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n :m phase synchronization with mutual coupling phase signals
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We generalize then:m phase synchronization between two chaotic oscillators by mutual coupling
phase signals. To characterize this phenomenon, we use two coupled oscillators to demonstrate their
phase synchronization with amplitudes practically noncorrelated. We take the 1:1 phase
synchronization as an example to show the properties of mean frequencies, mean phase difference,
and Lyapunov exponents at various values of coupling strength. The phase difference increases with
2p phase slips below the transition. The scaling rules of the slip near and away from the transition
are studied. Furthermore, we demonstrate the transition to a variety ofn:m phase synchronizations
and analyze the corresponding coupling dynamics. ©2002 American Institute of Physics.
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The interaction between two or more chaotic oscillators
can produce different types of synchronization phenom-
ena, depending on the degree to which the oscillators ad
just their motion in accordance with one another. Phase
synchronization „PS…, i.e., the phase of the oscillators is
locked, may play an essential role in the regulation of
various biological systems, as well as have potential ap
plications in engineering fields. In this article, we investi-
gate the phase synchronization between two chaotic osci
lators with phase coupling. Various ratios of phase
synchronization can be found with a variety of coupling
strengths. Their dynamical properties are analyzed in de-
tail. Our investigations lead to an alternative way to ob-
tain robust PS that may lead to advancement in the re-
search on nonlinear dynamics.

I. INTRODUCTION

The study of coupled oscillators is a fundamental
search interest with applications in various fields.1–5 In par-
ticular, the mutual synchronization of the oscillators is
great interest and importance among the collective dynam
of coupled oscillators. It usually occurs only when the co
pling strength is sufficiently large. Various types of synch
nization including complete synchronization,6–8 generalized
synchronization,9–11 and phase synchronization11–22 have
been studied. Among them, the phase synchronization~PS!
of chaotic oscillators with mutual coupling of variables us
ally occurs at coupling strength smaller than that required
complete synchronization. This is because PS correspon
an entrainment of phases of chaotic oscillators, whereas
amplitudes remain chaotic and noncorrelated. Under cla
cal definition, PS occurs if the differenceuf12f2u between
the corresponding phases is bounded by a small presele
constant wheref(t) is the instantaneous phase of the chao
oscillator. A weaker synchronization, referred as imperf
1001054-1500/2002/12(1)/100/7/$19.00
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PS,12 is the coincidence of the mean frequencies, i.e.,V1

5V2 , while their phase differences are unbounded. T
mean frequency is defined asV5^ḟ& where^•& means av-
eraging over time. On the other hand, for a given system,
degree and rate of synchronization depend vitally on the c
pling scheme used. Investigations on PS are usually base
systems with direct state coupling.12 In order to uncover the
properties of PS extensively, some other coupling schem
such as unidirectional coupling,20 binary coupling,21 and
asymmetric coupling,22 have been studied. These schem
can optimize or improve the synchronization among
coupled systems.

For two structurally equivalent systems, i.e., syste
where the nonidenticity resulted in a rather small parame
mismatch, a~direct! state coupling can lead to perfect P
between them. However, the PS between two structur
nonequivalent systems is always imperfect and so it is n
essary to find an effective coupling scheme that can ach
perfect PS in this case. On the other hand,n:m PS where
nÞm has been found from the firing activities of groups
neurons in human brain.23 Normally, the state coupling can
only achieve 1:1 PS and thus is difficult to fully explain th
dynamical approach between groups of neurons. Theref
the investigation of other coupling ways that can easily o
tain n:m PS wherenÞm is also interesting for biologica
science.

Recently, we studied phase coupling to obtainn:m PS in
drive-response Ro¨ssler oscillators.18 Rich behaviors such a
amplitude reduction were found. However, this method c
only be applied to chaotic oscillators whose attractors h
single rotation center, such as Ro¨ssler oscillators. In this ar-
ticle, we go further to develop a general phase coupl
method. With this method, PS between two general a
structurally nonequivalent systems can be obtained by
tual coupling phase signals. Their amplitudes remain non
related even at various coupling strengths. As an exam
the dynamics of 1:1 PS is discussed in detail. Before
© 2002 American Institute of Physics
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101Chaos, Vol. 12, No. 1, 2002 Phase synchronization
transition to PS, the phase difference increases with 2p phase
slips. When the coupling strength approaches the trans
to PS, the distribution of laminar length changes from
single normal distribution to two periods of normal distrib
tion and then to Lorentzian shapes. Here, the laminar len
is defined as the time elapsed between two successivep
phase slips.16 For a better understanding of the coupling d
namics, the mean phase difference, the mean frequencie
the Lyapunov exponents at various values of coupl
strength are also studied. Moreover, we demonstrate the
sition to PS at variousn:m ratios. The coupling dynamic
that influence the values of transition is also discussed.
investigation leads to an alternative way to obtain robustn:m
PS that may benefit the advancement of nonlin
dynamics.

