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Using deterministic-stochastic simulations we show that for intracellular calcium puffs the mixing
assumption for reactants does not hold within clusters of receptor channels. Consequently, the law of mass
action does not apply and useful definitions of averaged calcium concentrations in the cluster are not
obvious. Effective reaction kinetics can be derived, however, by separating concentrations for self-
coupling of channels and coupling to different channels, thus eliminating detailed balance in the reaction
scheme. A minimal Markovian model can be inferred, describing well calcium puffs in neuronal cells and
allowing insight into the functioning of calcium puffs.

DOI: 10.1103/PhysRevLett.105.048103

The assumption of well-mixedness on a given scale is
crucial in many mathematical models of chemical re-
actions. In cellular physiology, models based on global,
cell-averaged concentrations (reducing to systems of
ordinary differential equations) reproduce, e.g., oscilla-
tions of circadian clock proteins [1]. In situations related
to wave propagation in excitable media, a local picture is
assumed leading to partial differential reaction-diffusion
equations for position-dependent concentrations [2]. Both
approaches rely on the mass action law. Introducing
concentrations implies the existence of a domain,
where molecules of all reactants are approximately
homogeneously distributed. This domain must be large
enough to neglect fluctuations but small compared to
the length scale at which the concentrations change.
Here we discuss a biochemical process on a sub-
cellular scale, where a local concentration cannot be
introduced in a useful way. Concentration gradients of
one of the reactants are so steep that the assumption of
mixing, here between receptor channels and their ligands,
does not hold. We propose a simple representation of such
reactions.

We consider localized calcium release events (puffs)
associated with clusters of inositol 1,4,5-trisphosphate
[IP(3)] receptor channels [3,4]. In a dual feedback loop,
the channels are both stimulated and inhibited (on a
slower time scale) by calcium they release from the endo-
plasmic reticulum (ER) [5]. The number of channels
within a cluster is small and a random, stochastic opening
of one of them can cause the opening of a majority of
channels [6-8].

Recent high-resolution imaging [9] and computer analy-
sis shed new light on the functionality of puffs. Refer-
ence [10] presented simulations of a cluster within realistic
architecture. Because of the relatively large size of clusters
[9] and rapid calcium evacuation, channels within a cluster
are exposed to different calcium concentrations, thus de-
valuating approaches relying on mixing. We here first
present a detailed computer simulation of puffs closely
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reproducing experimental data. The model adopts a hybrid
description: While calcium concentrations are given by
reaction-diffusion equations, gating transitions of chan-
nels are described within a discrete Markovian scheme.
To reduce the model, we then concentrate on channels
but eliminate the reaction-diffusion part by evalu-
ating typical concentrations during release. Because of
the inhomogeneous distribution of calcium, we are forced
to introduce its different concentrations locally, for a direct
feedback of an open channel, and at the locations of closed
channels. We show that this reductional approach is ca-
pable of reproducing puffs. We further discuss that, as a
consequence of imperfect mixing, the reduced model lacks
detailed balance, which is a standard requirement of ki-
netic channel schemes. Finally, we compare characteristic
properties of puff solutions to recent experiments in neuro-
blastoma cells.

In our simulations nine channels are placed on one
surface of a cuboid [Fig. 1(a)]. Surface and cuboid repre-
sent the ER’s membrane and the cytosolic space, respec-
tively. Dynamical quantities are the concentrations of free
calcium, buffers bound to calcium (dye and EGTA buffer),
and the discrete states of all 36 subunits of the nine
tetrameric channels. Each subunit undergoes transitions
according to the standard DeYoung-Keizer (DYK) model
[11]: IP(3) binding, Ca’" activation binding, and Ca>*
inhibition binding. Transition rates between the eight sub-
unit states were obtained by fitting experimental single
channel records [12]. Details of the model and its numeri-
cal implementation can be found in the supporting material
[13] and in [10,14].

