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ABSTRACT Intracellular Ca2� release is controlled by inositol 1,4,5-trisphosphate (IP3) receptors or ryanodine receptors.
These receptors are typically distributed in clusters with several or tens of channels. The random opening and closing of these
channels introduces stochasticity into the elementary calcium release mechanism. Stochastic release events have been
experimentally observed in a variety of cell types and have been termed sparks and puffs. We put forward a stochastic version
of the Li-Rinzel model (the deactivation binding process is described by a Markovian scheme) and a computationally more
efficient Langevin approach to model the stochastic Ca2� oscillation of single clusters. Statistical properties such as Ca2�

puff amplitudes, lifetimes, and interpuff intervals are studied with both models and compared with experimental observations.
For clusters with tens of channels, a simply decaying amplitude distribution is typically observed at low IP3 concentration,
while a single peak distribution appears at high IP3 concentration.

INTRODUCTION

Intracellular calcium signals were first observed in medaka
eggs and later on in various other cell types (Cornell-Bell et
al., 1990; Bezprovanny et al., 1991). Intracellular Ca2�

signals are due to release of Ca2� from intracellular stores
such as the endoplasmic reticulum (ER) or the sarcoplasmic
reticulum (SR) through inositol 1,4,5-trisphosphate receptor
channels (IP3R) or ryanodine receptor channels (RyR). Cy-
tosolic Ca2� signals in intact cells can display spatially and
temporally complex patterns (Cornell-Bell et al., 1990;
Newman and Zahs, 1997; Harris-White et al., 1998). They
can act as second messengers in living cells to regulate
multiple cellular functions such as neurotransmitter release,
synaptic plasticity, gene expression, and cell death
(Golovina and Blaustein, 1997; Koninck and Schulman,
1998; Allen et al., 2000).

Recently, high-resolution recordings enable us to inves-
tigate elementary intracellular Ca2� release events. It has
been observed that the Ca2� release channels are spatially
organized in clusters. The collective opening and closing of
several calcium release channels in a cluster causes Ca2�

puffs or sparks observed in experiments (Cheng et al., 1993;
Callamaras et al., 1998; Melamed-Book et al., 1999; Gonza-
lez et al., 2000; Mak et al., 2001). Ca2� blips arising from
the opening of single release channels have also been ob-
served in experiments (Bootman et al., 1997; Lipp and
Niggli, 1998; Sun et al., 1998). Typically, puffs remain
spatially restricted at a low concentration of IP3 stimulus. At
high levels of [IP3], neighboring clusters become function-
ally coupled by Ca2� diffusion and Ca2�-induced Ca2�

release (Bezprovanny et al., 1991) to support global Ca2�

waves that propagate in a saltatory manner throughout the
cell. Therefore, Ca2� puffs serve as elementary building
blocks of global Ca2� waves. Moreover, puffs can arise
spontaneously before a wave is initiated and can act as the
triggers to initiate waves (Bootman et al., 1997). Calcium
puffs provide a unique window on the dynamics of local
calcium release.

Observations of Ca2� signals of differing magnitudes
suggested a hierarchy of calcium signaling events, with the
smaller blips representing fundamental events involving
opening of single IP3R and the larger puffs being elemen-
tary events resulting from the opening of small groups of
IP3Rs (Lipp and Niggli, 1998; Bootman et al., 1997). Im-
proved spatial and temporal resolutions in recordings reveal
that Ca2� release is not functionally quantized into discrete,
stereotypical events of clearly separable magnitude. Instead,
the amounts of calcium liberated during different events
show a continuous distribution over a wide range, even
when monitored from a single site (Bootman et al., 1997;
Sun et al., 1998; Thomas et al., 1998; Callamaras and
Parker, 2000; Marchant and Parker, 2001; Haak et al.,
2001). There is not a clear distinction between fundamental
and elementary events. Experimental data suggest that the
localized calcium release varies in a continuous fashion due
to stochastic variation in both numbers of channels recruited
and durations of channel openings.

The knowledge about the calcium release mechanism is
directly related to the distribution of calcium-puff ampli-
tudes. Generally, the morphology, i.e., spatial extent, dura-
tion and amplitude, of puffs or sparks can be used to infer
the release flux and the number of release channels involved
locally in release (Bootman et al., 1997; Smith et al., 1998;
Sun et al., 1998; Thomas et al., 1998; Jiang et al., 1999;
Callamaras and Parker, 2000; Marchant and Parker, 2001).
The experimental determination of the puff amplitudes is
difficult at small amplitudes because the apparatus response
function and cutoff can modify the actual amplitudes (Pra-
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tusevich and Balke, 1996; Izu et al., 1998; Cheng et al.,
1999; Rios et al., 2001). Experimentally, it is not obvious
which aspects of Ca2� puffs are originally determined by
the dynamics of the Ca2� channels, which properties are
determined by the diffusion and Ca2� binding kinetics of
both the intrinsic binding sites in the fiber and the Ca2�

indicator dye, and which properties are induced from the
measurement of confocal line scan image.

It has been shown that the experimental amplitude distri-
butions are far from the true distribution of puff amplitudes
due to various factors in the experiment (Pratusevich and
Balke, 1996; Smith et al., 1998; Izu et al., 1998; Jiang et al.,
1999). Cheng et al. (1999) suggested that the original cal-
cium puffs should have a monotonically decreasing ampli-
tude distribution, regardless of whether the underlying
events are stereotyped. In contrast, Rios et al. (2001) re-
ported on either decaying amplitude distributions or distri-
butions with a central peak.

