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Brownian diffusion of ion channels in different membrane patch geometries
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We asymptotically calculate the spatially averaged mean first passage time (MFPT) of a diffusing channel
protein in a finite membrane patch containing a small absorbing anchor site. Different two-dimensional membrane
geometries are considered including a circular, a square-shaped, a rectangular, and a cylindrical domain. The
asymptotic expressions are found to be in excellent agreement with results from Monte Carlo simulations if the
radius of the diffusing protein is sufficiently small. For a larger radius, a simple correction to the asymptotic
expressions is proposed. We show that the average MFPT for a circle and a square-shaped domain of the same
area are approximately equal as long as the anchor site is close to the center of the domain. We also discuss how
the average MFPT depends on the aspect ratio of a rectangular and a cylindrical domain. Among such domains
with a fixed area, a minimal MFPT is obtained for the square-shaped domain.
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I. INTRODUCTION

Cytosolic calcium ions (Ca2+) play a crucial role in
the regulation of various physiological phenomena, such as
exocytosis, enzyme control, gene regulation, cell growth and
proliferation, and apoptosis [1]. A common source of cytosolic
Ca2+ in many cells is the release of Ca2+ through the inositol
1,4,5-triphosphate receptor (IP3R) from intracellular stores,
e.g., the endoplasmic reticulum (ER), in response to the
second messenger inositol 1,4,5-triphosphate (IP3) [2]. Thus,
the spatial distribution of IP3Rs can be important for the local
delivery of Ca2+ to specific sites within the cell to regulate
Ca2+-dependent subcellular functions [3,4].

In many cell types, IP3R is diffusible within the ER mem-
brane, and it can dynamically migrate upon cell stimulation.
For example, long term agonist stimulation in the smooth
muscle cell line A7r5 leads to a global redistribution of type-1
IP3Rs [5]. In addition to the global movements of IP3Rs, it
has been observed that local clustering of IP3Rs can occur,
for example, in the basophilic cell line RBL-2H3 where IP3R
clustering can be rapidly triggered by activation of the Ca2+

signaling cascade [6], and IP3R clustering is not dependent on
changes in the structure of the ER [7]. Also, the maturation of
oocytes before fertilization leads to IP3R clustering [8].

The biological consequences of IP3R clustering are not
clear yet. Clustered IP3Rs show a strong stochastic open and
close dynamics causing a noisy Ca2+ signal. Within a lattice
model, it has been shown that channel clusters can generate a
stochastic backfiring pattern [9]. Other simulations suggest
that the clustering distribution of IP3Rs may improve the
periodicity of local Ca2+ signals [10] and may enhance the
sensitivity of global Ca2+ signals responding to a weak IP3

stimulus [11]. Based on global spiking data of four cell types,
it was suggested that Ca2+ spikes are caused by random wave
nucleation events with a regular regime arising from the array
enhanced coherence resonance effect of IP3R clusters [12].
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The dynamical regulation of IP3R clustering has been
investigated only recently. First, it was suggested that Ca2+

triggered the clustering of IP3Rs [6]. Theoretical analysis
showed that a periodic Ca2+ signal could lead to an oscillatory
or to a quasistationary cluster size distribution [13]. Later,
it was shown that a conformational change in the IP3R,
evoked by IP3, was sufficient to induce clustering [14]. Further
experiments indicated that the depletion of the Ca2+ store may
facilitate the clustering of IP3Rs [15]. More recently, with
patch-clamp recordings from the outer nuclear envelope of
DT40 cells expressing rat IP3R1 or IP3R3, it was shown that
IP3 causes IP3R rapidly and reversibly to aggregate into small
clusters of about four IP3Rs [16]. However, another study
indicated that puff sites represent preestablished stable clusters
of IP3Rs and that functional IP3Rs are not readily diffusible
within the ER membrane in SH-SY5Y, Hela, and astrocyte
cells [17].

