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Abstract. Clustering of ion channels is a common phenomenon, yet it is not well
understood. While several explanations for channel clustering have been suggested,
we propose a new theory that is based on information theoretic reasoning and is
thus generic and may apply very generally.

1 Introduction

Clustering of ion channels is a very common phenomenon in nature. It occurs
naturally in myelinated neurons, where the active sodium channels are con-
centrated at the nodes of Ranvier acting as a signal booster. But it also in
neurons that are not myelinated, e.g. in some neuron types in the retina [1]. In
these types of neurons, there is no obvious geometric reason for the clustering.
As another example, the release of Ca2+ from the endoplasmic (or sarcoplas-
mic) reticulum, is controlled by small clusters of Ca2+-release channels, that
often contain no more than 20–50 channels. While it is not understood why
the ion channels are clustered, a number of theories and theoretical models
have been put forward. Some of them involve attractive interactions between
the channel proteins [2], the organization of the membrane in micro-domains
(“rafts”) with different structures where some structures are more likely to
host channel proteins than others [3], or the involvement of the cytoskele-
ton by locally anchoring the channels by a sub-membrane undercoat [1]. A
novel idea towards the solution of this puzzle is based on the capability of
information transmission of groups of ion channels [4,5,6]. In these papers, it
has been shown that small signals may be better detected by smaller clus-
ters. The size of the ion channel clusters determines (for small clusters in a
non-trivial way) the magnitude of the fluctuations and thus – via the effect
of stochastic resonance – a small signal can be enhanced.

Intracellular calcium signaling is based on the release of calcium from
intracellular stores by small clusters of release channels that may not include
more than 20–50 channels. We propose that the small size of the cluster
enhances the calcium release stimulated by small numbers of agonist binding
to the receptors. A simple stochastic theory predicts optimal cluster sizes
that are compatible with experimental results.
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2 Optimal Cluster Sizes
in Neuronal Ion Channels Clusters

Since there is a great variety in the distribution and kinds of ion channels
relevant for transmission of electrical signals in the nervous system, we are
selecting as model channels those, that have been identified in the squid
axon (although they are not clustered there). Most important are the sodium
and potassium channels. Each potassium channel has four identical subunits
(gates) that are either closed or open. The opening and closing rates αK(v)
and βK(v), respectively, for each subunit are given by [7]

αK(v) =
0.01(10− v)

exp ((10− v)/10)− 1 , βK(v) = 0.125 exp
(
− v

80

)
, (1)

where v refers to the cross-membrane potential. The opening and closing
processes of the subunits are assumed to be Markovian and described by the
two-state master equation for the open-probability of a subunit

ṗn(t) = − (αK(v) + βK(v)) pn(t) + αK(v) . (2)

The entire channel is open when all four subunits are open.
The sodium channel is composed of three identical (fast) subunits that

– similar to the potassium channel subunits – tend to open when the cross-
membrane voltage is increasing, i.e.

αf
Na(v) =

0.1(25− v)
exp ((25− v)/10)− 1 , βf

Na(v) = 4.0 exp
(
− v

18

)
(3)

with the corresponding two state master equations for the state of the gates

q̇n(t) = −
(
αf

Na(v) + βf
Na(v)

)
qn(t) + αf

Na(v) . (4)

But it also comprises a (slow) deactivation gate that tends to close with
increasing trans-membrane voltage. The opening and closing rates of the de-
activation gates are given by

αs
Na(v) = 0.07 exp

(
− v

20

)
, βs

Na(v) =
1

exp ((30− v)/10) + 1
, (5)

with the associated two-state master equation describing the state of the
in-activation gate

q̇4(t) = − (αs
Na(v) + βs

Na(v)) q4(t) + αs
Na(v) . (6)

A sodium channel is open when all three fast gates are open and the inac-
tivation gate is open. In all equations above, the trans-membrane potential is
measured in millivolts (mV), and the time is measured in milliseconds (ms).