Mathematical and computational models offer another
angle to help settle these issues. Such models are directly
based on the microscopic kinetics of clustered channels. The
small number of calcium release channels in a cluster indi-
cates that deterministic models might be insufficient. Thus,
there is an increasing interest for the theoretical discussion
on the stochastic dynamics of local Ca2� release (Keizer et
al., 1998; Swillens et al., 1999; Dawson et al., 1999; Moraru
et al., 1999; Falcke et al., 2000; Bar et al., 2000). However,
most of these studies focus on the onset of saltatory prop-
agation of Ca2� waves due to intercluster diffusion of Ca2�

(Keizer et al., 1998; Falcke et al., 2000). The stochastic
dynamics of clustered IP3Rs has been studied by Swillens
et al. (1999) where the IP3 receptors are assumed to be
spatially distributed and coupled by calcium diffusion.
The model requires 17 variables for each IP3 receptor.
They suggested that a typical cluster contained 20 –30
channels in close contact to ensure efficient interchannel
communication.

In this paper we expand the much simpler two-variable
Li-Rinzel model (Li and Rinzel, 1994) to its Markov-sto-
chastic version to simulate stochastic calcium release from
small clusters of IP3Rs. In the model, the channels are
assumed to be close enough so that Ca2� concentration can
be considered homogeneous throughout the cluster. We
neglect Ca2� diffusion between cluster and environment
without accounting for spatial aspects of the formation and
collapse of localized Ca2� elevations. The amplitude, life-
time, and interpuff interval distribution of calcium puffs are
discussed. We show that different numbers of IP3Rs and
different IP3 stimuli can lead to a variety of different am-
plitude distributions, including simply decaying distribu-
tions and single- and double-peaked distributions. Based on
the open channel number distributions we infer—consistent
with other independent estimates (Swillens et al., 1999)—
that the number of channels per cluster is around 20. We
also approximate the Markov Li-Rinzel model by a Lange-

vin-type model. It is shown that the Langevin approach is a
simple but efficient approximation for the Markov process,
even for a cluster with tens of IP3Rs.

THEORETICAL METHODS

Deterministic Li-Rinzel model

The first theoretical model for agonist-induced [Ca2�] oscillations based
on microscopic kinetics of IP3 and [Ca2�] gating of the IP3R was proposed
by De Young and Keizer (1992). The model assumes that three equivalent
and independent subunits are involved in conduction in an IP3R. Each
subunit has one IP3 binding site and two Ca2� binding sites, one for
activation, the other for inhibition. Thus, each subunit may exist in eight
states with transitions governed by second-order and first-order rate con-
stants. Only the state with one IP3 and one activating Ca2� bound contrib-
utes to the subunit’s open probability. All three subunits must be in this
state for the channel to be open. Although the model is unique in giving
detailed gating kinetics, the number of variables is relatively high. It
involves eight variables plus the concentration of IP3 as a control param-
eter. A simplified version of the model was proposed by Li and Rinzel
(1994). It is shown that the full De Young-Keizer model is symmetric in
some of the binding processes and that the IP3 binding is at least 200 times
faster than the Ca2� activation binding, while the Ca2� activation binding
is at least 10 times faster than the Ca2� inactivation binding and the change
rate of [Ca2�] during oscillations (Li and Rinzel, 1994). Considering these
factors, the De Young-Keizer model can be reduced to the following
system of two ordinary differential equations

d�Ca2��

dt
� �JChannel � JPump � JLeak (1)

dh

dt
� �h�1 � h� � �hh. (2)

with JChannel being calcium flux from the ER to the intracellular space
through the IP3R channel, JPump being the calcium flux pumped from the
intracellular space into the ER, and JLeak being leakage flux from the ER
to the intracellular space. The expressions for the fluxes are given by

JChannel � c1v1m�
3 n�

3 h3��Ca2�� � �Ca2��ER� (3)

JPump �
v3�Ca2��2

k3
2�[Ca2�]2 (4)

JLeak � c1v2��Ca2�� � �Ca2��ER� (5)

with

m� �
�IP3�

�IP3� � d1

n� �
�Ca2��

�Ca2�� � d5

�h � a2d2

�IP3� � d1

�IP3� � d3

�h � a2�Ca2�� (6)

The parameters of the model are c1 � 0.185, v1 � 6 s�1, v2 � 0.11 s�1,
v3 � 0.9 �M s�1, k3 � 0.1 �M, d1 � 0.13 �M, d2 � 1.049 �M, d3 �
0.9434 �M, d5 � 0.08234 �M, and a2 � 0.2 �M�1 s�1. Conservation of
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Ca2� implies the constraint [Ca2�]ER � (c0 � [Ca2�])/c1, with c0 � 2.0
�M. The concentration [IP3] is a control parameter.

This simplified model resembles the Hodgkin-Huxley (HH) model for
electrically excitable membranes if [Ca2�] is replaced by the transmem-
brane potential. The driving force for Ca2� fluxes is the concentration
gradient ([Ca2�] � [Ca2�]ER), while the driving force for the ionic currents
in the HH equation is the voltage gradient.

