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Optimal sizes of ion channel clusters
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Abstract. – Voltage-dependent conductance of ion channels is key for the generation of
action potentials. Ion channels are opening and closing stochastically due to thermal noise and
introduce internal noise into the membrane potential of the cell. The noise power depends on
the size of the ion channel cluster that generates the action potential (the hillock). We show
that the encoding of small sinusoidal signals in terms of spikes can be enhanced by channel
noise if the cluster size is in a certain range.

Stochastic resonance describes the amplification of weak signals in bistable or excitable
systems in the presence a proper amount of noise (for a review, see [1]). This effect has been
observed in sensory neurons [2–4] and has been described theoretically in a number of studies
(see, e.g., [5, 6]). Common to most of these studies is that noise has been added externally
to a sub-threshold signal. As the external noise level is increased, optimal encoding of the
sub-threshold signal in the spike train (quantified by spectral measures [1] or information
theoretical measures [7, 8]) is achieved at a certain finite noise level. Further increase of the
noise is detrimental for the signal encoding.

In a simple threshold-fire model for neurons [9] it has been shown that the maximum SNR
found by varying the excitability at a given noise level decreases monotonously with increasing
noise. Thus, adding noise externally is not the best strategy to optimize signal encoding if
other parameters such as the excitability can be adjusted.

At a given temperature, a certain level of internal noise is present. Ion channel proteins,
e.g., change their conformation thermally and visit their “open”-state on occasion. When
the channel is open, ions can move across the cell membrane, leading to internal thermal
conductance fluctuations. Intrinsic fluctuations of the membrane potential induced by chan-
nel fluctuations have been modeled by using a kinetic scheme [10–13] that explicitly mimics
the opening and closing of ion channels and their effect on the macroscopic conductance of
the membrane. The replacement of these kinetic schemes by less time-consuming stochastic
differential equations is subject of current research [11, 14]. It is clear, however, that sim-
ply adding noise to the injected current is not a physiologically meaningful way of modeling
channel noise [14].

In this paper we use such a kinetic Hodgkin-Huxley model for patches of excitable mem-
branes [10–13] ranging from 0.1 µm2 to 500 µm2 in conjunction with a sub-threshold sinu-
soidal signal (injected current). The main question we are studying is whether and under
what circumstances intrinsic channel fluctuations can be exploited to enhance the encoding of
c© EDP Sciences
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a sub-threshold signal. Petracci et al. [15] have studied this question with a single ion channel
by varying the temperature. Although there was clear evidence for a timing of the opening
and closing of the channel with the phase of the sinusoid, no optimal temperature (consistent
with optimal encoding) was found. Since intrinsic noise levels are determined by the size of
the ion channel clusters, our hypothesis amounts to a cluster-size resonance with respect to
the encoding of a sub-threshold signal.

After a brief description of the model, we discuss spiking rates and regularity as the cluster
size is changed. The mean interspike interval and the variance of the interspike intervals both
exhibit a minimum as a function of the size of membrane patch. For the parameter values
documented for the giant squid axon [16] this minimum is at a membrane size of about
50 µm2–100µm2. Similarly, in the oscillatory regime, where the macroscopic membrane (large
membrane size) beats periodically, the spontaneous spike rate first increases for increasing
cluster sizes but then decreases while the interspike interval becomes more and more uniform
[17]. We then inject a periodic, sub-threshold current. In the macroscopic limit (limit of
large membrane area) such a stimulus does not trigger action potentials and thus the signal
is not encoded in a spike train. For decreasing cluster sizes, however, channel noise aids
the subthreshold signal in generating action potentials and thus, encoding becomes possible.
Whether the encoding is optimal depends on the intensity of channel noise which in turn
is determined by the size of the cluster. We find that for a given signal frequency there is
an optimal size of the ion channel cluster at which the spike trains optimally encode the
sub-threshold signal.

Channel fluctuations are caused by the random opening and closing of channels which is
thought to be caused by thermal hopping of the channel protein between different conforma-
tional states. We adopt the classic model for the ion channels introduced by Hodgkin and
Huxley that models the potassium channel by four identical gates that stochastically switch
between an open state and a closed state. The open probabilities pn, n = 1, 2, 3, 4 for the four
gates n are described by the rate equation

ṗn(t) = − (αK(v) + βK(v)) pn(t) + αK(v) , (1)

where αK(v) and βK(v) are the voltage-v–dependent opening and closing rates of a potassium
channel gate

αK(v) =
0.01(10 − v)

exp [(10 − v)/10] − 1
, βK(v) = 0.125 exp

[
− v

80

]
. (2)

The trans-membrane voltage v is measured here and in all equations below in mV. The
physiologic cellular resting potential of −65 mV has been subtracted from all voltages in order
to shift the resting potential to v = 0 mV. The potassium channel is open only when all four
gates are open, i.e. with probability p1p2p3p4.

