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We generalize th@:m phase synchronization between two chaotic oscillators by mutual coupling
phase signals. To characterize this phenomenon, we use two coupled oscillators to demonstrate their
phase synchronization with amplitudes practically noncorrelated. We take the 1:1 phase
synchronization as an example to show the properties of mean frequencies, mean phase difference,
and Lyapunov exponents at various values of coupling strength. The phase difference increases with
21 phase slips below the transition. The scaling rules of the slip near and away from the transition
are studied. Furthermore, we demonstrate the transition to a varietyrophase synchronizations

and analyze the corresponding coupling dynamics.2@2 American Institute of Physics.
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The interaction between two or more chaotic oscillators PS? is the coincidence of the mean frequencies, (&,

can produce different types of synchronization phenom- =(),, while their phase differences are unbounded. The
ena, depending on the degree to which the oscillators ad- mean frequency is defined &= (#) where(-) means av-
just their motion in accordance with one another. Phase eraging over time. On the other hand, for a given system, the
synchronization (PS), i.e., the phase of the oscillators is degree and rate of synchronization depend vitally on the cou-
locked, may play an essential role in the regulation of pling scheme used. Investigations on PS are usually based on
various biological systems, as well as have potential ap- systems with direct state couplif§ln order to uncover the
plications in engineering fields. In this article, we investi-  properties of PS extensively, some other coupling schemes,
gate the phase synchronization between two chaotic oscil- such as unidirectional couplirf§, binary coupling?* and
lators with phase coupling. Various ratios of phase asymmetric coupling? have been studied. These schemes
synchronization can be found with a variety of coupling can optimize or improve the synchronization among the
strengths. Their dynamical properties are analyzed in de- coupled systems.

tail. Our investigations lead to an alternative way to ob- For two structurally equivalent systems, i.e., systems
tain robust PS that may lead to advancement in the re- where the nonidenticity resulted in a rather small parameter
search on nonlinear dynamics. mismatch, a(direc) state coupling can lead to perfect PS

between them. However, the PS between two structurally

nonequivalent systems is always imperfect and so it is nec-
I. INTRODUCTION essary to find an effective coupling scheme that can achieve

perfect PS in this case. On the other handn PS where

The study of coupled oscillators is a fundamental re-n-=m has been found from the firing activities of groups of

search interest with applications in various field$In par-  neurons in human brafi.Normally, the state coupling can
ticular, the mutual synchronization of the oscillators is of only achieve 1:1 PS and thus is difficult to fully explain the
great interest and importance among the collective dynamicgynamical approach between groups of neurons. Therefore,
of coupled oscillators. It usually occurs only when the cou-the investigation of other coupling ways that can easily ob-
pling strength is sufficiently large. Various types of synchro-tain n:m PS wheren#m is also interesting for biological
nization including complete synchronizati®tf generalized science.
synchronization; ! and phase synchronizatidn®® have Recently, we studied phase coupling to obtaim PS in
been studied. Among them, the phase synchronizd®®  drive-response Rssler oscillators® Rich behaviors such as
of chaotic oscillators with mutual coupling of variables usu-amplitude reduction were found. However, this method can
ally occurs at coupling strength smaller than that required foonly be applied to chaotic oscillators whose attractors have
complete synchronization. This is because PS corresponds $ingle rotation center, such as $ter oscillators. In this ar-
an entrainment of phases of chaotic oscillators, whereas thefiicle, we go further to develop a general phase coupling
amplitudes remain chaotic and noncorrelated. Under classimethod. With this method, PS between two general and
cal definition, PS occurs if the differen¢e, — ¢,| between structurally nonequivalent systems can be obtained by mu-
the corresponding phases is bounded by a small preselectaghl coupling phase signals. Their amplitudes remain noncor-
constant whereb(t) is the instantaneous phase of the chaoticrelated even at various coupling strengths. As an example,
oscillator. A weaker synchronization, referred as imperfecthe dynamics of 1:1 PS is discussed in detail. Before the
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transition to PS, the phase difference increases witpl2ase p; and both principals increase from the same initial value
slips. When the coupling strength approaches the transitiop;(0). They could be written, respectively, as
to PS, the distribution of laminar length changes from a

single normal distribution to two periods of normal distribu- AN im E InM 3)
tion and then to Lorentzian shapes. Here, the laminar length " . T p;(0)

is defined as the time elapsed between two successive 2
phase slip$® For a better understanding of the coupling dy-and
namics, the mean phase difference, the mean frequencies and 1 T
the Lyapunov exponents at various values of coupling \,=lim —In , (4)
strength are also studied. Moreover, we demonstrate the tran- T- T pi(0)