This article is organized as follows. In Sec. II, the d
namical properties of two coupled oscillators with pha
coupling are introduced. In order to examine the propo
method, we take two coupled Ro¨ssler and Lorenz oscillator
as an example to show then:m PS in Sec. III. PS transition
as well as phase slips near and away from the transition
discussed in detail. Furthermore, we consider, in Sec. IV,
coupled chaotic Ro¨ssler and hyperchaotic Ro¨ssler oscillators
as another example. The results show that the PS with p
coupling is perfect even for structurally nonequivalent s
tems. In Sec. V, we claim that the phase coupling can
extended to a scalar of coupled oscillators so as to ach
global PS. The differences between state coupling and p
coupling are discussed. The potential applications of ph
coupling are also pointed out. Finally, our conclusions
drawn in the last section.

II. DYNAMICAL PROPERTIES OF TWO COUPLED
OSCILLATORS WITH PHASE COUPLING

Most autonomous chaotic oscillators can be represe
in the form

Ẋ5F~X!. ~1!

Here,Ẋ can be considered as the speed vector of the tra
tory in the phase plane. If a parameter is added to Eq.~1!, the
equation becomes

Ẋ5hF~X!. ~2!

Hereh.0 gives the parametrization of time. For neural d
namics, such as the FitzHugh–Nagumo oscillator,24 h is the
characteristic time scale of the activator and inhibitor.
this means, the oscillator dynamics can be interpreted as
lows. As the magnitude of the Lyapunov exponents refle
the time scale on which the oscillator dynamics beco
unpredictable25 and thath could also be considered as th
coefficient of the oscillator’s time scale, magnitude of t
Lyapunov exponents should be directly proportional toh.
For example, suppose that theith Lyapunov exponent of Eqs
~1! and ~2! is represented byl i

Nat and l i , respectively.~In
this article, if the dynamical quantities are obtained fro
h[1, they are marked with the superscript ‘‘Nat.’’! They are
defined in terms of the length of the ellipsoidal principal a
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pi and both principals increase from the same initial va
pi(0). They could be written, respectively, as

l i
Nat5 lim

T→`

1

T
ln

pi~T!

pi~0!
~3!

and

l i5 lim
T→`

1

T8
ln

pi~T8!

pi~0!
, ~4!

wherel i
Nat andl i are both arranged from the largest to t

smallest with indexi. If pi(T8)5pi(T), their time duration
should be T85T/h. Comparing Eqs.~3! and ~4!, their
Lyapunov exponents have the relationship

l i5hl i
Nat. ~5!

As h is the time scale coefficient, the trajectory of E
~2! has the same geometric structure at differenth’s. Differ-
ent values ofh only relate to different rotation speed on th
same trajectory represented by phase and mean frequ
Comparing with Eq.~1!, the corresponding phase and me
frequency of Eq.~2! have the following forms:

f~ t !5hfNat~ t ! ~6!

and

V5hVNat. ~7!

In order to achieve the mutual coupling of phase signalsh
can be transformed to a dynamical quantity determined
the interaction of both frequencies and the locking ration:m.
The quantity can be interpreted ash(t)5G(nf1 ,mf2)
where the functionG(•) is constructed to have the followin
properties. If nf1.mf2 , 0,h,1. However, if nf1

,mf2 , h.1. As a result, then:m PS could be obtained
with the following form:

Ẋ5h~ t !F1~X! ~8!

and

Ẏ5h21~ t !F2~Y!. ~9!