Markov-stochastic Li-Rinzel model

Equations 1 and 2 describe the deterministic behavior averaged for a large
number of channels. The small number of IP3Rs in single clusters suggests
that a stochastic formulation of these equations is necessary if calcium
release from a single cluster is considered. Following the deterministic
Li-Rinzel model, we only consider the stochastic opening and closing
process for gate h here. Each gate h is an inactivation binding site for Ca2�

that is occupied (closing) or non-occupied (open). We describe the binding
and unbinding of these three sites by independent two-state Markov pro-
cesses with opening and closing rates �h and �h, respectively.

Thus, instead of Eq. 2, the stochastic scheme for all three gates is
postulated

CL|;
�h

�h

O (7)

Equation 6 shows that the open rate �h is only determined by [IP3] and the
closing rate �h is determined by [Ca2�]. A single cluster consists of N
IP3Rs with three stochastic h gates each. They are globally coupled by a
common but varying [Ca2�].

There are several ways to simulate this stochastic scheme. A widely
applied approach is simply to account for the number of channels in each
state of the kinetic model (Strassberg and DeFelice, 1993). The IP3R
channel can exist in four different states, and the kinetic scheme describing
the behavior of this channel is given by

�n0�L|;
3�h

�h

�n1�L|;
2�h

2�h

�n2�L|;
�h

3�h

�n3� (8)

where [ni] is the number of the channels with i open gates, and hence [n3]
labels the open state of the IP3R channel. The total population of channels
in each of their possible states will be tracked with time.

One can also directly simulate the stochastic dynamics of Eq. 7 for each
single gate by a two-state Markov process (Jung and Shuai, 2001). This
scheme can be expressed directly in terms of a computer algorithm. In
detail, the state of the system is updated for every small time step �t. Each
IP3R channel has three two-state h gates. If an h gate is closed at time t,
then the probability that it remains closed at time t � �t is exp(��h � �t),
and if it is open at time t, then the probability that it remains open at time
t � �t is exp(��h � �t). To determine the state of a gate, random numbers
are drawn consistent with these probabilities. Only if all three h gates in an
IP3R channel are open at time t, which means there is no Ca2� bound at
each of the three inactivation Ca2� sites, the channel is h disinactivated or
h-open. The probability that a h-open channel is conducting Ca2� is given
by m�

3 n�
3 . The expression for the calcium flux through the IP3R channels

replacing Eq. 3 is given by

JChannel � c1v1m�
3 n�

3
Nh�open

N
��Ca2����Ca2��ER� (9)

where N and Nh-open indicate the total number of IP3R channels and the
number of h-open channels, respectively. Nh-open/N is the h-open fraction,

replacing h3 in Eq. 3 of the deterministic model. Note that the h-open
fraction in this method becomes a discrete variable with only N � 1
possible values, rather than a continuous variable.

In this paper we discuss the Markov dynamics of calcium release events
for different IP3R numbers N and stimuli [IP3]. Note that the maximum
flux rate c1v1 of the IP3R channels is constant for varying N in our
simulation. In experiments, [IP3] can be stimulated and adjusted by the
binding of an extracellular agonist such as a hormone or a neurotransmitter
to receptors in the surface membrane (Callamaras et al., 1998; Sun et al.,
1998).

In the model, we did not account for spatial aspects of the formation and
collapse of localized Ca2� elevations. The role of Ca2� diffusion between
the cluster and the environment in the dynamics of Ca2� puff formation is
neglected. However, the channels are assumed to be close enough so that
the Ca2� concentration within a cluster is homogeneous due to instanta-
neous Ca2� diffusion (Swillens et al., 1999). In experiment, to study the
dynamics of puffs or sparks, the clusters have to be functionally isolated.
This is the case if the IP3 concentration is low (Sun et al., 1998) and the
calcium diffusion coefficient is small (Callamaras and Parker, 2000).
Experimentally, weak Ca2� diffusion can be achieved by intracellularly
loading with the Ca2� buffer EGTA (Mak and Foskett, 1997; Horne and
Meyer, 1997; Thomas et al., 1998; Marchant et al., 1999; Cheng et al.,
1999; Callamaras and Parker, 2000; Rios et al., 2001). With a large loading
of EGTA, the clusters become functionally isolated even at large
concentrations of IP3 (Horne and Meyer, 1997; Thomas et al., 1998;
Callamaras and Parker, 2000). Short-range feedback (within 0.2 �m)
between individual IP3Rs in one cluster is still intact. Thus, even with
a larger IP3 concentration, single release sites can be studied. For this
experimental design our separated-cluster model with homogeneous
calcium is applicable.

Langevin approach

The Markov method is conceptually simple and very accurate, as long as
the random number generator is adequate and the time step �t is small
compared with the speed of fluctuations of the Ca2� signal and channel
state. However, this method is inefficient, especially for a large number of
channels. It requires a large array to store the state of each gate and the
generation of 3N random numbers for each time step. In the following we
discuss under what conditions the Markov approach can be approximated
by a Fokker-Planck equation, or equivalently by a Langevin equation for
the fraction of open inactivation gates.