S'“Of? to PS at various::m rat|os..'.rhe.coupllng dynamics whereAN and \; are both arranged from the largest to the
that influence the values of transition is also discussed. Our !

investigation leads to an alternative way to obtain rolnust 2hm06:1”|25tbvew.:_h |:n_?/e>1. lf:grir(n-ra)riz p‘(g ),s Eg)e ';Egn? 4()1“2?12?
PS that may benefit the advancement of nonlinea K paring Egs. '

dynamics. f_yapunov exponents have the relationship

This article is organized as follows. In Sec. Il, the dy- INEE) (5
namical properties of two coupled oscillators with phase
coupling are introduced. In order to examine the propose? i ) i )
method, we take two coupled Bsler and Lorenz oscillators (%) N@s the same geometric structure at differgst Differ-
as an example to show tiem PS in Sec. IIl. PS transition ent value_s ofy only relate to different rotation speed on the
as well as phase slips near and away from the transition arg2Me trajectory represented by phase and mean frequency.
discussed in detail. Furthermore, we consider, in Sec. IV, th&omParing with Eq(1), the corresponding phase and mean
coupled chaotic Rssler and hyperchaotic Bsler oscillators ~ reduency of Eq(2) have the following forms:
as anpthgr example. The results show that the RS with phase ()= »¢Na(t) (6)
coupling is perfect even for structurally nonequivalent sys-
tems. In Sec. V, we claim that the phase coupling can b&"
extended to a scalar of coupled oscillators so as to achieve () — ,)Nat, 7
global PS. The differences between state coupling and phase
coupling are discussed. The potential applications of phasé order to achieve the mutual coupling of phase signals,

coupling are also pointed out. Finally, our conclusions arecan be transformed to a dynamical quantity determined by
drawn in the last section. the interaction of both frequencies and the locking ratiam.

The quantity can be interpreted ag(t)=G(n¢,,map,)
where the functiors(-) is constructed to have the following
properties. If ng;>m¢,, 0<n<l. However, if ng;
<md¢,, n>1. As a result, then:m PS could be obtained
with the following form:

As 7 is the time scale coefficient, the trajectory of Eq.

II. DYNAMICAL PROPERTIES OF TWO COUPLED
OSCILLATORS WITH PHASE COUPLING

_ Most autonomous chaotic oscillators can be represented 5 _ n(t)F1(X) ®)
in the form
. and
X=F(X). (o :
Y=n"Yt)F,(Y). (€)

Here,X can be considered as the speed vector of the trajec-
tory in the phase plane. If a parameter is added to(Bgthe = Here F1(X) and F,(Y) can be two different oscillators.

equation becomes From the above description @(-), the interactions of Egs.
: (8 and (9) have the following feedback: Whemg,
X=nF(X). 2) >mg,, n<1 in Eq.(8) and thereforep *>1 in Eq. (9).