Here F1(X) and F2(Y) can be two different oscillators
From the above description ofG(•), the interactions of Eqs
~8! and ~9! have the following feedback: Whennf1

.mf2 , h,1 in Eq. ~8! and thereforeh21.1 in Eq. ~9!.
Hence,ḟ1↓ andḟ2↑ implies ḟ1'ḟ2 . On the other hand, if
nf1,mf2 , a similar feedback mechanism can also resul
ḟ1'ḟ2 . Evidently, the function ofG(•) is not unique and it
is not difficult to construct a suitable function with the abo
properties. In this article, we define the coupling term
h(t)5exp(e sin u) with e>0. It is interpreted as follows:
The phase difference isu(t)5nf2(t)2mf1(t) with phase
ratio n:m. As the parametere is related to the strength o
coupling, it is called the coupling strength. In general, t
phase difference is in the range of2`,u,` and so it
could not be used directly. A sine function is thus imposed
obtain the new range21<sin u<1. A natural exponent inh
guarantees a positive control parameter with various ph
differences.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The mutual coupling of phase signals can influence th
rotation speeds. Suppose that 0,u,p/2 at time t. This
means that the phasenf2 of Eq. ~9! is in advance of the
phasemf1 of Eq. ~8!. Thus we obtainh.1 which indicates
that the rotation speed of Eq.~8! is faster while that of Eq.
~9! is slower. The phase differenceu will reduce in their
subsequent time. In this case, the interactive couplingh acts
as a negative feedback to drive the phase difference to
verge. Similar discussion shows that the negative feedba
within the range of 2pk2p/2<u<2pk1p/2 with integer
k. While in the range of 2pk1p/2<u<2pk13p/2, the
feedback becomes positive and it may introduce phase
to enter the adjacent negative feedback region. Whene ex-
ceeds a transition value,u is located in the negative feedbac
region with a small amplitude fluctuation and so then:m PS
can be obtained.

For the coupling systems defined by Eqs.~8! and ~9!,
h(t) varies with time. It can be written ash(t)5^h&1j(t)
wherej represents a fluctuation with zero mean. Using ad
batic approach,26 we have

^h~e!&5^exp~e sin u!&'exp~e sin̂ u&!. ~10!

In this article, if not specified, the mean phase difference^u&
is always obtained from22p<u<2p with uuumod2p be-
cause62kp contributes nothing to sinu. As V is obtained
from a long time average,j can be neglected. By this mean
whene.0, Eq. ~7! gives the following relationships:

V1~e!'^h~e!&V1
Nat ~11!

and

V2~e!'^h21~e!&V2
Nat. ~12!

The Lyapunov exponents are also obtained from a long t
average of the increment of the system’s ellipsoidal prin
pals shown in Eq.~4!. Thus, according to Eq.~5!, we can
obtain the following Lyapunov exponents for the coupl
oscillators given by Eqs.~8! and ~9!:

l i'^h&l i
Nat. ~13!

When the coupling strength exceeds a transition value, t
instantaneous phases are atn:m PS. Then the mean frequen
cies correspond toV1

PS(e) and V2
PS(e) with mV1

PS(e)
5nV2

PS(e). As a result, one can get, atn:m PS,

^hPS&'h0 ~14!

with

h05A~nV2
Nat!/~mV1

Nat!. ~15!

It suggests that the time average of dynamical quantityh is
independent ofe after PS. This means that the mean frequ
cies and the Lyapunov exponents of coupled oscillators
scribed by Eqs.~8! and~9! remain constant at various value
of coupling strength after PS.

III. COUPLED RÖSSLER AND LORENZ OSCILLATORS
WITH PHASE COUPLING

If the two different oscillators are coupled by state va
ables, it is difficult to find perfect 1:1 PS. This is because
method can only be used in oscillators with similar dynam
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and mean frequencies, such as two coupled Ro¨ssler oscilla-
tors with a small parameter mismatch.17 For two structurally
nonequivalent oscillators, such as the case of a coupling
tween a chaotic and a hyperchaotic Ro¨ssler system,12 or the
case of a coupling between two coupled Mackey–Gl
equations with two different time delays,29 only imperfect PS
can be found.

We take the phase coupling of two different oscillato
Lorenz and Ro¨ssler, as an example to demonstrate then:m
51:1 PS phenomena in detail. Then the PS phenomena
various locking ratios are described briefly. The coup
Rössler oscillator is governed by the following equations:27

ẋ15h~ t !•~2y12z1! ,

ẏ15h~ t !•~x110.15y1!, ~16!

