the magnetic memristor func-
tion by shifting the spin torque.37 The resistance
of the device changes according to the magnetiza-
tion of the device by varying the current applied.
In addition, biosynapses with more than 1000 sta-
ble endurance is also shown in the magnetic mem-
ristor.38 Recent developments in the field of mag-
netic nanowire wall motion have made memristor
devices more reliable in the field of neuromorphic
computing. A short pulse of spin-polarized current
is used to move the domain wall to write and read
memory.39 Thus, spintronic and magnetic memris-
tors have the potential to mimic biosynapses for
brain-inspired computing applications.

3.3. Phase change memristors

In addition to these types of materials, memristor
devices are fabricated using phase change materials.
Phase change memristors also work as redox mem-
ristor by changing resistance states by applying cur-
rent pulse or threshold temperature. The resistance
of the materials is altered by altering its structure
between the ordered crystalline and the unordered
amorphous.40,41 Chalcogenide materials are gener-
ally used for this type of phase change memristor
devices. The most common chalcogenide material
Ge2Sb2Te5 is widely used to manipulate the mem-
ristor properties of phase change material.42 How-
ever, the phase change memristor also has many
challenges for practical applications. The speed of
resistance switching in this type of memristor is
very slow. And also, the high programming current
used to reset the device is one of the other typical
challenges of phase change type memoristors.43,44 In
addition, nanostructured thermal electrical system
circuits for encryption, non-Boolean computing and
bio-inspired neural network computing are rendered
using the VO2 phase change memristor.

In addition, ferroelectric material is one of the
other materials which can be used for the fab-
rication of memristor devices.45 The polarization
of such materials is modified to achieve resistance
switching properties by varying the input volt-
age.46 Therefore, the list of advantages in working
with memristor includes high resistance switching
relationship, analogue memory type, long retention
time and long endurance cycles. Memristors may
also be used instead of selector devices. Memristor
is therefore well thought out beyond the architec-
tural systems of von Neumann.47,48
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4. Neuromorphic Computing

Conventional von Neumann architectural systems
are the backbone of our day-to-day activities, such
as document preparation, streaming audio and
video and playing games. But these systems are
difficult to calculate complex inputs and outputs.
The systems are therefore to be reformed in a man-
ner similar to human intelligence for learning and
problem solving by processing a large amount of
data.49 These artificial intelligence (AI) systems
are well developed and continue to evolve stage
by stage. The first generation of AI was overtaken
by conventional decision making in a specific prob-
lem area. AI of the second generation is gener-
ally concerned with sensing and perception using
deep-learning networks. This type of AI is currently
used in almost every location. In addition, con-
temporary von Neumann computing systems are
unable to address the critical challenges of size
reduction and computing speed in the Big Data
era.50 In order to overcome these limitations, the
next forthcoming AI will be extended to the areas
of interpretation and autonomous adaptation, such
as human cognizance. Neuromorphic computing is
concerned with emulating the probabilistic comput-
ing, the neural structure and the functioning of the
human brain. Human brain function is therefore
mainly motivating to achieve efficient AI technology
computing. New generation AI is now developing
algorithmic solutions to address current instability,
inconsistency and uncertainty.

Mead51 proposed the term neuromorphic to
indicate analog circuits capable of imitating bio-
neural behavior. The field has seen an exponential
growth in the creation of new neuromorphic archi-
tectures that can mimic the activity of certain parts
of the brain neuron network in recent years. Mem-
ristors, whose behavior is similar to the neuron, are
commonly used in the neuromorphic computing sys-
tem. Approximately 100 billion neurons and numer-
ous synapses of connectivity make human brains
more complex in nature.52 Even though the modern
computers work efficiently, they cannot be matched
to neural network.

A biological neuron cell sometimes consists of
a cell body, an axon and dendrites. The informa-
tion is transmitted from the axon to the dendrites
by the synapse process as shown in Fig. 7. Informa-
tion is passed through the neuron by changing the
voltage potential of the neuron and thus affects the
load on other neurons.53 The word “fire” expresses

Fig. 7. The synapse between two bological neurons.31

the threshold potential of the neuron and is ready
to alter the next one. In particular, the fired spike
(potential change) is also transmitted in reverse to
the presynaptic neurons for weight adjustment.54

The same concept of accumulation charge to fire
other neuron potential is realized in most neuron
models in neuromorphic systems.