A cluster of ion channels is made up of a number NK of potassium chan-
nels and NNa of sodium channels that are close enough that they all share
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the same (not fixed) trans-membrane potential. To obtain a rough estimate
of the allowed distances we employ linear cable theory. Assuming that the
cluster under consideration is located on an axon and that the axon (a long
thin object) can be treated as a one-dimensional cable, the cable equation
for the transmembrane voltage v(x, t) along the cable (x-direction) reads

τ
∂v(x, t)

∂t
= −IionRm + λ2

m

∂2v(x, t)
∂x2

, (7)

where for the giant squid axon (our model system), λm = 0.65 cm, Rm =
103Ω cm2 and τ = 1ms. The term IIon contains all specific ionic transmem-
brane currents and a leakage current that lumps all other ionic currents.

The linear extent of a ion-channel cluster with a shared trans-membrane
potential therefore should be smaller than the typical length scale of the sys-
tem λm = 0.65cm. Since a two-dimensional “cable equation” would factorize
into two cable equations, a cluster size should be much less than 0.4mm2 in
order that the approximation of uniform voltage to apply. In this paper we
only consider cluster sizes of up to several hundred µm2 and we thus stay
well within the regime where a shared transmembrane potential is a very
good approximation. Thus, within one ion channel cluster, the diffusion term
on the right hand side of the cable equation vanishes and we wind up with
an ordinary differential equation for the transmembrane potential which we
re-write as

C
dv

dt
= −gK(v − vK)− gNa(v − vNa)− gl(v − vl) + Iext , (8)

with the conductance of the sodium system, potassium system and leakage
system given by gK, gNa, gl, respectively. C denotes the membrane capacitance
and vK, vNa and vL the Nernst potentials of the ionic systems. Assuming
that the densities of the potassium channels ρK and sodium channels ρNa are
homogeneous throughout the cluster of area A, we can express gK and gNa

in terms of the conductance of single open channels γK, γNa, i.e.

gK

A
=

Nopen
K γK

A
=

Nopen
K

NK
ρKγK

gNa

A
=

Nopen
Na γNa

A
=

Nopen
Na

NNa
ρNaγNa . (9)

Dividing (8) by the cluster area, one finds

C
dv

dt
= −Nopen

K

NK
ρKγK(v − vK)

−Nopen
Na

NNa
ρNaγNa(v − vNa)− gl(v − vl) + Iext . (10)

The fraction of open channels can be obtained at each time step by using
a Monte-Carlo type technique put forward in [8].
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As a result of this Monte-Carlo type procedure, the number of open chan-
nels (potassium and sodium) is determined and can be inserted into Eq.(10)
which is then integrated by one time step of 10µs by using a first order solver.
For the channel densities we use ρNa = 60/µm2 and ρK = 20/µm2.

Subsequent updating of the channel-states and integration of Eq.(10)
leads to the membrane voltage as a function of time. A typical trajectory
is shown in Fig. 1.
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Fig. 1. A spike train generated spontaneously by 1000 potassium and 3000 sodium
channels in one cluster is shown. The fluctuations of the membrane potential during
quiescent intervals is about 10mV, i.e. more than 10% of the actual resting potential
of about −70 mV

2.1 Spontaneous Firing Rates

In Fig. 2, the average time-interval between two successive action potentials
is shown as a function of the cluster size. For small cluster sizes, the firing
rate increases with increasing cluster size. Only after the cluster size exceeds
about 1µm2, an increasing cluster size results in a decreasing spontaneous
firing rate.