Figure 1(b) shows the evolution of the number of open
channels for a fixed IP(3) concentration of 0.2 uM.
Channels, placed with a separation of 120 nm, open sto-
chastically and in a cooperative manner. Accumulation of
free calcium subsequently leads to inhibition of subunits
and, after around 100 ms, the channels close. The duration
of channel openings agrees with the duration of experi-
mentally observed calcium puffs [9].
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FIG. 1 (color online). Calcium release from nine channels
simulated using a stochastic version of the DYK model and a
deterministic reaction-diffusion scheme for Ca’>" and buffers.
(a) The box of dimension 8 X 8 X 5 um?® represents the cyto-
solic space. Channels are located in a grid on the surface (ER
membrane) with calcium released into the cytosol. (b) Random
puffs as cooperative openings of all or almost all channels. (c) A
cut through the cluster, with vertical lines indicating the position
of three channels (one is closed, two are open). (d) Calcium
concentrations obtained by averaging over closed channels for a
given total number of open ones.

An important open problem in the analysis of calcium
signals is the determination of typical [Ca®"] values in the
local domain of an active cluster. The magnitude of domain
concentration plays a crucial role in the generation and
termination of signaling events [15-18]. However, due to
the properties of fluorescence imaging, the local Ca®"
concentrations are unclear from experimental studies, leav-
ing the estimation of calcium levels to indirect arguments
or direct numerical simulations. Recent consideration of
statistical puff properties have suggested peak cluster con-
centrations of the order of 10 uM [18] but did not address
the inhomogeneous distribution of calcium.

To determine the free calcium concentration we eval-
uated our direct numerical simulations and recorded
[Ca’*] at positions of the channels. If a channel is open,
large concentrations ¢, of 100 M and above are reached.
However, if a channel is closed, while others are open,
[Ca’*] assumes an intermediate value. The average of this
value was defined as cluster domain concentration in [10].
Here we use a finer gradation and include the dependence
of [Ca®"] at a closed channel on the number of open ones.
If ¢,(¢) is the Ca®" concentration at the mouth of channel i
at time ¢ (r = fy, ..., t;) and 0;(r) denotes the state of the
channel (i.e., 0; = 0, closed; or 1, open), we define

erably smaller than the concentration at the pore of an open
channel (>100 uM).

Small cluster domain [Ca’>"] results from the spatial
separation of the channels and the rapid removal of cal-
cium between the channels due to diffusion, calcium
pumps, and buffer. The straight line in Fig. 1(d) represents
the linear fit

cq(n) = ¢y + cyn, (2)

with ¢y = 0.02 uM and c¢; = 0.74 uM. Thus, our ap-
proach leads to a large [Ca®>*], ¢, = 120 uM, for channel
self-coupling and to smaller values ¢ = c4(n) for the cou-
pling to other channels. For calcium release from a cluster
we cannot assume that reactants [IP(3)R channels and
Ca?™] are well mixed in the domain, since channels do
not diffuse in the considered time scales [19] and the
distribution of calcium ions is inhomogeneous.
Therefore, the usual assumption of mass action kinetics
breaks down and we are forced to consider the case of ¢, #
c; in the reaction scheme if we want to use a channel
population model to discuss puff dynamics.

We further found that [Ca2™ ] values in the cluster equili-
brate to ¢, and c,; within milliseconds of openings or
closings. We therefore consider a reduced model, in which
[Ca’"] is given by ¢, and Eq. (2) but the Markovian
evolution of channel states is retained. This corresponds
to a coarse graining on the cluster scale and adopting
different Ca?>" concentrations in different domains.

We first show that, due to the scale separation, the
ensuing reaction scheme does not have to obey detailed
balance. According to the DYK model, each channel has
four subunits; each of them can bind activating and inhib-
iting Ca>* [we ignore the IP(3) dynamics for brevity]. The
state of a channel can be denoted by a four digit number,
where each digit represents one of the four subunits. Each
digit, in a bitwise fashion, takes on either O (no CaZ"
bound), 1 (activating Ca’>" bound), 2 (inhibiting Ca>*
bound), or 3 (both activating and inhibiting). In total there
are 4* = 256 states connected by transition arrows. A
channel opens if at least three subunits are in state 1.
Any event of binding of calcium to an open channel
(e.g., the open state 0111) should be determined by the
spike calcium value c,, whereas other Ca?>"-binding tran-
sitions are determined by ¢ = c,(n). Figure 2 shows a part
of the transition lattice involving the open state 0111 and a
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loop. Evaluating the product of rates in the clockwise and
counterclockwise loop, one finds that the condition
ascqacybsb, = a,cyasc, b,bs necessary for detailed bal-
ance is trivially satisfied if ¢; = ¢, but it does not hold if
separation of calcium scales is assumed. We note here that
the absence of detailed balance in the reduced theory is due
to its coarse-grained character and represents the fact that
the local equilibrium at a channel position does not corre-
spond to a global one [20]. Invalidity of the mass action law
is reflected by the two different binding rates a,c, and a,c,
in Fig. 2(a), which should be contrasted with the linear rate
a,c in earlier models with detailed balance.