Because the time scale for [Ca2�] in the dynamic equations is the
slowest, we consider the gate dynamics with constant [Ca2�] during each
time step of iteration (0.01 s). For each gate (i � 1, 2, 3) we can write down
a master equation for the numbers ni of IP3Rs with open gate i (Fox and Lu,
1994)

Ṗ�ni, t� � �N � ni � 1��hP�ni � 1, t�

� �ni � 1��hP�ni � 1, t�

� �ni�h � �N � ni��h� P�ni, t� (10)

For a large number N, this master equation can be approximated by a
Fokker-Planck equation, which is a linear partial differential equation for
the probability of fraction of h-open gates hi � ni/N (Van Kampen, 1976).
For every Fokker-Planck equation there is a statistically equivalent set of
Langevin equations, i.e., a set of stochastic differential equations (Fox and
Lu, 1994). The Langevin equation for the fraction of h-open gate hi � ni/N
is then expressed as (Fox and Lu, 1994; Fox, 1997)

dhi

dt
� �h�1 � hi� � �hhi � Ghi�t� (11)
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where Ghi(t) are zero mean, uncorrelated, Gaussian white-noise terms with

	Ghi�t�Ghj�t
�� �
�h�1 � hi� � �hhi

N
��t � t
��ij, (12)

and i, j � 1, 2, 3. The Langevin approach indicates that the stochastic
dynamics of the IP3R cluster can be treated as a deterministic dynamics
disturbed by a Gaussian white noise.

The stochastic equation for [Ca2�] flux through the IP3R is given by

JChannel � c1v1m�
3 n�

3 h1h2h3��Ca2�� � �Ca2��ER� (13)

which replaces the [Ca2�] flux through the IP3R in Eq. 3. To further
simplify the problem we replace h1h2h3 by h3, where h obeys Eq. 11. Thus,
instead of applying independent fluctuation for each h gate of IP3R, three
identical h gates are assumed. The gain in computational speed is a factor
of three. The error calculated from the mean values of [Ca2�], 	[Ca2�]�
through this approximation is �5% for N � 15 and �0.5% for N � 1000
and various [IP3] (a comparison of 	[Ca2�]� between these two approaches
is given in Fig. 5 for N � 20, which is a realistic size of a cluster (Swillens
et al., 1999)).

In the simulation, the Gaussian noise sources are generated at each
integration step by the Box-Muller algorithm. Since h has to be bound
between 0 and 1, it is necessary to verify this condition after each iteration
step. The approximate nature of Eq. 11 does not automatically maintain hi

in the required interval. We simply disregard an iteration step that leads to
a negative value for h. Simulation shows that the results are insensitive to
the choice of strategy to keep h in [0,1].

RESULTS

Approaching a deterministic model with large N

The C�� language is used for programming. We simulate
the stochastic equations by using an explicit first-order
algorithm with a time step of 0.01 s, smaller than the time
constant of the h gate, e.g., �h � 1/(�h � �h) 
 3 s for
[Ca2�] �1.0 �M and [IP3] �1.0 �M. Consistent results are
obtained by changing the time step and the total simulation
time.

In Fig. 1 we demonstrate that for large numbers of
channels, both stochastic methods reproduce the features of
the deterministic Li-Rinzel model. As [IP3] � 0.3 �M (Fig.
1 A), the average Ca2� concentration approaches the deter-
ministic limit (dashed line) at large N. In Fig. 1 B we show
that the entire bifurcation diagram is being reproduced by
the stochastic model at large N. While the deterministic
Li-Rinzel model predicts oscillation for 0.354 �M � [IP3]
� 0.642 �M (minima and maxima plotted), it predicts fixed
points anywhere else. For N � 106, this bifurcation diagram
is well-reproduced by both stochastic methods (Fig. 1 B).
This argument is obvious since Eq. 11 approaches Eq. 2 for
N 3 �, and the Langevin equation is the leading order
approach to the exact Markov equation (Eq. 10) as the size
of the fluctuations is expanded in order of 1/N. The main
advantage of the Langevin approach is that the computing
times do not depend on the number of channels, as they do
with the Markov method.

Stochastic oscillation

It is suggested that IP3R clusters typically contain several or
tens of IP3R channels (Mak and Foskett, 1997; Bootman et
al., 1997; Sun et al., 1998; Swillens et al., 1999). In the
following we limit our discussion to N 	 100. In our
simulations, different [IP3] stimuli (i.e., [IP3] � 0.3, 0.5, and
0.8 �M) are selected to represent the three deterministically
distinguished regions (fixed point, oscillation, fixed point).

In Fig. 2 A we show results obtained with the Markov
method for N � 20 and three values of [IP3]. For [IP3] � 0.3
�M, the deterministic dynamics gives a stable fixed point.
The stochastic openings of h gates, however, initiate sto-
chastic Ca2� release, i.e., puffs. The elevated values of
[Ca2�] in turn lead to large h-gate closing rates and termi-
nation of puffs. For [IP3] � 0.3 �M, we have m� � 0.7 and
�h � 0.07. If [Ca2�] increases from 0.1 to 0.5 �M, m�

increases by 67% from 0.55 to 0.86, while �h increases by
400% from 0.02 to 0.1. This large increase of Ca2�-depen-
dent inhibition (�h) causes the termination of puffs. For
[IP3] � 0.8 �M, the deterministic model gives a spiral fixed
point with a pair of complex conjugate eigenvalues. For
small IP3R clusters, fluctuations will initiate large lightly
damped stochastic oscillations. As a result, the Ca2� trajec-
tory spends less time at the stable fixed point than that of
[IP3] � 0.3 �M (Fig. 2 A). However, as N gets larger
fluctuations become smaller, and so the stochastic Ca2�

oscillation will be closer to the fixed point.