These experiments clearly demonstrate the need to reliably
estimate the time scale on which clustering occurs. In general,
one can expect an effect of IP3R clustering on the Ca2+

dynamics when the time scale for clustering and the time
scale for the open and closing dynamics of individual IP3R
channels are comparable. To estimate the time scale of IP3R
clustering, we assume that IP3Rs undergo Brownian motion
on an ER membrane patch containing an anchor site. This
could be, for example, a fixed cytoskeletal structure that traps
and fixes the IP3R channels upon encounter. The relevant time
scale for clustering is given by the mean first passage time
(MFPT) [18], i.e., the average time it takes an IP3R channel
to reach a given target site on the membrane for the first
time. In the case that clustering is a purely diffusion-limited
process, the MFPT can be calculated in the framework of the
Smoluchowski theory [19].

The MFPT arises in many applications, but explicit re-
sults were mostly restricted to one-dimensional geometries
[20–23]. Recently, first results were given for the MFPT
in more complex geometries including microdomains [24],
two- and three-dimensional domains containing small exit
sites [25–29], as well as for regular lattices [30] and complex
networks [31,32]. Specifically, in a bounded two-dimensional
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domain containing a circular trapping region, the MFPT can
be expressed in terms of the Neumann function GN as [28,33]

Tx0 (x) = −|�|
D

GN (x; x0), (1)

where x and x0 denote the starting point for the random walk
inside � and the center of the trapping region, respectively. |�|
and D correspond to the area of the domain and the diffusion
coefficient, respectively.

In two dimensions, the Neumann function has the general
form

GN (x; x0) = − 1

2π
ln |x − x0| + RN (x; x0), (2)

where RN represents the regular part of GN at x0, which is
uniquely determined by the boundary value problem,

�GN = 1

|�| − δ(x − x0), x ∈ �,

∂nGN = 0, x ∈ ∂�, (3)∫
�

dx GN = 0 .

Here, � denotes the Laplace operator in two dimensions, and
∂n denotes the derivative in the direction of the outward normal
of the respective domain. The spatially averaged MFPT (T̄ ) of
Eq. (1) is then given in terms of RN (x; x0) as

T̄x0 = |�|
D

[
1

2π
ln

Lc

ε
+ lim

x→x0

RN (x; x0)

]
, (4)

where Lc denotes a characteristic length scale of the domain
� and ε is the effective radius of the trapping region. It
accounts for the fact that the diffusing ion channel (radius
rch) is immediately absorbed upon the first contact with the
anchor site (radius ran). Thus, ε = rch + ran. Note that in the
continuum description, the diffusing channel is treated as a
point particle.

Often, the leading order term in Eq. (4) is sufficient to
estimate the order of magnitude for the average MFPT, and it
only requires knowledge of three parameters: The total surface
area |�|, the diffusion coefficient D, and the effective radius
of the trapping region relative to the characteristic length
scale of the domain ε/Lc. Thus, the leading order term is
insensitive to geometrical details of the underlying domain.
If more than one length scale is required to characterize the
shape of the domain, such as the aspect ratio of a rectangular
domain, then the O(1) term, involving the regular part of the
Neumann function, can become important, especially in highly
asymmetric domains [26].

Strictly speaking, the expressions in Eqs. (1), (3), and
(4) are valid only in the asymptotic limit ε � Lc, but
comparison with numerical solutions of the respective partial
differential equations gave excellent agreement up to values of
ε/Lc = 0.2 [26,28]. In this paper, we compare the asymptotic
expression for the spatially averaged MFPT [Eq. (4)] with
direct Monte Carlo simulations of a Brownian particle (IP3R
channel) in different two-dimensional domains. We study, in
detail, its dependence on the size of IP3R channel, the size and
the position of the anchor site, the size of the ER membrane
patch, and different membrane shapes.