Here >0 gives the parametrization of time. For neural dy-Hence,¢;| and¢,1 implies ¢;~ ¢,. On the other hand, if
namics, such as the FitzHugh—Nagumo oscilldtay,is the  n¢;<md,, a similar feedback mechanism can also result in
characteristic time scale of the activator and inhibitor. By¢,~ ¢,. Evidently, the function o5(-) is not unique and it
this means, the oscillator dynamics can be interpreted as fols not difficult to construct a suitable function with the above
lows. As the magnitude of the Lyapunov exponents reflectproperties. In this article, we define the coupling term as
the time scale on which the oscillator dynamics becomey(t) =exp(e sin §) with €=0. It is interpreted as follows:
unpredictabl® and thatz could also be considered as the The phase difference i8(t)=ndg,(t) —me,(t) with phase
coefficient of the oscillator’s time scale, magnitude of theratio n:m. As the parametee is related to the strength of
Lyapunov exponents should be directly proportionalzto  coupling, it is called the coupling strength. In general, the
For example, suppose that ttik Lyapunov exponent of Eqs. phase difference is in the range efe<f<<w and so it
(1) and (2) is represented byiNat and \;, respectively(In could not be used directly. A sine function is thus imposed to
this article, if the dynamical quantities are obtained fromobtain the new range 1=<sin §<1. A natural exponent im
=1, they are marked with the superscript “NatThey are  guarantees a positive control parameter with various phase
defined in terms of the length of the ellipsoidal principal axisdifferences.
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The mutual coupling of phase signals can influence theiand mean frequencies, such as two coupledsko oscilla-
rotation speeds. Suppose that8<m/2 at timet. This  tors with a small parameter mismatthEor two structurally
means that the phasep, of Eq. (9) is in advance of the nonequivalent oscillators, such as the case of a coupling be-
phaseme; of Eq. (8). Thus we obtainy>1 which indicates tween a chaotic and a hyperchaoticsRler system? or the
that the rotation speed of E¢B) is faster while that of Eq. case of a coupling between two coupled Mackey—Glass
(9) is slower. The phase differenc# will reduce in their  equations with two different time delag$pnly imperfect PS
subsequent time. In this case, the interactive coupliregts  can be found.
as a negative feedback to drive the phase difference to con- We take the phase coupling of two different oscillators,
verge. Similar discussion shows that the negative feedback isorenz and Rssler, as an example to demonstrate ribe
within the range of Zrk— 7/2< #<2wk+ /2 with integer =1:1 PS phenomena in detail. Then the PS phenomena with
k. While in the range of Zk+ w/2<6<2wk+3w/2, the various locking ratios are described briefly. The coupled
feedback becomes positive and it may introduce phase slifRossler oscillator is governed by the following equatidhs:
to enter the adjacent negative feedback region. Wher- o= (1) (—y1—23)
ceeds a transition valué,is located in the negative feedback 1=7 Yimz),
region with a small amplitude fluctuation and so then PS y1=n(t)-(x;+0.15/,), (16)
can be obtained. .

For the coupling systems defined by E¢8) and (9), 3= n(1)-[0.2+2,(x, — 10)].

n(t) varies with time. It can be written ag(t)=(7)+&(t)  And the corresponding equations for the coupled Lorenz os-
whereé represr-énts a fluctuation with zero mean. Using adiacillator aré®
batic approack® we have Sz 7 L(1) - 10— o).

(m(e)y=(exp(e sin #))~exp e sir6)). (10 ) _

. . . o . Y2=7"1(1)-(36.5G— Y~ Xp25), 17
In this article, if not specified, the mean phase differeftye ] L
is always obtained from-27< <2 with |§|mod27 be- z;=1n (1) (3.0 XzY2),

causex 2k .contributes nothing to sid. As Q is optained where the dynamical quantity(t)=exp(e sin 4(t)) with
from a long time average&, can be neglected. By this means, (1) = ¢,(t) — ¢4(t) ande=0. For simplicity, we utilize the

when e>0, Eq.(7) gives the following relationships: reflection symmetryX,— — x, andy,< —y,) of the Lorenz
Q(e)=(n(e))QN* (11)  attractor. A new variablai=\x3+y2 is defined so that a

phase can be suitably defined on the z plane with the
rotation center (io,2,) — (15,36) 1’ We can easily obtain the
Qy(e)~(n *(e))QN2 (120 phaseg,=arctan(z,— zo)/(g —ug)] for Lorentz oscillator
) . and ¢,=arctanf/, /x,) for Rassler oscillator.
The Lyapunov exponents are also obtained from a long ime" ¢ 4yq oscillators in our example have different scales

average of the increment of the system’s ellipsoidal princi-of mean frequencies at uncoupled states. They QE@
pals shown in Eq(4). Thus, according to Eq5), we can —1.034 andQNal= '

btain the following L tor 1h led 5 =10.23, respectively. That is to say, the
obtain the following Lyapunov exponents for the coupled o4, frequency of Lorentz oscillator is ten times higher than
oscillators given by Eq98) and(9):

that of the Rasler one. However, PS can still be achieved by
M*(ﬂﬂiNat- (13 using our method. The coupling strength at PS transition is

hen th i h q " | h aboute.=1.38, which is marked by a dotted linein Fig. 1.
When the coupling strength exceeds a transition value, t e'Ifr)ynamics of the coupling terny in the achievement of PS

Instantaneous phasesparenan PS. Tphen the_mean fLequen- between two coupled oscillators is rather complex. In the
cies correspond ta"Ye) and O5Ye) with mQ5Ye) - - -
1 2 1 following, several simulations are performed to analyze the

=nQ3Ye). As a result, one can get, atm PS, nontrivial characteristics of the coupled oscillators by statis-