The conductance of the synapse (i.e., synap-
tic weight) regulates the activities of the pre-and
post-synaptic neurons. Synapse function is the most
important element in neural networking systems.
Optimization of synapse implementation is more
critical to the development of new materials in
a new computing system. The synaptic plasticity
mechanism is the reason for the synaptic weight
change.55 Synaptic plasticity is primarily responsi-
ble for the neuron learning process in the system.56

Neuromorphic systems use the biological neu-
ron system to invalidate the von Neumann bottle-
neck by means of massive parallel connectivity.57,58

In the von Neumann architecture resulting in the
von Neumann bottleneck, the processor and the
memory are separate. But the Big Data era expects
faster computing at the same location. Memory and
synapses are therefore placed together in the case
of neuromorphic architecture (as shown in Fig. 8)
to ease the problem of the bottleneck. It is worth
noting that the neuromorphic computational archi-
tecture does not replace conventional architecture,
but complements the von Neumann architecture to
handle large data processing.

As a result, scientists are motivated to work
on a variety of divisional aspects of process and
architecture to match brain-like function.59 Nowa-
days, synapses of artificial neural networks (ANNs)
are still designed using a lot of digital complemen-
tary metal–oxide–semiconductor (CMOS) devices
at atomic level.60,61 However, these devices are
not really capable of simulating the behavior of
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Fig. 8. Von-Neumann and neuromorphic computing
architecture.36

biological synapses. As a result, energy consump-
tion is also extremely high. Surprisingly, various
device resistance materials are being studied to sim-
ulate the synapse function.62–64 Although the key
functionalities of the neural networks are achieved
by these emerging technologies, there are still major
obstacles to the success of the new computer
system.

5. Memristor Neuron

Biological neural systems are replicated in order
to exploit the advantages of the human brain for
neuromorphic computing. Electronic neurons are
fabricated using a number of electronic transis-
tor devices. However, a novel memristor device is
then proposed to mimic the biological neuron in
order to simplify the circuit elements and the size.
Al-Shedivat et al. demonstrated stochastic neurons
using memristors.65 They used memristor resistive
switching properties to imitate neuromorphic neu-
ral soma to integrate synaptic input and signal gen-
eration. The schematic diagram for the comparison
of biosynapses and memristor-based synapses is
shown in Fig. 9.66 The information is transmit-
ted and processed in the neuron by updating its

Fig. 9. Architechture of memristor crossbar array.54

weight. The same can be modified by varying the
resistance of the memristor devices. It is therefore
easier to update the weight in circuit configuration
of the memristor. In addition to other elementary
circuit synapses, the precision of the learning pro-
cess is enhanced by a strong connexion.67 Linear-
ity, multilevel and nonvolatility are key challenges
in imitating memristor biosynapses. However, many
researchers have made efforts to improve the analog
memory characteristics of memristor for neuromor-
phic computing.

The nanoscale phase change memristor device
was used to model an artificial neuron based on
biosynapses by emulating a phase configuration
similar to biomembrane potential variation.68 In
nanoscale phase change memristor works, the tem-
poral integration of synaptic potentials is achieved
by taking advantage of the structural reversal from
the amorphous to the crystal structure in less time
difference. The pulse output was obtained from
the integration and fire neuron model by design-
ing a circuit with memristor instead of a transistor.
Synapses on weight handling challenges, including
programmability and nonvolatile weight storage,
are addressed by memristor bridge synapse.69 Due
to its multilevel synaptic weight adjustment, the
memristor device can also be used to manipulate
both input and output neuron signals. Mehonic and
Kenyon have demonstrated a method for simulating
synapse spiking using redox-based SiO2 ReRAM.70