We find excellent agreement between the asymptotic
expression in Eq. (4) and stochastic simulations if the O(1)
term is taken into account and the radius of the diffusing
channel (rch) is sufficiently small. For a larger channel radius,
a simple correction to Eq. (4) is proposed, which is in very
good agreement with the results of stochastic simulations. We
also investigate how the average MFPT depends on the aspect
ratio of a rectangular and a cylindrical domain. Among such
domains with a fixed area, a minimal MFPT is obtained for a
square-shaped domain.

II. SIMULATION METHOD

We consider Brownian diffusion of an IP3R channel in
different two-dimensional ER membrane geometries including
a circular, a square-shaped, a rectangular, and a cylindrical
domain. For the first three domains, we use reflecting boundary
conditions while the cylindrical domain is modeled as a
rectangular domain with periodic boundary conditions along
the y axis and reflecting boundary conditions along the x axis.

The IP3R is represented as a small particle with a radius
of rch that diffuses within the ER membrane with diffusion
coefficient D. Based on electron microscopy and single
particle analysis of purified IP3R, the radius of a channel was
estimated in the range of 9–18 nm [34]. Using fluorescence
recovery after photobleaching, it was suggested that IP3Rs
diffusion within ER membranes is with a diffusion coefficient
D of 0.03–0.04 μm2/s [35] or 0.45 μm2/s [36].

In the simulation, the IP3R channel undergoes a Brownian
random walk in both x and y directions. Their positions
are updated at time steps �t by adding random numbers
drawn from a Gaussian distribution with zero mean [17]. The
width (standard deviation) of the Gaussian is

√
2D �t . In the

simulation, we chose the time step �t = 5 × 10−5 s. Different
time steps have been tested giving the same results.

We also consider an anchor site or absorbing region
with radius ran in the patch representing a fixed cytoskeletal
structure to trap the channels. The fixed anchor site is
designated as an IP3R channel trap location. Here, we assume
ran is on the order of 10 nm [17]. An IP3R channel moving
within a distance of ε = rch + ran will become trapped at the
anchor site. To remain compatible with the assumptions for the
derivation leading to Eq. (4), we assume that trapped channels
will neither affect the trap diameter nor its location. When the
channel reaches the patch boundary within a distance that is
less than rch, reflecting boundary conditions will be used for
the mobile IP3R.

In the simulation, the IP3R channel is located in the patch
randomly at the beginning. Then the channel undergoes a
Gaussian random walk with diffusion coefficient D. The
random diffusing time of the channel before colliding with
the anchor site is calculated. A spatially averaged MFPT is
defined as the average of the diffusion times obtained from
500 000 trials starting at arbitrary positions in the patch.

III. RESULTS

A. IP3R Diffusion in a Circular Patch

We consider a diffusing particle in a circular domain of
radius R containing a small absorbing circular region of
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FIG. 1. (Color online) The FPT for a Brownian IP3R channel in a circular patch with an anchor site at its center. (a) Exponential distribution
of the FPT for a channel starting at a given distance r = 1 μm. (b) The MFPT as a function of the distance r . Black squares, stochastic
simulation data; red solid line, the theoretical result in Eq. (6) with R = Rcirc. (c) Exponential distribution of the FPT for a channel starting at
arbitrary positions in the patch. Parameters are ran = 10 nm, rch = 9 nm, Rcirc = 1.5 μm, and D = 0.1 μm2/s. The distribution can be fitted
by a straight line with a slope of 40.6 s.

effective radius ε at the center. The diffusion coefficient of
the particle is D. Then, the MFPT required for the particle
to hit the absorbing region at the center when starting at an
arbitrary position inside the annulus ε < r < R is determined
by the simple boundary value problem,

�T = − 1

D
, ε < r < R,

T = 0, r = ε, (5)

∂rT = 0, r = R.