Figure 2(b) shows that the reduced model generates
puffs of cooperated release reminiscent of the experimen-
tally observed puffs and the puffs in our full model. What is
the relevance of breaking detailed balance? To answer this
question we will describe simulations with the reduced
model and compare it with simulations in a related DYK
model, which obeys detailed balance. Under the latter
condition, we let

cy(n) =cy(n) = ¢y + ¢ (c50 — <o), 3)

max

which gives rest level concentration c if all channels are
closed, the self-coupling value ¢,y = 120 uM if all chan-
nels are open, and a linear dependence on open channel
numbers. Here, we have assumed that ¢;, which is a re-
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FIG. 2 (color online). (a) Exemplary loop in the transition
lattice of the DYK model. Because of the separation of Ca’"
concentration scales, different [Ca?"] values appear on opposite
sides of some loops involving open states. As a consequence, a
net flux in the direction of the thick arrow is generated. (b) Puffs
in the reduced model, where transitions are given by the DYK
scheme and calcium concentrations ¢, = ¢, and c, given by

Eq. 2).

scaled form of the parameter c; in Eq. (2), equals 1. In the
following, however, ¢; will be a free parameter of the
model.

In accordance with the estimate of cluster sizes in neuro-
blastoma cells in [9], we performed simulations for clusters
with 5 to N, = 10 channels. Leaving all parameters in
the determination of calcium concentrations c¢; and c;
unchanged amounts to generally smaller maximal calcium
concentrations for a cluster with fewer channels. For in-
stance, a cluster of five channels where all channels are
open reaches the same c, value as a cluster of nine chan-
nels with five open channels. This treatment corresponds to
keeping the cluster diameter fixed at 240 nm.

We have first calculated the distribution of peak ampli-
tudes of puffs [Fig. 3(a)]. For these curves we have deter-
mined the maximal number of open channels during each
of the events such as those in Fig. 2(b). We have first
studied the case of broken detailed balance. For all channel
numbers we found a strongly bimodal distribution, with
many blips (single channel openings) and maximal puffs,
which incorporate all of the available channels. Figure 3(b)
shows a weighted average of the distributions for 5-10
channels exhibiting a peak of P, at n =5 channels.
Comparison with experimental results (bars) shows good
agreement in the overall distribution for puffs. However,
we obtained many more blips than in the experiments (data
not shown), which may be due to a higher temporal reso-
lution, that was fixed to 1 ms in our analysis.
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FIG. 3 (color online). (a) The distribution of puff peak ampli-
tudes for clusters with N = 5-10 channels using the reduced
model under conditions of broken detailed balance. Graphs in (b)
are weighted averages of data as in (a). Simulations with 5-10
channels were weighted based on the experimental distribution
of channels per cluster (Fig. 4C in Ref. [9]). For comparison,
bars present experimental data from Fig. 4D in Ref. [9] (blips
have been omitted from this analysis).
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FIG. 4 (color online). (a) The deviation from the experimental
puff amplitude distribution [bars in Fig. 3(b)] was calculated for
models with and without detailed balance using the error sum
Y10 (P, = P,exp)?. (b) The puff lifetime (average for events
with more than one channel opening) is constant over a large
range of parameter ¢, for the broken detailed balance model
(circles and stars). For models with Eq. (3) realistic lifetimes can
be achieved for c¢; larger than 1 only (see open boxes and
triangles), which implies increased binding site concentrations
¢, larger than 120 uM.