The perfect memristor-based neuron has not yet
been developed and commercialized. As a result, the
field of memristor has become a focal point in device
research to improve the properties of synapses to
accommodate real biosynapses.
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6. Memristor in Neuromorphic
Computing

The conventional system is typically constructed by
simulating human brains in the sequential function
of the central processing unit.71 In-memory com-
puting, on the other hand, is a more revolutionary
platform in the neural network. This revolutionary
computing needs to be realized in a multiple ana-
log resistive state in the memristor device. Such
a computing system requires to resolve the mem-
ory wall bottleneck of the conventional system.72

This memory wall consumes more data transaction
energy. However, in-memory computing technology-
based memristor is capable of overcoming the mem-
ory wall constraint as data is stored in the same
processing location.

Many transistors are needed for the construc-
tion of a neuron model to mimic a biological neural
system in conventional CMOS technology. However,
CMOS devices can be replaced by memristor har-
nessing on the network. Al-Shedivat et al. showed
neural spikes with the help of memristor.73 Simi-
larly, the analog modular neuron-based memristor
is designed by Shamsi et al.74 Pantazi et al. reported
the use of phase change memristors for the emula-
tion of neurons and synaptic plasticity.75

It is necessary to use the memristor in the net-
work circuit for analog resistance behavior. The
behavior of the external stimulus is analyzed to
understand the behavior of the resistance. This
behavior of the TE/HfOx/AlOx/BE memristor
device is illustrated Fig. 10.76 Conductivity with
cycle number curves is also necessary to under-
stand memristor. The abrupt change in conduc-
tance occurs initially, and the conductance of the
saturation is gently attained. Thus, the conductance
value either increases or decreases. This behavioral
change in memristor can be compared with the

Fig. 10. Conductance characteristic curve of memristor
device.49

Fig. 11. Architechture of memristor crossbar array.54

same characteristics of biosynapses. The increase in
conductance is called potentiation and the decrease
in conductance is called depression.77–80

Memristive crossbar arrays are often used in
ANNs to encode synaptic weights of synapse. The
crossbar array network is shown in Fig. 11. The hor-
izontal series of w-lines is connected by memristor
through each junction.81 In order to operate cross-
bar arrays, a potential signal is applied to a horizon-
tal line and a vertical line is applied with a differ-
ent voltage. The resistance of this connexon to the
memristor is controlled by the possible difference
between the voltages applied.82 Crossbar arrays
may be used for matrix–vector multiplication with
the voltages used as inputs and outputs. Multilevel
resistance allows the multiplication of the memris-
tors of the matrix. However, memristors in ANNs
are suitable for chip learning supervision. The input
of the neuron in a given layer is calculated by multi-
plying the outputs of the previous neuronal layer in
the ANN. Further, the memories used by traditional
ANNs are ineffective with regard to energy usage
during ANN processing because vector–matrix mul-
tiplication cannot be implemented directly in cross-
bar array structure. But the crossbar array of mem-
ristors has shown its dominance in terms of energy
efficiency improvement. Crossbar memristor array
can measure the matrix multiplication with a sin-
gle sampling step for ANN circuit.

The crossbar array 16 × 16 has been man-
ufactured without any additional selector and
Choi et al.83 has demonstrated its self-rectification
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function. Huh et al. used 2D material to make a
synapse device to perform a memristor’s neuro-
modulator function.84 Memristor is generally used
for potentiation and plasticity of depression. Ham
et al.85 have demonstrated a new method of synapse
production using photonics. Photonic synapses can
improve efficiency and speed in the architecture of
neural computing.

7. Challenges and Strategies
for Memristor Integration

Typical characteristics of the memristor, such as
analog switching, multilevel states, dynamic range,
variation, eight updates, linearity, retention and
endurance, will influence the performance of the
neuromorphic computing system.63,83 The analog
switching feature will allow the memristor to be
used in neuromorphic computing. Analog program-
ming and multiplication accuracy in the crossbar
array are more important in the neural network.86,87

The crossbar wire can consume the input voltage
and thus cause incorrect computation. And this is
undesirable for memristor-based neural networks.