Due to the spherical symmetry, the problem can be solved
analytically. We include it here for didactical purposes since
it will serve as a benchmark for more complicated geome-
tries considered later. The solution of Eqs. (5) gives the
MFPT as

T (r) = ε2 − r2

4D
+ R2

2D
ln

r

ε
. (6)

Then, the spatially averaged MFPT is computed as

T̄circ = 1

π (R2 − ε2)

∫ 2π

0
dϕ

∫ R

ε

T (r)r dr

= R2

2D
ln

R

ε
− 3

8

R2

D
+ O

(
ε2

R2
ln

R

ε

)
. (7)

In typical applications, the contact radius ε is in the nanometer
range, whereas, diffusion occurs in membrane patches with
a typical length scale in the micrometer range. In that case,
terms of O[(ε2/R2) ln (R/ε)] and smaller can be neglected
in Eq. (7), and the spatially averaged MFPT is well approxi-
mated by

T̄circ ≈ R2

2D
ln

R

ε
− 3

8

R2

D
. (8)

To compare this expression with the general form of the
average MFPT shown in Eq. (4), we rewrite Eq. (8) as

T̄circ ≈ πR2

D

(
1

2π
ln

R

ε
− 3

8π

)
,

which shows that the regular part of the Neumann function for
a circular domain with a singularity at the origin is given by
RN,circ(0) = −3/8π [37].

Now, with the Brownian random walk simulation, we
consider a diffusing IP3R channel in a circular domain of
radius Rcirc with a reflecting boundary and containing a small
absorbing circular region of radius ran at the center. The radius
of the channel is rch and its diffusion coefficient is D.

First, we discuss the first passage time (FPT) for the channel
starting at a given distance r . As shown in Fig. 1(a), the FPTs
exhibit an exponential distribution with a time constant of
T = 41.7 s at r = 1 μm corresponding to the MFPT. For the
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FIG. 2. (Color online) Average MFPT for a diffusing IP3R channel in a circular patch with an anchor site of radius ran at its center.
(a) 1/T̄ as a function of D at rch = 9 nm, ran = 10 nm, and Rcirc = 1.5 μm; (b) T̄ as a function of Rcirc at rch = 9 nm, ran = 10 nm, and
D = 0.1 μm2/s; (c) T̄ as a function of ran at Rcirc = 1.5 μm, rch = 9 nm, and D = 0.1 μm2/s; (d) T̄ as a function of rch at Rcirc = 1.5 μm,
ran = 10 nm, and D = 0.1 μm2/s. Black symbols, stochastic simulation data; red solid lines, theoretical results in Eq. (8) with R = Rcirc;
blue dashed lines, the leading order term of Eq. (8). The green dashed-dotted line in (d) denotes the theoretical result in Eq. (8) with
R = Rcirc − rch.

exponential distribution, the standard deviation of the FPTs
is equal to its mean, and Eq. (6) yields T = 42.1 s with ε =
ran + rch and R = Rcirc. Figure 1(b) shows excellent agreement
for the MFPT between the stochastic simulation and Eq. (6)
as a function of the distance r .

In the following, we focus on the discussion of the
spatially averaged MFPT for a channel starting at arbitrary
positions in the patch. As shown in Fig. 1(c), the FPT still
exhibits an exponential distribution with a time constant of
T̄ = 40.6 s corresponding to the spatially averaged MFPT.
For the example given in Fig. 1(c), using only the leading
order term in Eq. (8) yields a spatially averaged MFPT of
T̄ = 49.1 s, while taking into account the contribution from
the second order term in Eq. (8) significantly improves the
result to 40.7 s.

Figure 2 shows the results of stochastic simulations for
the dependence of the spatially averaged MFPT on several
parameters, such as the diffusion coefficient D [Fig. 2(a)], the
patch radius Rcirc [Fig. 2(b)], the anchor radius ran [Fig. 2(c)],
and the channel radius rch [Fig. 2(d)], together with the
asymptotic result in Eq. (8) with R = Rcirc. For comparison,
we have also plotted the leading order term alone (dashed
line) in Fig. 2. Figures 2(a)–2(c) clearly demonstrate the
importance of the O(1) term in Eq. (4) (∼RN ) to achieve
full agreement between the results from stochastic simulations
and the two-term approximation in Eq. (8) even in the case
ε/R = (rch + ran)/R � 1.