FIGURE 1 (A) Both stochastic models approach the deterministic Li-
Rinzel model at large N. In (a) we show the mean value of Ca2� versus N
obtained with the Markov method (solid square) and the Langevin ap-
proach (solid star). The deterministic limit of [Ca2�] is also shown by a
dotted line. In (B) the bifurcation diagram of the stochastic Li-Rinzel
model, obtained with Markov and Langevin methods, is compared with the
deterministic result (solid line).
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Most notably, the Ca2� trace in the deterministically
oscillatory regime can hardly be distinguished from the
other traces with respect to periodicity. They are strongly
dominated by the stochastic opening and closing of IP3Rs.
Thus, it is evident that the Ca2� release from clusters of
sizes that are believed realistic cannot be described by a
deterministic equation. The Ca2� signal trace appears as
stochastic in the deterministically oscillating regime as it
appears in the deterministically non-oscillating regimes.

The amplitudes and durations of release events (puffs) are
determined by the fractions of h-open channels and their
opening durations. The importance of the opening duration
is substantiated in Fig. 2 B. The calcium amplitude of puff
A is smaller than that of puff B, but the corresponding
h-open fraction of puff A is larger than that of puff B.

In Fig. 3 A we show the Ca2� signals obtained with the
Langevin approach for N � 20. A plot of h-open fraction
h(t) is shown in Fig. 3 B for [IP3] � 0.30 �M and N �
20. Comparing Figs. 2 B and 3 B it can be seen that the
Langevin method gives a slightly larger probability for
large or small h.

Mean value and variance of [Ca2�]

In this section we compare statistical properties of the
calcium release using the Markov method and the Langevin
approach. In Fig. 4 A the mean value 	[Ca2�]� is plotted as
a function of the cluster size. The Langevin approach yields
results that agree qualitatively with Markov simulations

even for a few tens of IP3Rs. Simulations show that for N �
20, which is a realistic size of a cluster (Swillens et al.,
1999), the results for 	[Ca2�]� agree within 10% error (Fig.
5); for N � 15, the results agree within 12% error with
various [IP3].

It is interesting to note that 	[Ca2�]� decreases with
increasing cluster size for [IP3] � 0.3 or 0.5 �M, while it
increases for [IP3] � 0.8 �M, as shown in Fig. 4 A. At small
values of [IP3], the baseline of [Ca2�] is close to the
deterministically predicted value, and very small. Thus,

FIGURE 4 Time average of the calcium signal as a function of the
cluster size N at [IP3] � 0.30, 0.50, and 0.8 �M (A). Variance of the
calcium signal as a function of the cluster size N at [IP3] � 0.30 �M (B).
The results obtained with the Markov method and with the Langevin
approach are marked by solid squares and stars, respectively.

FIGURE 2 (A) Stochastic oscillation of the calcium release of a cluster
of 20 IP3Rs obtained with the Markov method at [IP3] � 0.3, 0.5, and 0.8
�M. The dotted line is for the result obtained with the deterministic model.
(B) A calcium trace is compared with the associated trace of the fraction of
h-open channels for N � 20 and [IP3] � 0.3 �M.

FIGURE 3 (A) Stochastic oscillation of the calcium release of a cluster
of 20 IP3Rs with the Langevin approach is shown for [IP3] � 0.3, 0.5, and
0.8 �M. (B) The trace of the fraction of h-open channels for N � 20 and
[IP3] � 0.3 �M.
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fluctuations of the fraction of channel openings mainly yield
the increase of [Ca2�] (see Fig. 2 A), resulting in the
increase of 	[Ca2�]� in comparison to the deterministic
value. With large [IP3] (e.g., 0.8 �M), the stochastic chan-
nel closings, to the contrary, can lead to a large decrease of
[Ca2�], compared to [Ca2�] in the deterministic case (see
Fig. 2 A). Fig. 4 A also shows that the Langevin approach
gives a wrong prediction for [IP3] � 0.8 �M with small N.

In Fig. 4 B the time averaged variance 
 � 	([Ca2�] �
	[Ca2�]�)2� is shown as a function of the cluster size N for
[IP3] � 0.3 �M. Similar results are obtained for [IP3] � 0.5
and 0.8 �M (not shown). The variance decreases with
increasing cluster size, which is also predicted by the Lan-
gevin approach with Eq. 12. In the oscillatory regime, the
variance does not approach zero as N3 �, the same as the
deterministic limit.

Amplitude distribution of puffs

Fig. 2 B shows that the number of IP3Rs recruited in the
Ca2� puffs varies from puff to puff. Thus, the amplitudes
and durations of the Ca2� puffs vary. Important, and exper-
imentally recorded, characteristics of these variabilities are
amplitude, lifetime, and interpuff-interval distributions
(Pratusevich and Balke, 1996; Bootman et al., 1997; Smith
et al., 1998; Izu et al., 1998; Sun et al., 1998; Thomas et al.,
1998; Cheng et al., 1999; Jiang et al., 1999; Callamaras and
Parker, 2000; Marchant and Parker, 2001; Rios et al., 2001).
For the analysis of these distributions of puffs, we apply a
cutoff filter at a [Ca2�] of 0.2 �M to mimic a noise floor.