The synaptic strength changes in accordance
with the input signal and is referred to as the lin-
earity update of the neuron model. In addition, the
programming pulse adjusts the conductivity of the
memristor linearly to the synaptic memristor. Thus,
the linear function of this conductance affects the
efficiency of the synapses. But then, most memristor
synapses show a nonlinear weight update. From now
on, the nonlinear behavioral functions of memristor
need to be upgraded for efficient networking archi-
tecture. On the other hand, multilevel state and
dynamic ranges have an impact on storage capacity
resolution due to the number of conductivity states
in memristor.

Variations in the current and operating poten-
tial of the SET/RESET memristor usually occur
between devices and cycles. The limitations of fab-
rication techniques, i.e., nonideal film morphology
and homogeneity, cause dissimilar electrical func-
tions in different memristor and therefore lead to
variation.88,89 In addition to such device variations,
cycle variations90 are usually due to random path
formation in the memristor device. This stochas-
ticity is not worthy of this kind of networking
practice. On the other hand, this stochasticity is
correspondingly exploited for other requests, such
as the creation of random numbers for security
purposes.91,92 Jiang et al.93 have developed a true

random number generator. Such stochasticity could
also be exploited to avoid circuit disturbance.94

This method has been proposed and demonstrated
by Al-Shedivat et al.65 Similarly, more research
has been done to incorporate stochasticity into the
memristor system.95–97

Such stochasticity concerns may also be
addressed by reducing the size of the device. Ran-
dom filament formation generally causes variation
in memristor. Existing technology has reached a
10 nm scale in the memristor device.98 The device
can theoretically be further scaled down to the
atomic level.99 In addition to improving the uni-
formity of the device, scaling down the size also
helps to reduce the programming current and power
consumption.63,85

The preparation of CMOS compatible devices
is another major challenge for memristor devices.
Various types of electrodes in the manufacture of
bipolar redox memristor have been reported for
decent CMOS compatibility performance.100 Elec-
trodes such as TiN and TaN have recently been
used as a further course of action for manufactur-
ing. Although these are not inert metals like Pt, the
device fabricated with this material proves that it is
compatible with the conventional system. However,
modern CMOS systems need to be enhanced for the
use of other metals.101

8. Upgradation of Memristor
for Neuromorphic Computing

The typical concern about the manufacture of mem-
ristor for neuromorphic computing is the variation
in stochasticity of the device. This broad variation
is generally the result of random filament formation
in the active layer of the device consisting of more
oxygen vacancy.102 If the formation of the conduc-
tive filament is controlled in some way, the vari-
ation of the devices can be reduced, resulting in
an efficient memristor-based neural networking sys-
tem. This can only be done by trapping charges in
the active layer of the device (see Fig. 12).

The introduction of certain nanometals in the
active layer along with active dielectric material
is one way of trapping charges in the device.103

Goswami et al. demonstrated the improved per-
formance of the device by introducing nanometal
in the dielectric material and actively using the
charging trapping method to reduce the variation
in the device.104 Wu et al. introduced the Al metal
in the active resistance layer to demonstrate the
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Fig. 12. Random and controlled conductance formation.

multilevel resistance of the device.105 But introduc-
ing this method also has some hindrances, such
as the uneven distribution of nanoparticles in the
active layer. This leads to an uneven distribution
of the system density due to the thermal dynamic
method. In order to overcome this drawback, novel
quantum dot materials may be used along with
dielectric active materials to achieve even distribu-
tion in the device (see Fig. 13).

Graphene is one of the attractive materials used
for charge trapping material in memristor devices.
Graphene quantum dot has been fabricated in
oxide-based memristor for improved device perfor-
mance. Wang et al. have shown that graphene quan-
tum dots are an effective trapping layer of charges
associated.106 Wang et al. have introduced quantum

Fig. 13. Random and controlled conductance formation.

dots of graphene oxide in memristive devices for
controlling the movement of oxygen vacancy and
thus the formation of filament conductors.107 They
achieved 63% more efficiency in trapping oxygen
vacancies by using a graphene quantum dot. Yan
et al. have fabricated a lead sulphide quantum dot
trapping device.108 The lead sulphide quantum dots
also helped to trap charges and increase the per-
formance of the device. A number of charge trap-
ping structures have been studied and reported
for improvement of memristor devices (listed in
Table 1). The device with low scan voltage and
the highest trapping density of charge is best suited
for neuromorphic applications. As a result, memris-
tor can be upgraded to achieve a repeatable multi-
level resistance to high density brains like a neuron
network.