2.2 Variance and Firing Rates

In Fig. 3, we show the standard deviation from the average firing interval
normalized by the average firing interval as a function of the cluster size.
This measure is called the Fano-factor and is used sometimes to describe



Signals from Clustered Ion Channels 609

0

20

40

60

80

100

120

0.50.05 5 50 500
area( mm2)

<
 T

 >
[m

s]

Fig. 2. The average interval between two
consecutive spontaneous spikes is shown as
a function of the cluster size N
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the regularity of the spike train. This Fano factor η is shown in Fig. 3 as a
function of the cluster size. For vanishing synaptic noise this measure exhibits
a minimum roughly where the firing rate exhibits a maximum.

2.3 Response to Weak Signals

In the limit of large cluster sizes, the deterministic Hodgkin-Huxley equa-
tions require the amplitude of injected currents to exceed a threshold (which
in general depends on the frequency content of the signal). Thus a signal
that does not overcome this threshold will not be encoded in a spike train.
Decreasing the cluster size will increase the fluctuations of the membrane
potential (as it is evident from Fig. 2). When the membrane voltage fluctua-
tions add favorably to the (sub-threshold) external signal an encoding takes
place as random sampling of the subthreshold signal. When the fluctuations
become too big, i.e. the area of the cluster too small, the fluctuations of the
transmembrane potential over-dominate the signal and the neuronal spike
train mostly encodes the noise and not the signal.
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Fig. 4. The interspike interval histograms (ISIH) are shown for a subthreshold
sinusoidal signal (11) for cluster areas of 0.5µm2, 5µm2, 100µm2 and 250µm2

This effect is demonstrated in Fig. 4, where we show the interspike-interval
histograms (ISIH) of the neuronal spike train at various clustersizes when an
external current of the form

Iext = A cos
(
2πt
T

)
(11)

is applied, where A = 2µ A/cm2 and T = 60ms. A peak of the ISIH at the
period of the external signal indicates encoding of the signal. Since the ISIH’s
in Fig. 4 are normalized, the height of the peak (if any) at T = 60ms can
be used as a measure of encoding. Best encoding takes place for the injected
signal under consideration at a cluster area of about 100µm2.

Another remarkable finding is that the ISIH at small cluster sizes (see the
left upper panel of Fig. 4) exhibits an additional peak at very small intervals,
indicating that the concept of refractory period that is characteristic for the
macroscopic deterministic systems seems to collapse.

3 Optimal Cluster Sizes
for Intracellular Ca2+ Signaling

Many important cellular functions are regulated by intra- and intercellular
Ca2+ signals. They are involved in the insulin production of pancreatic β–
cells [9], in the enzyme secretion in liver cells (for a review, see e.g. [10])
and for the early response to injury of brain tissue [11] and corneal epithe-
lia [12]. Recent new insights into the biophysical mechanism of intracellular
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Ca2+ release have revealed that the actual release sites are discrete and as
small as about 100 nm indicating that mesoscopic methods are necessary for
realistic models of Ca2+. Consequences of the discreteness of the release clus-
ters for Ca2+ wave formation have been explored in [13] and [14]. In this
paper, we show that the clustering of the release channels can resonantly en-
hance the sensitivity of the calcium signaling pathway by exploiting internal
fluctuations.

Most of the Ca2+ that constitutes the signal is released from intracellular
stores such as the endoplasmic reticulum (ER) into the intracellular space
through the Inositol 1,4,5-Trisphosphate (IP3) receptor. The IP3 receptor
(IP3R) is modeled [15] by three identical subunits that each have three bind-
ing sites: one for the messenger molecule IP3 (m gate), one activating site
(n gate) for Ca2+ and one inactivating site (h gate) for Ca2+. In order for
a subunit to conduct Ca2+, only the IP3 and the activating Ca2+ binding
site need to be occupied. The entire IP3R is conducting if three subunits are
conducting. The Ca2+ binding site invokes an autocatalytic mechanism of
Ca2+ release (Ca2+ induced Ca2+ release) giving rise to a rapidly increasing
intracellular Ca2+ concentration if the concentration of IP3 exceeds a cer-
tain threshold. When the inactivation Ca2+ binding sites become occupied
and the IP3Rs close, the Ca2+ pumps remove Ca2+ from the intracellular
space, which is necessary since elevated concentrations of Ca2+ are toxic for
the cell. Once the Ca2+ concentration is low and IP3 is present in sufficient
concentration, calcium induced calcium release will rapidly increase intracel-
lular calcium levels giving rise to oscillatory calcium signals. The oscillatory
nature of the Ca2+ signals suggests that the primary information content of
the Ca2+ signals is their frequency [16]. In previous work it has been reported
that globally IP3-mediated Ca2+ signals can be devolved into localized Ca2+