(7S~ (14)  tical means. According to Eq10), the mean value of(t) is
determined by 6). Figure 1a) shows the curve of6) and
the corresponding ) at various values of. Let us first

No= (nQ'Z\‘at)/(mQTat)_ (15) focus on the region after the transition. The curvéfgoes

) ) ) down monotonically in this region and the corresponding
It suggests that the time average of dynamical quanfity s cjose to the dash lingy(=3.15). This implies that the

independent ot after PS. This means that the mean freoluen'simulation results confirm the analytical result given by Eqg.

cies and the Lyapunov exponents of coupled oscillators de(14). Near the transition, the curve ¢8) has a small fluc-
scribed py Egs(8) and(9) remain constant at various values y .iion that is produced by the occasionalghase slips. We
of coupling strength after PS. will discuss this phenomenon later. Figureth)land Xc)
show the mean frequencies and the Lyapunov exponents at
various e. These curves match the dynamics properties de-
scribed by Eqgs(11)—(13). At the transition, the mean fre-

If the two different oscillators are coupled by state vari- quency isQ1PS=3.25. It approximately equals to the value of
ables, it is difficult to find perfect 1:1 PS. This is because theQY?7 7, or Q337,. The corresponding two largest
method can only be used in oscillators with similar dynamicd.yapunov exponents ar&;=0.38 and\,=0.29, respec-

and

with

Ill. COUPLED ROSSLER AND LORENZ OSCILLATORS
WITH PHASE COUPLING
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FIG. 1. (8 The mean phase differen¢®), (%), and . (b) The mean
frequency ofQ); and Q,. (c) The four largest Lyapunov exponents (i o LORIR T T TN i
=1,2,3,4).(d) The maximum of normal cross-correlati@{(M) of the two
coupled oscillators versus the coupling strengtfihe vertical dotted line/ (rad)
indicates the PS transitiog, .
05+
. . 0 10 20 30 40 50
tively. They are also approximately equal to the values of t

A3 70 and M52, where[¥'=1.12 and\)*=0.092 ate G 2 @ T utions of phase differenagin o ed Ros|
- . L. . 2. ime evolutions of phase differenagin two coupled Resler
=0. However, these dynamlcal quantities have some sma nd Lorenz attractors at various valuessoT he inset shows an enlargement

mismatches at the transition. In Figal, there is a relative  of a single 2r phase slips appeared on the curve corresponding-t24.

large mismatch between the values (of} and 7,. More- (b) The phase difference with small amplitude fluctuation at PS transition.

over, in Fig. Ib), the point where the mean frequency ap_The dottgd !me refers to the value of mean phase difference while the
PS . . . . dashed line is located at/2.

proached)"is slightly earlier than the dotted ling This is

because the transition to PS is always smeared and observed

only as a tendency, or as a temporary event in some finit¢  gimilar to the mutual coupling using state variables
time intervalst® After the PS transition, the mean frequency and phase coupling in drive-response syst&rthe phase
and the two largest Lyapunov exponents remain constanfjifference appears2phase slips near the transition to PS.
For the two zero Lyapunov exponents, only one of them haspe time evolution off at various values o is plotted in
little fluctuation near the PS transition. Similar to the case of,:ig_ 2a). It shows thatd increases with a nearly periodic
the mean phase difference, it may be the occasionatly 2 |aminar length ag=1.2. Whene=1.24, the laminar length is
phase sh_ps th_at make the coupled _oscnlators unstab_le. extended and appears more than one period. One ofthe 2
As 7is a time scale parameter, it only relates to differenty4se slips is enlarged and shown in the inset. Furthermore,
rotation speed of the trajectory. Therefore, with the couplingynen e=1.27, which is near the phase transition, the laminar
method, their amplitudes keep noncorrelated at various Vaﬁ'ength shows a sequence of intermittence. Whene,
ues of coupling strength. This can be shown by Fi@l).1 (1 3g8) the phase difference is at a nearly constant mean

The normal cross-correlation between two amplitudes argajye with a high-frequency but low-amplitude fluctuation.

measured using the following formufa: To observe the fluctuation clearly, the valuegodt the tran-
— = sition to PS is plotted in Fig.(®). The dotted and the dashed
= <él(t)A§t+ 7)) (18) lines correspond to the mean of the phase differencemdd
((A2(t))(AZ(1)) V2’ respectively. Evidentlyp,,.< 7/2 but the difference is not