The shape of the puff amplitude distribution depends on
the concentration of [IP3] and the size of the cluster, char-
acterized by the number of IP3Rs in the cluster. An approx-
imate phase diagram is shown in Fig. 6 A for N 	 100 and
[IP3] 	 1.0 �M obtained with the Markov method. If the
[IP3] stimulus is quite small, the amplitudes of the sponta-
neous puffs are typically smaller than 0.2 �M and are

regarded as noise floor. For clusters with tens of IP3Rs,
monotonically decreasing amplitude distributions are
mainly found for small [IP3] stimulus (region II in Fig. 6 A).
Single-peak amplitude distributions are mainly found for
large [IP3] (region IV in Fig. 6 A). In Fig. 6, B and C we
show characteristic amplitude distributions in regions II and
IV. The transition from regions II to IV is continuous in that
a peak that eventually dominates for large enough [IP3]
develops additional to the decay at small amplitudes (region
III in Fig. 6 A, or see Fig. 6 D).

For clusters with only a few IP3Rs, single-peak amplitude
distributions are observed in region V of Fig. 6 A; two-peak
distributions are observed in region VI (see Fig. 6 E).
Different from the single-peak puff amplitude distributions
in region IV, the single-peak distribution for a few IP3Rs in
region V is strongly asymmetric, with a slow increase and a
rapid fall-off.

The amplitude distributions obtained from the Langevin
approach are also compared with the Markov method. It is
shown that when N is 
�15, both distributions exhibit
similar shapes. As two examples, one can compare Fig. 6, B
and f for N � 50, or Fig. 6, C and G for N � 20. It is also

FIGURE 5 Average of the calcium signal as a function of [IP3] for N �
20. The square indicates results obtained with the Markov method. The star
represents results obtained with the single Langevin equation for three
identical h gates. The circle represents results obtained with three Langevin
equations for three different h gates.

FIGURE 6 Phase diagram of the puff amplitude distributions is shown in
(A) in the [IP3]-N-plane. Samples of puff amplitude distributions obtained
with the Markov method are shown in (B)–(E) in various regimes indicated
in (A). Panels (F) and (G) show the amplitude distribution obtained with
the Langevin approach in comparison to those obtained with the Markov
method in (B) and (C).
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shown that the Langevin approach yields more puffs with
larger amplitudes, which leads to (via the normalization) a
drop-off of distribution at smaller amplitude.

Fig. 6 A shows that different distributions of puff ampli-
tudes can be observed at different [IP3] and N. The partic-
ular value of N does not influence the different phases very
much for 10 � N � 100. The phase boundaries are mostly
determined by [IP3]. For N 
 10, the Markov process can be
approached by the Langevin approach, suggesting that the
stochastic cluster-dynamics can be considered as a deter-
ministic dynamics perturbed by Gaussian noise. In region II
(see Fig. 6 A), where the deterministic dynamics approaches
a small fixed point, we thus expect a simply decaying
distribution of puff amplitude. For increasing [IP3], the
Hopf-bifurcation in the deterministic equation introduces an
oscillatory component of the calcium dynamics, giving rise
to a characteristic amplitude, manifesting in the peak of the
puff amplitude distribution in III and the part of IV with
[IP3] � 0.64 �M. For [IP3] 
 0.64 �M, the deterministic
dynamics predicts a large stationary [Ca2�]. Channel noise
gives rise to a distribution of puff amplitude around this
value.

The shapes of the puff amplitude distributions are con-
sistent with observed amplitude distributions in experiments
from Xenopus oocytes and HeLa cells (Sun et al., 1998;
Thomas et al., 1998; Marchant and Parker, 2001; Haak et
al., 2001).

Lifetime distribution of puffs

In addition to a wide distribution of Ca2� puff amplitudes,
considerable variations of lifetimes have been observed
experimentally (Sun et al., 1998; Thomas et al., 1998; Haak
et al., 2001). The lifetimes of puffs are measured as their full
width at half-maximal amplitude (FWHM). In other words,
FWHM is defined here as the time interval for which the
calcium concentration profile is above one-half of the max-

imum concentration reached during the puff. Because the
model presented does not include a spatial aspect, it is
impossible to compare to FWHM in the sense of puff width
(as done by Smith et al. (1998)).

Compared to various types of amplitude distribution,
numerical simulation shows that the shapes of the FWHM
distribution turn out to be more uniform. A typical FWHM
distribution is shown in Fig. 7 A for [IP3] � 0.3 �M and
N � 20. It exhibits a single peak at �3 s, i.e., most
frequently, the duration of a puff is �3 s. For N � 10 and
IP3 � 0.6 �M, a monotonically decreasing distribution is
found with the Markov method. The Langevin approach can
reproduce the lifetime distribution of puffs satisfactorily
(see Fig. 7 B).

A broad distribution of lifetimes is also observed in
experiments for HeLa or oocyte cells (Sun et al., 1998;
Thomas et al., 1998). A difference is that the characteristic
time scale of calcium puff for HeLa or oocyte cells is �100
ms, but the characteristic time scale for the Li-Rinzel model
is �1 s. The time scale for oscillations in the Li-Rinzel
model is related to the rate of the IP3R inactivation process.
If a proper inactivation rate is set in the model, shorter
lifetimes can then be observed. However, it is also possible
that in HeLa and oocyte cells the buffered diffusion of
intracellular Ca2� can affect the lifetime of puffs, which is
not addressed in the current model.