Figure 2(d) shows marked deviations between the results of
the stochastic simulation and the asymptotic result (red curve)
in Eq. (8) with R = Rcirc as the radius (rch) of the diffusing
channel protein increases. However, when the true radius of the
domain R is replaced by an effective radius R = Rcirc − rch,
we again find excellent agreement (green curve) between the
results of the stochastic simulation and the asymptotic result in
Eq. (8). This suggests the following interpretation: In contrast
to the derivation of the asymptotic result, the diffusing channel
in the stochastic simulations is not treated as a point particle.
Due to the reflecting boundary condition, it only samples
an area with an effective radius of Rcirc − rch since it never
penetrates the boundary region (Rcirc − rch,Rcirc). Already, as
Fig. 2(d) shows, this finite size effect becomes noticeable for
comparably small values of rch/Rcirc ≈ 0.01.

B. IP3R Diffusion in a Square Patch

Now, we consider a particle diffusing in a square domain
Qε

L with a circular trapping region at the center. Here, Qε
L =

QL \ Cε where

QL = {(x,y) : −L � (x,y) � L}
is a square-shaped domain of length 2L and

Cε = {(x,y) : x2 + y2 � ε2}
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FIG. 3. (Color online) Spatially averaged MFPT for a diffusing IP3R channel in a square domain and a square-shaped cylindrical domain.
Square symbols, simulation data for the square domain; star symbols, simulation data for square-shaped cylinder with Hcyl = πRC = Lsq.
(a) 1/T̄ as a function of D at rch = 9 nm, ran = 10 nm, and Lsq = 1.5 μm; (b) T̄ as a function of Lsq (or Hcyl) at rch = 9 nm,
ran = 10 nm, and D = 0.1 μm2/s; (c) T̄ as a function of ran at rch = 9 nm, D = 0.1 μm2/s, and Lsq = 1.5 μm; and (d) T̄ as a function
of rch at ran = 10 nm, D = 0.1 μm2/s, and Lsq = 1.5 μm. Red solid lines, theoretical results in Eq. (9) with L = Lsq; blue dashed
lines, the leading order term of Eq. (9). The green dashed-dotted line in (d) corresponds to the theoretical result in Eq. (9) with
L = Lsq − rch.

denotes the circular trapping domain of effective radius ε < L,
which is centered at the origin.

Then, the MFPT is determined by

�T = − 1

D
, (x,y) ∈ Qε

L,

T = 0, (x,y) ∈ ∂Cε,

∂nT = 0, (x,y) ∈ ∂QL.

Due to the different symmetry of the square and the
absorbing circular region, this problem cannot be solved
analytically. However, we already know that, in the limit
ε � L, the asymptotic solution has the form [cf. Eq. (4)],

T (x,y) = −4L2

D
GN (x,y) + T̄sq,

where GN is the Neumann function for the unit square and the
average MFPT is given by

T̄sq = 4L2

D

(
1

2π
ln

L

ε
+ 1

12
− 1

2π
ln π

)
. (9)

Here, we have used the known result for the regular part of the
Neumann function for the unit square [26],

lim
(x,y)→(0,0)

RN,sq (x,y) ≈ 1

12
− 1

2π
ln π.