The 3D stacked crossbar memristor array is
another key factor for using more memory and
synapse than the human brain.114 Since cognitive
operation is only possible with large quantities of
devices, in particular cells, it obviously requires a
denser memristor device. For the integration of a
high-density array per area, 3D stacked architec-
ture is more beneficial for the design of a memristor
crossbar structure. For example, SiO2 material was
used to demonstrate 3D memristor stacked by Li

Table 1. The summary of reported charge trapping structures.

Reference Charge trapping layer Charge trapped density (cm−2) Scan voltage (V)

Zhang et al.109 SiO2/HfO2 7.50 × 1012 ±10

Chen et al.110 SiO2/(HfO2/Al2O3)2 6.40 × 1012 ±12

Joo et al.111 SiO2/GQD/SiO2 2.80 × 1011 ±10

Shi et al.112 SiO2/LaNbO/Al2O3 1.91 × 1013 ±12

Ji et al.113 GOD/PS/Pentacene 7.20 × 1012 ±12

Wang et al.107 SiO2/ZHO/SiO2 7.45 × 1013 ±5

Wang et al.107 SiO2/GOQD/SiO2 1.21 × 1014 ±5
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Fig. 14. Schematic diagram of 3D stacked memristor.95

et al.115 This 3D stacking shows the typical struc-
ture that mimics the human brain like a neural net-
work (Fig. 14).

In addition, enhanced and desirable memristor
synapses have yet to be testified in the neuromor-
phic computing network. The synapses model can
therefore be designed in accordance with individual
neuromorphic networks for end-use applications.
In addition, supervised learning-based networks
may be used to address such variation issues.83

The known error value is calculated to change
the synapses in the supervised learning network.
Conversely, unsupervised learning networks directly
affect the variation of unknown target values.117–119

During the learning process, memristor synapses are
updated repeatedly to achieve final conductance.
As a result, large endurance cycles and retention
time are encouraging to realize the desired perfor-
mance of memristor-based neuromorphic networks.
Cytomorphic engineering is also trying to research
biological systems’ cellular activity through elec-
tronics.120 Two-terminal devices can capture the
nonlinear and stochastic activity of biochemical
reactions. Hanna et al. present the design of several
building blocks based on analogue memory circuits
that essentially model the biophysical mechanisms
of gene expression.120 This method can provide a
quick and easy emulative framework for the analy-
sis of genetic circuits and arbitrary large-scale bio-
logical networks in systems and synthetic biology.

9. Conclusion

Every year, the need for alternative computing sys-
tems is changing. However, non-von Neumann sys-
tems with massive parallel calculations by consum-
ing low power can learn online and perform in real
time. Memristor-based neural network circuits will
be considered a competitive hardware candidate in
alternative computer architectures. We discussed

the emerging memory instrument that can be used
to overcome the battle neck of von Neumann’s
architecture in the bioneural computing system. A
number of challenges will be faced strategically in
the immediate future, despite great successes. This
paper also addresses the main obstacles in combin-
ing memristor and neuromorphic architecture, and
how these difficulties can be overcome.

System instability and uncertainty have been
described as current problems for most memory-
based applications. This is the opposite of the bio-
logical process. Despite noise, nonlinearity, variabil-
ity and volatility, biological systems work well. It is
still unclear, however, that the effectiveness of bio-
logical systems actually depends on these obstacles.
Neural modeling is sometimes avoided because it
is not easy to model and study. The possibility of
exploiting these properties is therefore, of course, a
critical path to success in the achievement of artifi-
cial and biological systems.
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