ż15h~ t !•@0.21z1~x1210!#.

And the corresponding equations for the coupled Lorenz
cillator are28

ẋ25h21~ t !•10~y22x2!,

ẏ25h21~ t !•~36.5x22y22x2z2!, ~17!

ż25h21~ t !•~23.0z21x2y2!,

where the dynamical quantityh(t)5exp(e sin u(t)) with
u(t)5f2(t)2f1(t) ande>0. For simplicity, we utilize the
reflection symmetry (x2↔2x2 andy2↔2y2) of the Lorenz
attractor. A new variableu5Ax2

21y2
2 is defined so that a

phase can be suitably defined on theu2z plane with the
rotation center (u0 ,z0)→(15,36).17 We can easily obtain the
phasef25arctan@(z22z0)/(u2u0)# for Lorentz oscillator
andf15arctan(y1 /x1) for Rössler oscillator.

The two oscillators in our example have different sca
of mean frequencies at uncoupled states. They areV1

Nat

51.034 andV2
Nat510.23, respectively. That is to say, th

mean frequency of Lorentz oscillator is ten times higher th
that of the Ro¨ssler one. However, PS can still be achieved
using our method. The coupling strength at PS transition
aboutec51.38, which is marked by a dotted lineg in Fig. 1.
Dynamics of the coupling termh in the achievement of PS
between two coupled oscillators is rather complex. In
following, several simulations are performed to analyze
nontrivial characteristics of the coupled oscillators by sta
tical means. According to Eq.~10!, the mean value ofh(t) is
determined bŷ u&. Figure 1~a! shows the curve of̂u& and
the correspondinĝh& at various values ofe. Let us first
focus on the region after the transition. The curve of^u& goes
down monotonically in this region and the corresponding^h&
is close to the dash lineh0(53.15). This implies that the
simulation results confirm the analytical result given by E
~14!. Near the transition, the curve of^u& has a small fluc-
tuation that is produced by the occasional 2p phase slips. We
will discuss this phenomenon later. Figures 1~b! and 1~c!
show the mean frequencies and the Lyapunov exponen
variouse. These curves match the dynamics properties
scribed by Eqs.~11!–~13!. At the transition, the mean fre
quency isVPS53.25. It approximately equals to the value
V1

Nat/h0 or V2
Nath0 . The corresponding two larges

Lyapunov exponents arel150.38 andl250.29, respec-
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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103Chaos, Vol. 12, No. 1, 2002 Phase synchronization
tively. They are also approximately equal to the values
l1

Nat/h0 and l2
Nath0 wherel1

Nat51.12 andl2
Nat50.092 ate

50. However, these dynamical quantities have some sm
mismatches at the transition. In Fig. 1~a!, there is a relative
large mismatch between the values of^h& and h0 . More-
over, in Fig. 1~b!, the point where the mean frequency a
proachesVPS is slightly earlier than the dotted lineg. This is
because the transition to PS is always smeared and obse
only as a tendency, or as a temporary event in some fi
time intervals.16 After the PS transition, the mean frequen
and the two largest Lyapunov exponents remain const
For the two zero Lyapunov exponents, only one of them
little fluctuation near the PS transition. Similar to the case
the mean phase difference, it may be the occasionallyp
phase slips that make the coupled oscillators unstable.

As h is a time scale parameter, it only relates to differe
rotation speed of the trajectory. Therefore, with the coupl
method, their amplitudes keep noncorrelated at various
ues of coupling strength. This can be shown by Fig. 1~d!.
The normal cross-correlation between two amplitudes
measured using the following formula:6

C~t!5
^Ā1~ t !Ā2~ t1t!&

~^Ā1
2~ t !&^Ā2

2~ t !&!1/2
, ~18!

where Ā5A2^A&. The two amplitudes correspond to Eq
~16! and ~17! are A15A(u2u0)21(z22z0)2 and A2

5Ax1
21y1

2, respectively. We plotC(M ) which is the maxi-
mum of C(t) for all t, versus the coupling strengthe. With
the increase ofe, the value ofC(M ) is approximately con-
stant. It is around 0.05 which is the same as that at uncou
statee50. That is to say, the amplitudes keep noncorrela
all the way because the control method relies on the ph
of the two oscillators rather than their state variables. I
different from the observation that, for two chaotic oscill
tors coupling with variables, their cross-correlation increa
with the enlargement of coupling strength after PS.13