Figure 3 shows the results of Monte Carlo simulations for
the average MFPT of an IP3R channel diffusing in a square

patch of length Lsq with an anchor site in the center and
reflecting boundary condition. We investigate the dependence
of the average MFPT on several parameters, such as the
diffusion coefficient D [Fig. 3(a)], the patch half-size Lsq

[Fig. 3(b)], and the anchor radius ran [Fig. 3(c) and the channel
radius rch [Fig. 3(d)], respectively. Similar to the circular
domain, Figs. 3(a)–3(c) show excellent agreement between
numerical simulations and the asymptotic result for the average
MFPT in Eq. (9) (with L = Lsq and ε = ran + rch) provided
that rch/L < 0.01. However, Fig. 3(d) also indicates that, to
obtain quantitative agreement for increasing values of rch, we
have to replace the true length of the square domain L = Lsq

by the effective length L = Lsq − rch in Eq. (9).
Next, we compare the average MFPT for a circular and a

square patch having the same total area. For this purpose, we
set L = R

√
π/2 in Eq. (9) and obtain

Tsq = πR2

D

(
1

2π
ln

√
πR

2ε
+ 1

12
− 1

2π
ln π

)

= πR2

D

{
1

2π
ln

R

ε
− 3

8π

[
2

3
ln (4π ) − 2π

9

]}

� Tcirc,

since (2/3) ln (4π ) − 2π/9 ≈ 1. Hence, with respect to the
O(1) expansions in Eqs. (8) and (9), the average MFPT for a
circular and a square domain of the same total area are basically
indistinguishable. We have confirmed this result by stochastic
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FIG. 4. (Color online) Dependence of the spatially averaged
MFPT on the domain area. Red circle symbols, circular domain and
black square symbols, square domain. Parameters are rch = 9 nm,
ran = 10 nm, and D = 0.1 μm2/s.

simulations of the average MFPT for varying domain sizes as
shown in Fig. 4.

C. IP3R Diffusion in a Cylindrical Patch

Biologically, the ER is more like a complex tubular net-
work of small interconnected cylindrical membrane patches.
Therefore, we now consider diffusion of IP3R channels on a
cylindrical domain of height 2H and radius RC . However, in
the simulations, we neglect the curvature of the membrane
since the size of an IP3R channel is much smaller than the
length and the circumference of the cylinder. Consequently, the
membrane is assumed to be locally flat, which can be modeled
as a rectangular domain with periodic boundary conditions at
x = ±πRC and reflecting boundary conditions at the bottom
and at the top boundaries of the cylinder at y = ±H .

To obtain an expression for the average MFPT for a
cylindrical domain, we only have to replace the regular part of
the Neumann function for the square in Eq. (9) with that for
a cylindrical domain (height 2H and circumference 2πRC).
In Ref. [26], we have derived two (alternative) expressions for
this quantity given by

RN,cyl(0,0) = 1

2π

(
H

6RC

− ln
H

RC

)

− 1

π

∞∑
n=1

ln t(1 − e−2n(H/RC )), (10)

or

RN,cyl(0,0) = 1

2π

(
π2RC

6H
− ln π

)

− 1

π

∞∑
n=1

ln (1 − e−2nπ2RC/H ). (11)

As we have shown in Ref. [26], both expressions represent
the same function. However, the infinite sums possess a
different speed of convergence. While the infinite sum in
Eq. (10) rapidly converges for H 
 RC , the infinite sum in

Eq. (11) converges rapidly in the opposite limit. Specifically,
for H 
 RC , the infinite sum in Eq. (10) can be neglected,
and the average MFPT for the cylindrical domain can be
approximated as

T̄cyl ≈ 4πRCH

2πD

(
ln

H

ε
+ H

6RC

− ln
H

RC

)
. (12)

Note that this expression reduces to Eq. (9) if H/RC = π

while keeping H = L fixed. Hence, the average MFPT for a
square-shaped domain and that of an equally sized cylindrical
domain should be equal. This was confirmed by the stochastic
simulations (star symbols) shown in Fig. 3 where we used
Hcyl = πRC = Lsq.