release events due to clustered distributions of IP3Rs [17] with only a few
tens of IP3Rs per cluster and a size of about 100nm, indicating that thermal
open-close transitions of single IP3R’s are essential. Observations of signals of
differing magnitudes first suggested a hierarchy of calcium signalling events,
with smaller blips representing fundamental events involving opening of sin-
gle IP3R and the larger sparks or puffs being elementary events resulting from
the opening of small groups of IP3Rs [18,17]. Improved spatial and temporal
resolution recordings, however, have revealed that there is not a clear distinc-
tion between fundamental and elementary events [17,19]. It is suggested that
the localized calcium release varies in a continuous fashion due to stochastic
variation in both numbers of channels recruited and durations of channel
openings.

Our study is based on the Li-Rinzel Model [20], a two-variable simplifi-
cation of the DeYoung-Keizer model [15] where the fast variables m,n have
been replaced by their quasi equilibrium values m∞ and n∞. According to
this model, the calcium flux from the ER to the intracellular space is driven
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by the Ca2+ gradient, i.e.

d[Ca2+]
dt

= −ICh − IP − IL, (12)

dh

dt
= αh(1− h)− βhh , (13)

with

ICh = c1v1m
3
∞n3

∞h3([Ca2+]− [Ca2+]ER) (14)

IP =
v3[Ca2+]2

k2
3 + [Ca

2+]2
(15)

IL = c1v2([Ca2+]− [Ca2+]ER) . (16)

Here, [Ca2+] denotes the intracellular Ca2+ concentration, [Ca2+]ER the Ca2+

concentration in the ER, and h a slow inactivation variable. ICh denotes
Ca2+ efflux from intracellular stores through IP3R channels, IP the ATP-
dependent Ca2+ flux from the intracellular space back to the stores, and IL
represents the leak flux. The slow Ca2+ inactivation process depends on both
the concentration of IP3 and Ca2+ via the rate constants

αh = a2d2([IP3] + d1)/([IP3] + d3) , βh = a2[Ca2+]. (17)

The other parameters are m∞ = [IP3]/([IP3] + d1), n∞ = [Ca2+]/([Ca2+] +
d5), c1=0.185, v1 = 6s−1, v2 = 0.11s−1, v3 = 0.9µMs−1, k3 = 0.1µM,
d1 = 0.13µM, d2 = 1.049µM, d3 = 0.9434µM, d5 = 0.08234µM, and a2 =
0.2µM−1s−1. The total amount of Ca2+ is conserved via the Ca2+ concen-
tration in ER with [Ca2+]ER = (c0 − [Ca2+])/c1 with c0 = 2.0µM. The
concentration of IP3 denoted by [IP3] is a control parameter.

The form of Eq. (13) suggests that the inactivation process for each IP3R
can be modeled as a stochastic process where h = 1 describes the open
IP3R and h = 0 describes the closed IP3R (i.e. no calcium current through
the IP3R) – constituting the stochastic Li-Rinzel model. The power three
of h in Eq. (12) indicates the three subunits of the IP3R and thus three
inactivation h gates. Each gate can be in two states, the open (unbound)
and closed (bound) state. Since the h-gates are the slowest gates, we assume
that switching between the two states can be approximated by a two-state
Markov process with the opening rate of αh and the closing rate βh. The
IP3R is conducting if all three h-sites are unbound. The Ca2+ flux through
the IP3R in the kinetic model is then given by the modified form of Eq. (14)