FIG. 1. ~a! The mean phase difference^u&, ^h&, and h0 . ~b! The mean
frequency ofV1 and V2 . ~c! The four largest Lyapunov exponentsl i ( i
51,2,3,4).~d! The maximum of normal cross-correlationC(M ) of the two
coupled oscillators versus the coupling strengthe. The vertical dotted lineg
indicates the PS transitionec .
Downloaded 06 Mar 2002 to 144.214.160.204. Redistribution subject to A
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Similar to the mutual coupling using state variables17

and phase coupling in drive-response systems,18 the phase
difference appears 2p phase slips near the transition to P
The time evolution ofu at various values ofe is plotted in
Fig. 2~a!. It shows thatu increases with a nearly periodi
laminar length ate51.2. Whene51.24, the laminar length is
extended and appears more than one period. One of thep
phase slips is enlarged and shown in the inset. Furtherm
whene51.27, which is near the phase transition, the lamin
length shows a sequence of intermittence. Whene.ec

('1.38), the phase difference is at a nearly constant m
value with a high-frequency but low-amplitude fluctuatio
To observe the fluctuation clearly, the value ofu at the tran-
sition to PS is plotted in Fig. 2~b!. The dotted and the dashe
lines correspond to the mean of the phase difference andp/2,
respectively. Evidently,umax,p/2 but the difference is no
substantial. Ife,ec , the situationumax.p/2 occurs which
may result in the 2p phase slips.

In an attempt to quantify the difference in the dynam
of phase slips near and away from the transition, we h
computed the probability distributionp( l ) at various values
of coupling strengthe. The results are plotted in Fig. 3
wherel is the laminar length. Figure 3~a! shows twop( l )’s at
a coupling strength far away from the transition. Their s
tistics follow very closely that of a normal distribution. Wit
the increase ofe, the single normal distribution splits into
two, as observed in Fig. 3~b!. Furthermore, the phenomeno
changes dramatically when the system approaches the c
vicinity of the transition point as shown in Fig. 3~c!. The

FIG. 2. ~a! Time evolutions of phase differenceu in two coupled Ro¨ssler
and Lorenz attractors at various values ofe. The inset shows an enlargeme
of a single 2p phase slips appeared on the curve corresponding toe51.24.
~b! The phase difference with small amplitude fluctuation at PS transit
The dotted line refers to the value of mean phase difference while
dashed line is located atp/2.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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normal distributions can no longer be retained. Instead, t
become a Lorentzian shape. The bandwidth becomes m
broader ase moves closer toec . Some of these propertie
are different from that coupled by state variables. In the la
case, the distribution ofp( l ) changes from a normal shape
a Lorentzian one directly whene moves towardsec .17 While
the additional two normal distributions ofp( l ) can be found
with our method, the difference may be induced by differe
coupling mechanisms. With the method coupled by st
variables, the coupling strength always corresponds to w
coupling where the mutual systems have close mean
quencies at uncoupled state. The phase slips are ma
caused by the amplitude fluctuations at weak coupling. Ho
ever, phase coupling is used in our method and the ph
slips occur at strong coupling where the mutual systems
different. The mechanism to phase slips becomes more c
plex so that the additional phenomenon with two norm
distribution occurs. But both methods give a Lorentzi
shape in the distributionp( l ) near the transition. This prop
erty indicates that both the transitions to PS are smear.

The proposed coupling method can realize PS easily
only at ratio 1:1, but also at variousn:m ratios. For example
set b5m/n with u5f22bf1 for Eqs. ~16! and ~17! and
perform the simulations. The transition to PSec , as well as

FIG. 3. Probability distribution functionp( l ) of the 2p phase slips versus
the laminar lengthl with ~a! normal distribution,~b! two periods of normal
distribution, and~c! a Lorentzian shape.
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the correspondinĝu&, ^h&, and^h0& are plotted in Fig. 4. In
this example,V2

Nat is about ten times higher thanV1
Nat and

V1'bV2 at phase locking. From Eq.~15!, with the increase
of b, h0 is reduced smoothly. Simulations show that at t
transition, ^h&>h0 at various values ofb. For the special
case thatb'V2

Nat/V1
Nat, h0'1 ~as indicated by a dotted line

m2 in the figure!, i.e., their mean frequencies remain u
changed at various coupled strengths. The instantane
value of h only produces the coherence of their frequen
fluctuations to avoid occasional phase slips. Whenb
.V2

Nat/V1
Nat, we need to accelerate the frequency of E

~17! instead of that of Eq.~16!. Therefore,h0,1 and ^u&
,0.