Next, we discuss how the average MFPT depends on the
aspect ratio x = H/πRC of the cylindrical domain. Therefore,
the total surface area Acyl is kept constant. Note that, for a fixed
area and a given aspect ratio, the height H and radius RC are
given by

H =
√

Acylx

2
and RC = 1

2π

√
Acyl

x
,

which allows rewriting the average MFPT as

T̄cyl = Acyl

2πD

[
ln

√
Acylx

2ε
+ πx

6
− ln (πx)

]

− Acyl

πD

∞∑
n=1

ln (1 − e−2πnx), (13)

using Eq. (10) or

T̄cyl = Acyl

2πD

[
ln

√
Acylx

2ε
+ π

6x
− ln (π )

]

− Acyl

πD

∞∑
n=1

ln (1 − e−2πn/x), (14)

using Eq. (11). Note that these expressions for the average
MFPT are symmetric under the inversion x → 1/x. Indeed,
changing x to 1/x in Eq. (13) yields the expression in
Eq. (14) and vice versa. For a quantitative comparison of these
expressions with the results from numerical simulations, we
used a different number of terms (nmax) from the infinite sum
in Eq. (13) to correctly reproduce the behavior of the average
MFPT for x � 1.

As shown in Fig. 5, a minimal average MFPT is obtained for
x = 1, i.e., for H = πRC corresponding to a square-shaped
cylindrical domain. In general, we see a moderate dependence
of the average MFPT on the aspect ratio. For example,
increasing (or decreasing) the aspect ratio by a factor of
3 increases the average MFPT by approximately 13%. The
asymptotic expression in Eq. (13) nicely fits the results of
Monte Carlo simulations given by the black symbols.

Since the Neumann function for a rectangular domain with
reflecting walls and that for a cylindrical domain is the same
as long as the singularity is located at the origin, the average
MFPT for both domains should also be equal. To confirm this,
in Fig. 5, we plot the dependence of the average MFPT on
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s
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(   )

FIG. 5. (Color online) Dependence of the average MFPT on the
aspect ratio x = H/πRC of a cylindrical domain (or on the ratio
of x =width/length for a rectangular domain) with an anchor site
(ran = 10 nm) at the center. The area of the respective domain is
kept fixed at A = 9 μm2. Green star symbols, simulation data for
the cylindrical domain; black square symbols, simulation data for
the rectangular domain. The red curve corresponds to the theoretical
result [Eq. (13)] with nmax = 5, D = 0.1 μm2/s, and ε = 19 nm.

the ratio between the width and the length of a rectangular
domain with reflecting boundary conditions. Similarly, as for
the cylindrical domain, a minimal average MFPT is obtained
when the aspect ratio equals 1, i.e., for a square-shaped
domain.

D. The Case of an Off-Center Anchor Site

In the cases investigated so far, the anchor site was always
located at the center of the domain. Now, we consider the
situation when the anchor site is shifted away from the center
by a distance d.

In principle, all one has to know is the regular part of
the Neumann function for the respective domain but with the
singular point x0 [cf. Eq. (3)] shifted off the center. However,
already for the case of a rectangular domain, the explicit
expression for the Neumann function with an off-center
singularity is very clumsy [38]. Therefore, to illustrate the
general procedure, we only consider the case of a circular
domain with an off-center absorbing region. In that case,
the Neumann function (for the unit disk) has the explicit
representation [37],

GN (x,x0) = 1

2π

(
− ln |x − x0| − ln

∣∣∣∣x|x0| − x0

|x0|
∣∣∣∣
)

+ 1

2π

[
1

2
(|x|2 + |x0|2) − 3

4

]
.

Here, x denotes the normalized distance by R. The regular part
of GN is defined as [cf. Eq. (2)],

RN (x,x0) = GN (x,x0) + 1

2π
ln |x − x0|

= 1

2π

[
− ln

∣∣∣∣x|x0| − x0

|x0|
∣∣∣∣+ 1

2
(|x|2 + |x0|2) − 3

4

]
.