Correlation between amplitude and lifetime
of puffs

Experimental observations indicate small correlations be-
tween puff amplitudes and durations (Thomas et al., 1998).
Fig. 7 C shows a scatter plot of puff amplitudes versus
lifetimes at [IP3] � 0.3 �M and N � 20. Similar plots are
obtained for different values of [IP3] and N. A large puff
amplitude does not correlate with a large lifetime, and vice
versa (also see Fig. 2 B). Therefore, one can observe a puff

FIGURE 7 Lifetime distributions of puffs obtained with the Markov method (A) and the Langevin approach (B) are shown at N � 20 and [IP3] � 0.3
�M. The amplitude-lifetime scatter plot (C) demonstrates small correlations between lifetime and amplitudes of puffs.
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with a large amplitude but short duration, or a puff with a
small amplitude but long duration.

To quantitatively discuss the correlation between puff
amplitude x1 and lifetime x2 of puffs, the correlation � is
calculated with the following equation:

� �
	�x1 � 	x1���x2 � 	x2���

�	�x1 � 	x1��
2��1/2�	�x2 � 	x2��

2��1/2 (14)

Simulation results show that the correlation values are typ-
ically smaller than 0.3 for various N and [IP3].

Interpuff-interval distribution of puffs

Another important characteristics of calcium puffs is the
distribution of times between two consecutive puffs. Recent
experimental investigation (Marchant et al., 1999) has re-
vealed interpuff-interval (IPI) distribution that exhibits a
single peak mode. The IPIs obtained with the Markov
method and Langevin approach for [IP3] � 0.3, 0.5, and 0.8
�M are shown at N � 20 in Fig. 8, A and B, respectively.
The IPIs resulting from the Langevin approach agree with
those obtained with the Markov method (Fig. 8, A and B),
although the lifetime distributions of puffs are not well
described by the Langevin method (Fig. 7, A and B).

Size of IP3R clusters

An important question is the number of IP3Rs in a cluster.
Experiments with Xenopus oocytes suggest that approxi-

mately five to eight spontaneously open IP3Rs can be ob-
served in a cluster (Mak and Foskett, 1997; Sun et al.,
1998). Fig. 9 A shows the distributions of h-open IP3Rs
obtained from the Markov method for various cluster sizes
N at [IP3] � 0.3 �M. This value is motivated by experi-
ments that need this [IP3] to stimulate puffs. For the Lan-
gevin approach, the h-open fraction (i.e., h3) is a continuous
number between 0 and 1. The corresponding distribution of
Nh-open � (integer)(h3N) is shown in Fig. 9 B at [IP3] � 0.3
�M for various N. It can be seen that both methods yield
consistent distributions.

Fig. 9 indicates that the larger the cluster, the more
unlikely is the opening of a small number of IP3Rs. Thus,
given the typical number of five to eight spontaneously
open IP3Rs, we can conclude from Fig. 9 that the sizes of
the clusters are �15�25 IP3Rs. This result is consistent
with the theoretical estimate of the cluster size by Swillens
et al. (1999). They predict 20–30 IP3Rs per cluster based on
the requirement of interchannel communication.

DISCUSSION AND SUMMARY

Previous work showed that IP3-mediated global Ca2� sig-
nals can be devolved into localized Ca2� release events due
to the clustered distribution of IP3Rs (Bootman et al., 1997).
Furthermore, observations of signals of differing magni-
tudes suggested a hierarchy of calcium signaling events
from small blips to large puffs (Lipp and Niggli, 1998;

FIGURE 8 Interpuff-interval distributions of puffs obtained with the
Markov method (A) and the Langevin approach (B) are shown at N � 20
and [IP3] � 0.3 �M (solid square), 0.5 �M (solid triangle), and 0.8 �M
(open circle).

FIGURE 9 Distribution of h-open channel numbers for [IP3] � 0.3 �M
and various cluster sizes N � 10, 15, 20, 25, 30, 40, and 50 with the
Markov method (A) and the Langevin approach (B). For N � 20, e.g., the
most likely number of recruited channels of a puff is 7.
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Bootman et al., 1997). Improved spatial and temporal res-
olution in recording reveal that there is not a clear distinc-
tion between fundamental blips and elementary puffs. A
continuum of Ca2� release signals can be achieved due to
stochastic variation in both numbers of channels recruited
and durations of channel openings within a cluster (Boot-
man et al., 1997; Sun et al., 1998; Thomas et al., 1998;
Callamaras and Parker, 2000; Marchant and Parker, 2001;
Haak et al., 2001).

We have put forward a Markov version of the Li-Rinzel
(1994) model to study the statistical properties of Ca2�

release of clusters of IP3Rs. In comparison to the other
Markov IP3R channel models (Falcke et al., 2000; Bar et al.,
2000; Swillens et al., 1999), our model is relatively simple
and is represented by only two variables in the deterministic
limit.

The small size of the IP3Rs introduce stochastic oscilla-
tion into the calcium release dynamics. The stochastic os-
cillations are different from the stochastic excitability dis-
cussed by Keizer and Smith (1998). For the stochastic
excitability, once [Ca2�] randomly becomes larger than a
threshold, a fast release (action-potential-like) of [Ca2�]
followed by a refractory period can be observed. For the
stochastic oscillation there is not such a threshold. More
broad distributions of puff amplitudes and lifetime are
yielded for stochastic oscillation.