ICh = c1v1m
3
∞n3

∞
Nh−Open

N

(
[Ca2+]− [Ca2+]ER

)
, (18)

where N and Nh−Open indicate the total number of IP3Rs and the number
of h-open receptors in the cluster, respectively. Eqs. (12)–(17) represent the
deterministic limit of the stochastic scheme Eqs.(12), (15)–(18) for a large
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Fig. 5. The bifurcation diagram of the de-
terministic Li-Rinzel model (a) and cal-
cium signals generated by a cluster of 20
IP3Rs (b)

number N of channels. The release of Ca2+ in the stochastic Li-Rinzel model
is a collective event of a number of globally coupled channels (via the common
Ca2+ concentrations) with stochastic opening and closing dynamics. Each
gate is simulated explicitly by two-state Markov processes with opening and
closing rates αh and βh, respectively.

In the deterministic limit (i.e. N → ∞), the two-variable Li-Rinzel model
has one stable fixed point for [IP3]< 0.354µM and [IP3]> 0.642µM. At
[IP3]=0.354 µM and [IP3]=0.642µM Hopf bifurcations occur so that [Ca2+] is
oscillating for 0.354µM<[IP3]<0.642µM (Fig. 5a). Under normal conditions
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[IP3] is below the critical value 0.354µM and the deterministic model with a
fixed point does not permit calcium signaling.

In Fig. 5b, traces of a Ca2+ signal released from a cluster with 20 IP3Rs
are shown for three values of [IP3] in the three deterministically distinguished
regimes I,II,III (see Fig. 5a). The Ca2+ signals consists of stochastic sequences
of Ca2+ release events (calcium puffs) in all three regimes (I,II,III) with a
continuum of amplitudes and durations. The regimes I,II and III are not well
distinguishable for these small clusters. Most importantly for the purpose
of this paper, the Ca2+ puffs for [IP3]< 0.354µM constitute a Ca2+ signal
with a frequency content. To determine the degree of periodicity of the Ca2+

released from a cluster, we compute the normalized power spectrum

Ss(ω) =
1
T

∣∣∣∫ T

0

(
[Ca2+](τ) − 〈[Ca2+]〉) exp (−2πiωτ)dτ ∣∣∣√

〈([Ca2+]− 〈[Ca2+]〉)2〉
, (19)

where the length of the observation interval T is 5000 s for all data presented
in this paper. In Fig. 6, we show the normalized power spectra S(ω) at various
sizes N of the release cluster. For very small clusters (e.g. N = 2 in Fig. 6a)
and very large clusters (e.g.N = 10, 000 in Fig. 6c)), the power spectrum does
not exhibit a peak and thus the release of Ca2+ is dominated by stochastic

Fig. 6. Power spectra S(ω) of the Ca2+

signal released by clusters of (a) N = 2,
(b) N=150, and (c) N=10,000 IP3Rs at
[IP3]=0.30 µM
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events. In between, however, a peak in the power spectrum (Fig. 6b) indicates
periodicity in calcium release. The strength of the peak is characterized
by the elevation of the peak ∆S which is shown in Fig. 7 as a function
of the size of the cluster N for [IP3]=0.25 µM. The elevation of the power
spectrum goes through a maximum at N ≈ 20. Typical recorded values of
[IP3] range between 0.15µM−0.25µM. In this context it is interesting to note
that the coherence for [IP3]=0.25 µM peaks at N = 20 which is considered
a realistic cluster size (see also [21]). To summarize, the overall coherence of
the Ca2+ signal exhibits a maximum at a cluster size that depends on the
concentration of IP3. For IP3 concentrations closer to the Hopf-bifurcation
([IP3]=0.354µM), the maximum coherence is achieved for larger clusters of
IP3Rs and vice versa.
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