The sodium channel consists of four gates. Three identical fast gates increase their open-
ing probability q1, q2, q3 when the voltage v becomes larger than the resting potential. The
slower fourth deactivation gate decreases its open probability q4 when the membrane potential
increases. The gate variables obey the following rate equations:

q̇n(t) = −
(
αf

Na(v) + βf
Na(v)

)
qn(t) + αf

Na(v) ,

q̇4(t) = − (αs
Na(v) + βs

Na(v)) q4(t) + αs
Na(v) , (3)

with the opening and closing rates

αf
Na(v) =

0.1(25 − v)
exp [(25 − v)/10] − 1

, βf
Na(v) = 4.0 exp

[
− v

18

]
,
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αs
Na(v) = 0.07 exp

[
− v

20

]
, βs

Na(v) =
1

exp [(30 − v)/10] + 1
. (4)

For the simulation of the gates and channels we assume that all the gates open and close
according to a two-state Markov process with voltage-dependent opening and closing rates.
We update the open-probabilities of all gates every 10 µs and select the new state by drawing a
random number. This method is clearly more inefficient than the schemes used, e.g., in [11,12],
where populations of channels that share their numbers of open gates are updated by drawing
the numbers of switching channels from a binomial distribution. We use our scheme also for
heterogeneous channel distributions where the other schemes cannot be applied.

For the density of the sodium and potassium channels (number of channels per area) we
use ρNa = 60/µm2 and ρK = 20/µm2, respectively. The single-channel conductances of the
sodium and potassium channels are given by γNa = γK = 20 pS. Except for ρK = 20/µm2

these values have been reported for the giant squid axon [16]. Using a membrane capacitance
of 1 µF/cm2 we end up with the following kinetic Hodgkin-Huxley equations:

v̇ = −
(

Nopen
K

τKNK
(v − vrev

K ) +
Nopen

Na

τNaNNa
(v − vrev

Na ) +
1
τL

(v − vl)
)

+ Iin(t) , (5)

where vrev
K = −12 mV, vrev

Na = 115 mV and vl = 10.6 mv denote reversal potentials of the
potassium systems, sodium system and leakage system, respectively. The time constants are
given by

τK =
1
36

ms ,

τNa =
1

120
ms ,

τL = 3.3 ms . (6)

We have subtracted the resting potential from the transmembrane voltage and the reversal
potentials so that v = 0 denotes the resting potential.

To verify the accuracy of our kinetic simulation we have 1) verified that the deterministic
dynamics of the Hodgkin-Huxley equations is approached for large channel numbers, 2) verified
that the results are independent of the particular random number generator used in the
simulations, and 3) found agreement with the previous results in [12] for action potential
rates at large dc currents.

The mean interspike interval 〈T 〉 of the ion channel cluster is shown as a function of its
size in fig. 1a. For large cluster sizes, 〈T 〉 is increasing exponentially as expected (see also
previous investigations in [11] and the results of Langevin approximations in [14]). For small
and increasing cluster sizes, however, 〈T 〉 first decreases, reaches a minimum and increases
(see also [18]). Our results for the rate 1/〈T 〉 differ quantitatively from the results in [18] by
factors 2-3 but agree qualitatively. It is interesting to note that the results obtained in [11] by
using Gilespie’s method seem to not reproduce our results (and that in [18]) for small cluster
sizes, while the agreement for large cluster sizes is very good.

For small numbers of channels, stochastic opening of almost any sodium channel results
in an action potential and thus the rate of spontaneous action potentials increases with size.
For larger number of channels, however, the common membrane voltage couples the random
opening and closing events more tightly, resulting in collective events of a large portion of
available channels at the same time. The relative fluctuations of the interspike intervals (see
fig. 1b) exhibit a relative minimum approximately where the spike rate displays a relative
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Fig. 1 – The average interspike interval 〈T 〉 (a) and the relative fluctuations η =
√

(T − 〈T 〉)2/〈T 〉 (b)
are shown as a function of the cluster size at zero external stimulus.

maximum. Thus, as the spontaneous spike rate increases with increasing cluster size, the
cluster beats more regular. The power spectrum of the spike train exhibits a broad peak
where the relative fluctuations are minimal [17].

We now study the kinetic Hodgkin-Huxley model in the presence of a sub-threshold sinu-
soidal stimulus (injected current). In case of dc stimulus one finds excitable dynamics (i.e. a
stable fixed point) for a dc current less than about Ac = 7 µA/cm2. For a current interval
of 2 µA/cm2 to Ac a stable limit cycle coexists with the stable fixed point giving rise to
periodic bursts and skipping [12]. For ac stimulus, the excitation threshold depends strongly
on the frequency of the stimulus and can be substantially smaller than for a dc stimulus [19].
In the deterministic limit (i.e. for large channel numbers) an injected current with ampli-
tude 1 µA/cm2 and frequency 16 Hz (corresponding to a period of 63 ms) is a sub-threshold
stimulus and does not trigger action potentials. In fig. 2, we show a number of interspike
interval histograms (ISIH) for increasing membrane sizes. Encoding of the periodic signal is
represented by interspike intervals in the vicinity of the period of the stimulus T = 63 ms.