Calcium puffs vary in amplitude, lifetime, and interpuff-
interval (Figs. 5–7) due to the variability of numbers of
recruited channels and their open duration. This result in-
dicates that a fixed puff morphology (i.e., amplitude and
lifetime), which is sometimes assumed in literature (Pra-
tusevich and Balke, 1996; Izu et al., 1998; Cheng et al.,
1999) is not a good assumption for Ca2� puff analysis.

The shape of puff amplitude distribution was a subject of
a recent controversy. Although in experiment single-peak
amplitude distributions are typically observed, theoretical
study indicated that this feature could be caused by the
failure of detecting small-amplitude puffs due to the confo-
cal response function. Cheng et al. (1999) suggested that the
original calcium puffs should exhibit an exponentially de-
caying amplitude distribution, regardless of whether the
underlying events are stereotyped. Recently, however, Rios
et al. (2001) presented new data with either decaying am-
plitude distributions or single-peak amplitude distributions.
They suggested that if sparks were produced by individual
Markovian release channels evolving reversibly, the ampli-
tude distribution should be simply decaying. Channel
groups typically give rise to a peak mode distribution in
their collective spark.

Our Markov model suggests that both types of puff
amplitude distributions are possible, depending on the size
of the cluster and the level of [IP3]. For tens of channels and
small [IP3] the puff amplitude distributions are typically
simply decaying due to the small mean value of Ca2�

signals, while for a large [IP3] the stochastic dynamics leads

a single peak amplitude distribution around the large mean
value.

The amplitude and duration of puffs are related to the
fraction and duration of open IP3Rs in a cluster. Roughly, a
large-amplitude puff correlates with a large fraction of
h-open IP3Rs, and a long lifetime of puffs correlates with a
long duration of an h-open fraction. However, a large puff
may also be caused by a small fraction of IP3Rs, but with a
long duration. To typically observe five to eight spontane-
ously open channels, we estimate based on the Markov
Li-Rinzel model that a single cluster typically includes
15–25 IP3Rs. This result is consistent with the estimation
obtained with independent methods (Swillens et al., 1999).

To shortcut the computationally expensive Markov sim-
ulations of the Ca2� release of a cluster of IP3Rs, we have
introduced a Langevin-type description that is analogous to
the one put forward by Fox and Lu (1994) for the Hodgkin-
Huxley neuron. It is shown that, even for tens of IP3Rs, the
Langevin approximation can be used as a simple but effi-
cient approach for the Markov process.

In this simple stochastic clustered IP3R model, spatial
aspects of the formation and collapse of localized Ca2�

elevations are neglected. The Ca2� diffusion between the
cluster and the environment is ignored so that an isolated
cluster can be discussed. However, the channels are as-
sumed to be close enough and the instantaneous Ca2�

diffusion within a cluster is so fast that the calcium concen-
tration within a cluster is always homogeneous.

To observe puffs or sparks in the experiment, calcium
diffusion is suppressed by intracellular loading with the
Ca2� buffer EGTA (Mak and Foskett, 1997; Horne and
Meyer, 1997; Thomas et al., 1998; Marchant et al., 1999;
Cheng et al., 1999; Callamaras and Parker, 2000; Rios et al.,
2001). With a large loading of EGTA, the clusters become
functionally isolated (Callamaras and Parker, 2000). Under
these condition, our model is valid.

Experimental and theoretical work (Roberts, 1993; Ber-
tram et al., 1999) suggests that even at steady state the Ca2�

diffusion at a Ca2� release site may lead to inhomogeneous
profiles, suggesting that the diffusion within a cluster may
affect the puff dynamics. However, a more realistic model
put forward by Swillens et al. (1999) shows that the sim-
plification applied in our paper affects the main results only
insignificantly. Swillens et al. (1999) considered a stochas-
tic clustered IP3R model within a 3-D Cartesian space. Each
channel occupies a certain position inside the cluster on the
ER membrane and is in contact with the Ca2� concentration
in the adjacent small cubic volume. Their simulation result
suggested that a typical cluster could contain 20–30 chan-
nels. Their data also showed that the distribution of puff
amplitudes is monotonically decreasing for a small [IP3]
and N � 25, and has a single-peak mode for large [IP3].
Based on the discussion of a simplified model, they indi-
cated that the kinetic behavior of a cluster could be satis-
factorily simulated by considering a virtual domain in which
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all of the channels of a cluster and the calcium concentration
were homogeneously distributed.

Three distinct physiological mechanisms have been pro-
posed to underlie Ca2� release and uptake in cells: excit-
able, oscillatory, and bistable states. All three physiological
states can be derived from a Li-Rinzel model with different
parameters (Keizer and Smith, 1998). It is interesting to
discuss how the stochastic properties of dynamics of Ca2�

release depend on the different dynamics states, which is the
subject of our current research and will be discussed in a
forthcoming paper.

The stochastic oscillation for small [IP3] facilitates Ca2�

signals that may regulate other cell functions. One could
hypothesize that the small cluster size serves exactly this
purpose. In a recent paper (Shuai and Jung, 2002), this
hypothesis is supported by the coherence analysis of Ca2�

signals released from a single cluster. The behavior of
coherence resonance (Pikovsky and Kurths, 1997) is found
for [IP3] � 0.354 �M, suggesting that the regularity of
calcium signaling can be optimized at a certain cluster size.

This material is based upon work supported by the National Science
Foundation under Grant IBN-0078055. We have greatly benefited from
discussions with Martin Falcke from the Hahn-Meitner Institute in Berlin,
Germany.
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