(     )

FIG. 6. (Color online) Dependence of the average MFPT on the
distance d of the anchor site from the patch center for different
domain shapes. Red circles, simulation data for the circular patch with
R = 1.69 μm; black squares, simulation data for the square patch (all
boundaries reflecting) with Lsq = 1.5 μm; green stars, simulation
data for the cylindrical patch with Lcyl = 1.5 μm = πRC . The red
curve corresponds to the theoretical result in Eq. (15). Here, rch =
9 nm, ran = 10 nm, and D = 0.1 μm2/s.

Hence, the average MFPT for an anchor site at an arbitrary
point inside a circular domain becomes

T̄circ(x0) = πR2

D

[
1

2π
ln

R

ε
+ lim

x→x0

RN (x,x0)

]

= R2

2D

[
ln

R

ε
−

(
3

4
+ ln

∣∣∣∣x0|x0| − x0

|x0|
∣∣∣∣− |x0|2

)]
.

Without loss of generality, we assume that anchor site is
shifted along the x axis, i.e., x0 = (a,0) = (d/R,0). Then,
the expression for the average MFPT simplifies to

T̄circ(a) = R2

2D

[
ln

R

ε
− 3

4
− (ln |a2 − 1| − a2)

]
, (15)

which reduces to Eq. (8) in the limit a → 0.
The results of the stochastic simulations in Fig. 6 show

very good agreement with Eq. (15). For comparison, we
have also performed simulations in a square-shaped domain
with reflecting boundary conditions and in a domain with
cylindrical topology where Lcyl = πRC , all having the same
area. They indicate that the average MFPT becomes sensible
for the shape of the domain as the absorbing anchor site
is shifted toward the domain boundary. Specifically, marked
deviations between the average MFPT for the circular and the
square-shaped domains occur when d/Lsq > 0.6.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we combine asymptotic analytical methods
with Monte Carlo simulations to discuss the Brownian move-
ment of calcium ion channels (IP3Rs) on a membrane patch
of the ER containing a small absorbing anchor site to trap the
channel. We find excellent agreement between the asymptotic
expressions and the stochastic simulations if the O(1) in
Eq. (4), coming from the regular part RN of an associated
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Neumann function, is taken into account, and the radius of the
diffusing channel (rch) is sufficiently small.

As the channel radius increases, one has to take into
account that the diffusing channel only samples an effective
area when reflecting boundary conditions are applied. Based
on this observation, we suggest a simple correction to the
asymptotic expression for the average MFPT when the channel
radius increases. Specifically, at large channel radius, the
characteristic length of the domain Lc should be replaced by
the effective length Lc − rch in Eq. (4) keeping the functional
form of the expression for the average MFPT the same.

Both asymptotic results and Monte Carlo simulations show
that the average MFPT for a circular and a square-shaped
domain of the same total area are indistinguishable if the
anchor site remains within half a characteristic length scale
from the domain center (Fig. 6). This suggests that, in
symmetric domains, which are characterized by only one
length scale, the average MFPT is insensitive to the particular
shape of the domain boundary if the trapping site is sufficiently
close to the domain center.

However, when the domain is asymmetric, as in the case
of a rectangular or a cylindrical domain, the average MFPT
depends on the aspect ratio between the characteristic length
scales of the respective domain. As a result, one can observe a
difference in the average MFPT, compared to a square-shaped
domain of the same area, even when the anchor site is located
at the center. Changing the aspect ratio can only increase
the average MFPT compared to a square-shaped domain

of the same area for which the average MFPT assumes a
minimum.

In this paper, we focused on the spatially averaged MFPT
of a small diffusing channel protein toward a small absorbing
anchor site in different two-dimensional geometries, which
was motivated by the observed clustering of IP3R calcium
channels diffusing within a finite ER membrane patch.
However, we would like to mention that our results may
also be useful to estimate the average MFPT of channel
proteins or receptor molecules on other membrane structures or
quasi-two-dimensional cellular organelles. The inverse of the
average MFPT can be used as an estimate for the diffusion-
limited rate constant to describe the association between a
diffusing channel protein and a preestablished static trapping
site, such as an IP3R cluster [16].
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