We next compared our model with models obeying de-
tailed balance by fitting them to experimental data of two
of the best studied puff properties. Our goal was an opti-
mum for varying the parameter c¢; in Egs. (2) (broken
balance) and (3) (balance). The parameter c¢; represents
the effective separation of channels and depends, for in-
stance, on the concentration of mobile buffer [10]. Fig-
ure 4 shows the models’ errors in peak distributions [dif-
ference between bars and dots in Fig. 3(b)] and puff life-
time. Puff lifetime has been obtained as full duration at half
maximum and should be compared to experimental values
of around 50 ms [9]. The best agreement can be found for
the case of broken detailed balance for ¢; around 0.3.
However, for the model (3) it is impossible to obtain
both short puffs and a realistic amplitude distribution for
the same parameter value c;.

In summary, we have described how the standard coarse-
graining approach fails for strongly localized biochemical
processes. An assumption of well-mixedness does not hold
since concentration gradients of reactants are very steep.
For a correction, we suggest to separate concentration
scales into large open channel values and smaller concen-
trations at closed channels. We obtain a reduced
Markovian model, which replicates temporal spikes in
the reaction very well. Importantly, the scale separation
leads to a breakdown of detailed balance on the coarse-
grained level of channel gating models. By comparison of

our results with experimental data we identified the rele-
vance of breaking the detailed balance. First, in order to fit
the patch clamp data for isolated channels [12], inhibition
occurs at large Ca>" concentrations (dissociation constant
d, = 50 uM, see supporting material [13]). For a model
with detailed balance, however, cluster domain concentra-
tions are too small for inhibition if ¢; is small, resulting in
too long puffs. On the other hand, if ¢, is large (¢; > 2),
one can find short puffs, but now ¢, is large already for
small numbers of open channels, effectively suppressing
large amplitude puffs. This problem does not occur in
models with broken detailed balance, which provide two
different Ca’* scales for puff activation and termination.
Therefore, our approach facilitates the robust generation of
short puffs with large peak amplitudes. These results are
crucial in understanding localized calcium signals, which
are a basic part of many cellular signaling processes, for
instance, in neurons or muscle cells.
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In this supporting material we provide a detailed description of our hybrid stochastic/deterministic model
as well as a sketch of the numerical methods we used.

S1. Model equations

Partial differential equations for the concentration fields (multi-channel simulations)

The calcium concentration in the cytosol is determined by diffusion, transport of calcium through the ER
membrane, and binding and unbinding of calcium to buffer molecules. In the cytosol we consider the
following types of buffers: exogenous mobile buffer with fast or slow reaction kinetics and a stationary
buffer with fast kinetics.

Buffers are assumed to be distributed homogeneously at initial time. Total concentrations of mobile
and dye buffers are denoted by B,,, and B, while the concentrations of corresponding buffer bound to
calcium are denoted by b,,, and by, respectively, which are determined by mass-action dynamics:

Oc _ _

% = DV?c — k(B — b)) + kpybm — ki (Ba — ba)c + k ba, (1)
ag—:”b = DpV2by, + k(B — b)e — kb, )
b
876‘ = DygV%by+ kI (Bg — ba)c — k] ba. 3)

Here, the k* denote the on and off rates of calcium reacting with the corresponding buffer proteins.
Parameters for the mobile and dye type of buffers used for this work are listed in Tab. S1. The equations
are solved in a rectangular box domain bounded on one side by an idealized quadratic membrane patch of
(843 x d) um side length, where d is the distance between the channels. In the z-direction, perpendicular
to the membrane, we consider a spatial extent of 5 um. All boundary conditions except for c at the ER
membrane are no-flux conditions. The boundary condition for ¢ at the membrane models the transport
through the membrane,

DO,c=—J,atz=0 (€]

and comprises three contributions:

2

- C
J:PCS(T7t>(E—C) _Ppm
d

+ P(E —c), &)

where ¥ = (x,y,0) denotes the position on the membrane. Calcium moves from the ER to the cytosol
through IP3 receptors and by a small leak contribution, which are modeled by terms with coefficients
P. and P}, respectively. In the other direction calcium is resequestered into the ER by pumps (7). The
action of pumps is assumed to be cooperative in calcium and modeled with a quadratic ¢ dependence.
K is the dissociation constant of the pumps. The first term in Eq. 5 represents the current through the
channel, where P, is adjusted such as to represent a total current of 0.1 pA if the channel is open. We
model the source area of a channel by a circle of radius Z; = 6 nm (1). The positions of channels in the
rectangular box are given by X;; = ((4 + (k 4 1/2)d) um, (4 + (I + 1/2)d) pm, 0), where k and [ run
from O to 2. The channel flux term in Eq. 5 is controlled by the channel state through the factor S(7, t),



which is defined by:

S(7.1) = 1, if there is an open channel (k,[) and HF— XMH < R,
’ 0, otherwise.