_ substantial. Ife<e., the situationé,,,>>7/2 occurs which
whereA=A—(A). The two amplitudes correspond to Eqs. may result in the 2 phase slips.
(16) and (17) are A;=\(u—ug)?+(z,—25)° and A, In an attempt to quantify the difference in the dynamics
= \/x21+y21, respectively. We plo€(M) which is the maxi- of phase slips near and away from the transition, we have
mum of C(7) for all 7, versus the coupling strength With  computed the probability distributiop(l) at various values
the increase ot, the value ofC(M) is approximately con- of coupling strengthe. The results are plotted in Fig. 3,
stant. It is around 0.05 which is the same as that at uncoupledherel is the laminar length. Figure(& shows twop(l)’s at
statee=0. That is to say, the amplitudes keep noncorrelate@ coupling strength far away from the transition. Their sta-
all the way because the control method relies on the phaséistics follow very closely that of a normal distribution. With
of the two oscillators rather than their state variables. It ishe increase ok, the single normal distribution splits into
different from the observation that, for two chaotic oscilla- two, as observed in Fig.(B). Furthermore, the phenomenon
tors coupling with variables, their cross-correlation increaseshanges dramatically when the system approaches the close
with the enlargement of coupling strength after PS. vicinity of the transition point as shown in Fig(8. The
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the correspondingé), ( ), and( 7,) are plotted in Fig. 4. In
this example 252 is about ten times higher tha)® and
Q,~ B, at phase locking. From E¢L5), with the increase
of B, g is reduced smoothly. Simulations show that at the
transition, { 7)= 7, at various values of3. For the special
case thag~052/Q )2 7.~1 (as indicated by a dotted line
Mo in the figure, i.e., their mean frequencies remain un-
changed at various coupled strengths. The instantaneous
value of » only produces the coherence of their frequency
fluctuations to avoid occasional phase slips. Whgn
>05 0N we need to accelerate the frequency of Eq.
(17) instead of that of Eq(16). Therefore,no<1 and({6)
<0.

At the special case marked hy,, it is natural to con-
sider that the correspondirgy also appears global minimum
because the mean frequency is unchanged at various cou-
pling strength. However, the global minimum isgat which
is far away fromu,. This is because the value ef is not
only influenced by the mismatch of mean frequencies, but
also by the coherence of their phases. We can describe the
dynamics of phase 5!

p=Q+F(A). (19)
p(l)

(%) . . . .
Here,F(A) is the effective noise with zero mean value that
produces phase diffusion am is its amplitude. For two
coupled oscillators, a generalization of Ef9) reads

0 100 200 300
I

FIG. 3. Probability distribution functiop(l) of the 27 phase slips versus 0
the laminar length with (a) normal distribution(b) two periods of normal = AQNaty ApNaty eG(0), (20
distribution, and(c) a Lorentzian shape. dt

normal distributions can no longer be retained. Instead, thewith AQN3=QNa— gohat  ApNa=fFNa(A ) — gFYA(A,)
become a Lorentzian shape. The bandwidth becomes mueind G describing coupling between two oscillators. As
broader as= moves closer ta.. Some of these properties FTat(Al) and F’z\'a‘(Az) are independent effective noise, the
are different from that coupled by state variables. In the lattemaximum of interactive frequency fluctuations can be writ-
case, the distribution qi(l) changes from a normal shape to ten as |[AFNa]_ =|F (A [ maxt BIF>2(A2) | max-  Al-
a Lorentzian one directly wheamoves towardg..*” While  though it is difficult to develop a formal mathematical model
the additional two normal distributions @f1) can be found to interpret the values of,. at variousgB, we can clearly find
with our method, the difference may be induced by differentout the properties oé; at some special cases. Evidently, the
coupling mechanisms. With the method coupled by statéluctuation of 8 is mainly produced byAFNa and the in-
variables, the coupling strength always corresponds to wearease ok can makesG countervail bothA QN and AFNa.
coupling where the mutual systems have close mean freMoreover, to avoid Z phase slips at PS, the phase difference
quencies at uncoupled state. The phase slips are mainhgquires|§|< /2. By this means, iA QN3 |AFN e,
caused by the amplitude fluctuations at weak coupling. Howis mainly determined by QN3 with e, AQN®. However, if
ever, phase coupling is used in our method and the phaseQNa<|AFNa) . the main factor turns taFN with e
slips occur at strong coupling where the mutual systems are|AFNa] . In Fig. 4, whenB=1, ¢, is mainly determined
different. The mechanism to phase slips becomes more conby a relative largeA QN With the increase of3, AQN&
plex so that the additional phenomenon with two normalreduces. The correspondirg diminishes bufAFNa]. in-
distribution occurs. But both methods give a Lorentziancreases at the same time. At certg@n the two contrary
shape in the distributiop(l) near the transition. This prop- forces one. make its values a global minimum, as indicated
erty indicates that both the transitions to PS are smear. by u;. When g exceedsu;, AQN¥ turns to a small value.
The proposed coupling method can realize PS easily noAs a result,e. is mainly determined byAFNa{ . and is
only at ratio 1:1, but also at variousm ratios. For example, enlarged along with3. By this means, it is reasonable that
set B=m/n with 6= ¢,— B¢, for Egs.(16) and (17) and  the global minimum ofe. is not at the positionu, where
perform the simulations. The transition to RS, as wellas AQN3=0Q.
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FIG. 4. The coupling strength at the transitien, and the corresponding O]
(6), (7), and 5, values at various locking ratiB. The positionu, is the
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(6)~0.
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IV. COUPLED CHAOQOTIC ROSSLER AND -.:E‘
HYPERCHAOTIC ROSSLER OSCILLATORS WITH z—
PHASE COUPLING -