In the deterministic limit the Hodgin-Huxley equations describe refractoriness, an impor-
tant property that keeps the membrane from reverberating. The ISIHs for large membrane
areas clearly reflect this refractoriness, i.e. the ISIHs are zero for times less than about 15 ms.
Refractoriness is, however, not a property of small membranes. Substantial numbers of in-
tervals shorter than the deterministic refractory period and even an additional peak can be
observed in, e.g., the ISIH for a membrane size of 0.5 µm2.

For larger membrane sizes the ISIH develops a peak in the vicinity of the period of the
stimulus which becomes most pronounced at membrane sizes in the range of 50–100 µm2. The
peak decays for larger membrane sizes. This result indicates that there is an optimal cluster
size for the encoding of subthreshold signals. A similar result has been obtained independently
by Schmid, Goychuk and Hänggi [20] by using an approximative set of stochastic differential
equations [14]. Note that the physiologic resting potential of −65 mV has not been subtracted
from the voltages in this accompanying paper [20], leading to different expressions for the
opening and closing rates. The ISIHs for small cluster sizes (0.05 µm2–1 µm2) also show peaks
in the vicinity of the period of the signal that undergo another maximum at a membrane size
of about 0.25 µm2 (not shown here).

A spectral analysis of the neuronal spike train also supports the hypothesis of optimal
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Fig. 2 – Normalized interspike interval histograms of the action potentials generated by ion channel
clusters with indicated areas A are shown.

cluster sizes. We approximate the neuronal spike train by a train of δ-spikes at the central
positions tn of the action potentials, i.e.

v(t) =
∑

n

δ(t − tn) . (7)

The power spectrum, defined by the Fourier transform of the correlation function (averaged
over the observation interval To)

kav(τ) =
1
To

∫ To

0

v(t)v(t + τ)dt =
1
To

∑
nm

δ(tn − tm − τ) , (8)

is obtained as

S(ω) =
∫ ∞

−∞
exp[−iωτ ]kav(τ)dτ =

1
To

∣∣∣∣∣
∑

n

exp[−iωtn]

∣∣∣∣∣
2

. (9)

We have used time intervals long enough to produce 5000 action potentials at each size
of the membrane. Most notably, we found a narrow peak at the frequency of the periodic
stimulus. From general considerations one expects that the spectral line at the frequency
of the stimulus should be δ-shaped in Fokker-Planck equations and master equations with
periodic coefficients [21].

The finite length of the spike trains, however, widens these peaks. The weight of the peak,
indicating the periodicity of the spike train, is obtained by integrating the power spectrum
over the frequency (see also [22]). The integral exhibits a step at the frequency of the stimulus.
Its height represents the weight of the peak and its width the width of the peak. The step
height, therefore, is a measure of the signal encoding in the spike train. In figs. 3(a) and (b)
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Fig. 3 – The integrated power spectrum is shown for various larger (a) and smaller (b) cluster sizes.
The step height at the stimulus frequency Ω = 0.1 is a measure for the signal encoding.

the integrated power spectra are shown for various membrane sizes. There are two relative
maxima of the step sizes at different membrane sizes. A maximum at a relatively small cluster
size of the membrane (see fig. 3b) at about 0.25 µm2) and another one at a large membrane
size (see fig. 3a). We interpret this double resonance as a consequence of the non-monotonous
dependence of the spontaneous spike rate on the cluster size reported above (see fig. 1(a)). The
same amount of noise (number of spontaneous spikes per second) is produced by two different
cluster sizes. Thus, assuming that optimal encoding is controlled by noise, one expects two
optimal cluster sizes at least for a certain range of frequencies.

Discussion. – We have shown that internal channel noise in ion channel clusters can
enhance a sub-threshold stimulus at certain sizes. It is important to note that no external
noise is necessary for this effect to occur. It is only internal channel noise regulated by the
size of the cluster that enhances the sub-threshold signal. While the concrete optimal cluster
size depends on the signal frequency, typically we find a small optimal cluster, where only a
few channels are present and a large optimal cluster size with several hundred or thousand
channels. The double maximum is due to a non-monotonous dependence of the spontaneous
spiking rate on the size of the membrane. Finite sizes of ion channel clusters occur in various
places in neurons. Action potential generation, e.g., is believed to happen in the hillock of
the neuron that comprises an area of only a few µm2. The nodes of Ranvier play the role
of boosters along the axon to reshape the action potential between the passive myelinated
regions of the axon. The numbers of channels are finite and are subject to modulation by,
e.g., changes of channel expression in glia. Regulation of the density of ion channels in order
to optimize encoding performance seems feasible.
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