For a more detailed description of the membrane current modeling we refer to (2). The parameters that
we use in the current work are shown in Tables S1 and S2.

S2. Numerical methods

S2.1 Multi-channel setup

Our numerical method consists of coupled solvers for the deterministic set of PDEs and the stochastic
equations. In view of the multiple scales in length and time we employ a conforming finite element
method for the spatial discretization and an adaptive linear implicit time-stepping for the deterministic
part. The stochastic solver is based on the Gillespie method (3), which is adaptive in the sense that its
time step follows the evolution of transition probabilities. A complication arises since the usual Gillespie
method solves stochastic processes where the transition rates are constant during subsequent transitions.
However, for channels with Ca?* as carrier the rates may change rapidly due to channel openings and
closings. This problem was solved by devising the hybrid method described in (2), where we introduced
and tested the hybrid method for a single channel system—here the obvious generalization to multi-
channel systems will be used.

We discretized the spatial domain by linear finite elements (4). The attractive feature of the method
is its ability to effectively handle complex geometries. For our simulations of release from clustered
channels we employ a grid with a very fine resolution in the channel area. There the grid length is
around 0.3 nm. With increasing distance from the channel the grid is coarsened up to 1600 nm.

S2.2 Stochastic model of channel gating

To incorporate the open/close dynamics of a single or multiple IP3Rs we adopt the DeYoung-Keizer
model (6, 7). According to the DeYoung-Keizer model, an IP3R consists of four identical subunits.
There are three binding sites on each subunit: An activating site for Ca®", an inhibiting Ca?" site, and
an IP3 binding site. The three binding sites allow for 8 different states X; ;. of each subunit. The index
i indicates the state of the IPj site, j the one of the activating Ca?* site and k the state of the inhibiting
Ca?* site. Anindex is 1 if a Ca?T ion or IP3 is bound and 0 if not. Rates of transitions involving binding
of a molecule are proportional to the concentration of the respective molecule.

We associate nine stochastic variables Xooo(¢), Xoo1(?), ..., to each channel i. These variables
count the numbers of subunits of channel ¢ that are in the respective state. That is, each variable can
take on values from O to 4, while the sum of all nine variables for each channel must equal 4. The Ca’*
concentration for the activation and inhibition processes are evaluated at the channel center position. In
the multi-channel simulations this value for an open channel reaches 110 uM.
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Buffer parameter value unit

slow buffer (EGTA)
A 6(8) (uMs)”!
k.. 1(8) st
Dy, 95 pm2s 1
By, 800 uM

dye buffer
kb 150  (uMs)~!
kg 300 s
Dy 20 pm?s~!
By 25 uM

Table S1. List of buffer kinetic parameters. Numbers in brackets denote references where specific
values have been taken from.



Parameter symbol value unit
diffusion coefficient
free Ca?* D. 223 (10)  pm?s!
membrane transport parameters
channel flux coefficient P, 6.32 x 105 nms~!
pump flux coefficient P, 400000 nm M s~}
leak coefficient P, 5.658 nms~!
8-state model
IP3-binding
a 1000 (uM s)~1
as 500 (uM )1
dy 0.005 uM
ds 0.2 uM
activating Ca?*
as 100 (uM s)~1
ds 0.2 uM
inhibiting Ca®*
as 0.1 (uM )1
ay 0.1 (uM s)~t
ds 50 uM
dy 1.25 uM
pump-dissociation coefficient Ky 0.2 (1) uM
Ca2* concentration in ER ERconst 700 (1) uM
IP5 concentration 0.2 uM

Table S2. List of parameters used for our model. The on-rates a;, off-rates b; and the dissociation
constants d; are related by d; = b;/a;. In the third column, numbers in brackets denote the reference

paper.