Comparing with state coupling, a significant characteris- §
tic of phase coupling is that perfect PS can always be ob-
tained between two structurally nonequivalent oscillators. 50 085 0o0 055 100 10
We use coupled chaotic Rsler and hyperchaotic Rsler ®

oscillators as another example to show this. The coupled _ ,
~IG. 5. (a) The mean frequency differenak() in Egs. (21) and (b) the

oscillators have been simulated in Ref. 12 using state col=¢: .
. _ maximum absolute phase difference| ., versusw at several values of

pling method. The results show that only imperfect PS canhe coupling strengtle.

be found, i.e., their mean frequency different€&~0 and

the phase differencé; — ¢, exhibit an unbounded random-

type walk. Equations of the coupled oscillators are asreases. Whew is near the transitions from PS to non-PS,

follows:2” the bound A ¢|,.xappear several jumps. They correspond to
. the phase slips.
X1=7(0)(-wy1=21), The dynamics for the structurally nonequivalent oscilla-
v, = n(t)(wx,+0.15/,), tors have explicit differences. For example, in E2jl), the
i variables of the two oscillators have two different ranges,
z;=n(1)[0.2+2,(x, — 10)], —128.6<x,(t)<20.4 and —14.6<x,(t)<17.3, respec-
%=1 X (—Yo—2,), 21) tively. As st_ate coupling_directly uses the difference of their

corresponding state variable as a weak feedback component,

Yo=7"1(t)(Xo+0.25/,+ W), the variable with a large difference can be described with a

sufficiently large effective noise which produce unbounded
phase differenc&3*3'However, their dynamical difference
w=7"1(t)(—0.52,+0.05w), is trivial when phase coupling is used. If both the instanta-
neous phases can be obtained, perfect PS can be achieved
when the coupling strength exceeds a transition.

Z,= 7 Y (1)(3+Xy2,),

where the formula of;(t) is the same as the example in Egs.
(16) and(17). Parametemw is the natural frequency that de-
termines the mean frequency of the SRter oscillator. De-
tails of the instantaneous phasg, of the hyperchaotic
Rossler oscillator have been discussed in Ref. 16. We mainly As the investigation of networks is essential to all
focus on then:m=1:1 PS. The mean frequency difference branches of scienc® the phase coupling can also be applied
versusw at various coupling strengths is plotted in Figas  in a network of coupled oscillators so as to achieve phase
With the increase of coupling strength, the regions for PSocking among the oscillators. For example, we can Xse
extend that correspond to the zeroXff. The synchroniza- =exp(e sin 6;)F;(X;) to obtain global PS where the phase
tion is perfect PS because their phase difference is boundatifference is defined a8 =(¢)— ¢; withi=1,23.... The

at PS region. The bounded phase difference can be explicitinechanism is similar to that discussed above.

found in Fig. 8b). The bound|A ¢|ma in Fig. 5(b) corre- The dynamics of phase coupling is different from that of
sponds to the PS region in Fig(ah. The value oflA |  State coupling. In the latter case, it belongs to the framework
increases whem is away from the center value of natural of chaos control theory’* Besides PS, the oscillator dy-
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