At the special case marked bym2 , it is natural to con-
sider that the correspondingec also appears global minimum
because the mean frequency is unchanged at various
pling strength. However, the global minimum is atm1 which
is far away fromm2 . This is because the value ofec is not
only influenced by the mismatch of mean frequencies,
also by the coherence of their phases. We can describe
dynamics of phase as30,31

ḟ5V1F~A!. ~19!

Here,F(A) is the effective noise with zero mean value th
produces phase diffusion andA is its amplitude. For two
coupled oscillators, a generalization of Eq.~19! reads

du

dt
5DVNat1DFNat1eG~u!, ~20!

with DVNat5V2
Nat2bV1

Nat, DFNat5F2
Nat(A2)2bF1

Nat(A1)
and G describing coupling between two oscillators. A
F1

Nat(A1) and F2
Nat(A2) are independent effective noise, th

maximum of interactive frequency fluctuations can be w
ten as uDFNatumax5uF1

Nat(A1)umax1buF2
Nat(A2)umax. Al-

though it is difficult to develop a formal mathematical mod
to interpret the values ofec at variousb, we can clearly find
out the properties ofec at some special cases. Evidently, t
fluctuation of u is mainly produced byDFNat and the in-
crease ofe can makeeG countervail bothDVNat andDFNat.
Moreover, to avoid 2p phase slips at PS, the phase differen
requiresuuu,p/2. By this means, ifDVNat@uDFNatumax, ec

is mainly determined byDVNat with ec}DVNat. However, if
DVNat!uDFNatumax, the main factor turns toDFNat with ec

}uDFNatumax. In Fig. 4, whenb51, ec is mainly determined
by a relative largeDVNat. With the increase ofb, DVNat

reduces. The correspondingec diminishes butuDFNatumax in-
creases at the same time. At certainb, the two contrary
forces onec make its values a global minimum, as indicat
by m1 . Whenb exceedsm1 , DVNat turns to a small value.
As a result,ec is mainly determined byuDFNatumax and is
enlarged along withb. By this means, it is reasonable th
the global minimum ofec is not at the positionm2 where
DVNat50.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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105Chaos, Vol. 12, No. 1, 2002 Phase synchronization
IV. COUPLED CHAOTIC RÖSSLER AND
HYPERCHAOTIC RÖSSLER OSCILLATORS WITH
PHASE COUPLING

Comparing with state coupling, a significant characte
tic of phase coupling is that perfect PS can always be
tained between two structurally nonequivalent oscillato
We use coupled chaotic Ro¨ssler and hyperchaotic Ro¨ssler
oscillators as another example to show this. The coup
oscillators have been simulated in Ref. 12 using state c
pling method. The results show that only imperfect PS c
be found, i.e., their mean frequency differenceDV'0 and
the phase differencef12f2 exhibit an unbounded random
type walk. Equations of the coupled oscillators are
follows:27

ẋ15h~ t !~2vy12z1!,

ẏ15h~ t !~vx110.15y1!,

ż15h~ t !@0.21z1~x1210!#,

ẋ25h21~ t !~2y22z2!, ~21!

ẏ25h21~ t !~x210.25y21w!,

ż25h21~ t !~31x2z2!,

ẇ5h21~ t !~20.5z210.05w!,

where the formula ofh(t) is the same as the example in Eq
~16! and ~17!. Parameterv is the natural frequency that de
termines the mean frequency of the Ro¨ssler oscillator. De-
tails of the instantaneous phasef2 of the hyperchaotic
Rössler oscillator have been discussed in Ref. 16. We ma
focus on then:m51:1 PS. The mean frequency differen
versusv at various coupling strengths is plotted in Fig. 5~a!.
With the increase of coupling strength, the regions for
extend that correspond to the zero ofDV. The synchroniza-
tion is perfect PS because their phase difference is boun
at PS region. The bounded phase difference can be expli
found in Fig. 5~b!. The bounduDfumax in Fig. 5~b! corre-
sponds to the PS region in Fig. 5~a!. The value ofuDfumax

increases whenv is away from the center value of natur
frequency, i.e.,v'0.92. This is because the mismatch
mean frequenciesDVNat betweenV1

Nat(v) and V2
Nat in-

FIG. 4. The coupling strength at the transitionec , and the corresponding
^u&, ^h&, andh0 values at various locking ratiob. The positionm1 is the
global minimum ofec and the dotted linem2 corresponds tôh&'1 and
^u&'0.
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creases. Whenv is near the transitions from PS to non-P
the bounduDfumax appear several jumps. They correspond
the phase slips.

The dynamics for the structurally nonequivalent oscil
tors have explicit differences. For example, in Eq.~21!, the
variables of the two oscillators have two different rang
2128.6,x1(t),20.4 and 214.6,x2(t),17.3, respec-
tively. As state coupling directly uses the difference of th
corresponding state variable as a weak feedback compon
the variable with a large difference can be described wit
sufficiently large effective noise which produce unbound
phase difference.12,30,31However, their dynamical difference
is trivial when phase coupling is used. If both the instan
neous phases can be obtained, perfect PS can be ach
when the coupling strength exceeds a transition.

V. DISCUSSION

As the investigation of networks is essential to
branches of science,32 the phase coupling can also be appli
in a network of coupled oscillators so as to achieve ph
locking among the oscillators. For example, we can useẊi

5exp(e sin u i)Fi(Xi) to obtain global PS where the phas
difference is defined asu i5^f&2f i with i 51,2,3, . . . . The
mechanism is similar to that discussed above.

The dynamics of phase coupling is different from that
state coupling. In the latter case, it belongs to the framew
of chaos control theory.33,34 Besides PS, the oscillator dy
namics may change from chaos to period under the w
perturbations of the state coupling. While in the former ca

FIG. 5. ~a! The mean frequency differenceDV in Eqs. ~21! and ~b! the
maximum absolute phase differenceuDfumax versusv at several values of
the coupling strengthe.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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the phenomena are closely related to phase-locking lo
~PLL! that are highly relevant to engineering applications35

The chaotic dynamics of coupled systems are maintai
except the interactive of both frequencies. When a cohe
summation is necessary for the outputs of structurally n
equivalent generators whose dynamics have great differe
phase coupling is a better choice to achieve perfect PS
cause the state coupling can only get imperfect PS, as sh
in Sec. IV. Then:m perfect PS of phase coupling may al
be an important consideration in schemes for communica
using the natural symbolic dynamics of chaos.36,37The clock
timing of information bits is typically a key factor in a com
munication system. Therefore, a robust frequency control
chaotic systems is crucial in an application to encoded
decoded communication. Especially, the parameter for ph
coupling, i.e.,h in Eq. ~2!, exactly corresponds to the param
etrization time due to the hardware of the analog compute24

By this means, similar to the PS in state coupling, then:m
PS can also be easily realized in engineering.

PS has been considered as a possible communica
way in biological neural networks.23,38–40 Investigation of
coupling methods among neural systems is important to
cover some properties of nerve activities. Different fro
state coupling where only 1:1 PS can be achieved, the p
coupling can realize various ratios of PS as required. Asn:m
PS can also be found in different groups of neu
activation,23 the state coupling is insufficient to explain th
variousn:m PS in different groups of neural activation. E
pecially, the dynamics of different groups of neurons are
ways different. Phase coupling can achieve perfect PS
tween different dynamical systems because the coup
method only concerns the time scale. Therefore, despite
coupling, phase coupling may also benefit the investiga
of the coupling among biological neurons.

VI. CONCLUSION

In conclusion, we have developed an effective way
obtain PS between two interacting chaotic oscillators. A
result, PS of the two coupled oscillators, Lorenz and Ro¨ssler,
is studied in detail. Furthermore, we use the coupling
tween chaotic Ro¨ssler and hyperchaotic Ro¨ssler oscillators as
another example to show that the phase coupling can ach
perfect PS between two structurally nonequivalent osci
tors. Our method could easily be extended to a scala
oscillators so as to obtain global PS in the same way. It m
be an effective way to investigate the coupling phenomen
various physical and biological fields.
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