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J.W. Shuai, S. Zeng, and P. Jung*

Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University

Athens, OH, 45701, USA
∗jungp@ohio.edu

Received (received date)

Revised (revised date)
Accepted (16 September 2002)

Coherence resonance describes a phenomenon in excitable systems in which a suitable
dose of noise generates excitation-events that maximizes its periodicity or coherence. The
Fano-factor, defined as the ratio of the standard deviation of the time-intervals between
successive events and the average time interval, exhibits a minimum at this optimal noise
level. It is shown here that a decreasing Fano factor is a necessary but not a sufficient

criterion to indicate enhanced coherence of a signal.
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1. Introduction

To characterize temporal coherence of a signal is an important task when studying
phenomena such as stochastic resonance (for a review, see [1]) or coherence reso-
nance [2–8]. In periodically driven system such as the driven double-well dynamics
most measures of coherence are based on the power spectrum of the signal (signal-
to-noise ratio, signal-amplification, cross-correlations between driver and system)
or on escape-time distributions [9]. In excitable systems, where the system’s signal
consists of a train of spiking events, used measures of coherence are based on the
interval distribution between successive spikes (for a review see [1]). One of the
measures used for the description of coherence resonance is the Fano-factor, i.e. the
ratio of the standard deviation of the intervals from their mean value and the mean
interval length. A decreasing Fano-factor is a necessary condition for increasing
coherence since then all intervals have to be more narrowly distributed around a
mean value. In this paper, we show that a decreasing Fano-factor, however, is not
a sufficient criterion to indicate increased coherence although it is used as such in
several studies [2–8]. This paper is organized into two major parts. In the first
part we consider a cluster of potassium and sodium ion channels embedded in a
cell-membrane. Such a system generates spontaneous action potentials at a rate
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that depends on the size of the cluster [10]. The temporal coherence of the spon-
taneously generated action potentials exhibits coherence resonance as a function of
the cluster size ( [10] and [11]). The occurrence of an optimal cluster size is verified
by a peak in the power spectrum of the spike train and a simultaneous minimum
of the Fano-factor. In the second part of this paper, we discuss a simple, action po-
tential generating stochastic toy model which has the feature that the Fano factor
decreases with increasing noise level, but yet the power spectrum does not indi-
cate any coherence. We thus show that a decreasing Fano-factor is not a sufficient
criterion for increasing temporal coherence.

2. Clustered ion channel system

Neuronal K+ and Na+ ion channels often occur in clusters. Since each channel is
subject to open-closed fluctuations, a cluster of a finite size will generate sponta-
neous action potentials. We are interested in the coherence of the generated spike
train as a function of the cluster size. Each potassium channel has four identical
subunits (gates) that are either closed or open. The opening and closing rates αK(v)
and βK(v), respectively, for each subunit are given by [12]

αK(v) =
0.01(10− v)

exp ((10 − v)/10) − 1
, βK(v) = 0.125 exp

(

− v

80

)

, (1)

where v refers to the trans-membrane potential. The opening and closing processes
of the subunits are assumed to be Markovian and described by the two-state master
equation for the open-probability of a subunit

ṗn(t) = − (αK(v) + βK(v)) pn(t) + αK(v), (2)

with n = 1, 2, 3, 4. The entire channel is open when all four subunits are open.
The sodium channel is composed of three identical (fast) subunits that – similar

to the potassium channel subunits – tend to open when the trans-membrane voltage
is increasing, i.e.

αf
Na(v) =

0.1(25− v)

exp ((25 − v)/10)− 1
, βf

Na(v) = 4.0 exp
(

− v

18

)

, (3)

with the corresponding two state master equations for the state of the gates

q̇n(t) = −
(

αf
Na(v) + βf

Na(v)
)

qn(t) + αf
Na(v), (4)

with n = 1, 2, 3. The sodium channel also comprises a (slow) deactivation gate that
tends to close with increasing trans-membrane voltage. The opening and closing
rates of the deactivation gates are given by

αs
Na(v) = 0.07 exp

(

− v

20

)

, βs
Na(v) =

1

exp ((30 − v)/10) + 1
, (5)

with the associated two-state master equation describing the state of the deactiva-
tion gate

q̇4(t) = − (αs
Na(v) + βs

Na(v)) q4(t) + αs
Na(v). (6)
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A sodium channel is open when all three fast gates are open and the deactivation
gate is open. In all equations above, the trans-membrane potential is measured in
millivolts (mV), and the time is measured in milliseconds (ms). The small size of
the ion channel cluster allows us to set the membrane potentials at each channel
equal. The equations above are supplemented by an equation for the membrane
potential

C
dv

dt
= −gK(v − vK) − gNa(v − vNa) − gL(v − vL) , (7)

with the conductance of the sodium system, potassium system and leakage sys-
tem given by gK , gNa, gL, respectively. C denotes the membrane capacitance and
vK , vNa and vL the Nernst potentials of the ionic systems. Assuming that the
densities of the potassium channels ρK and sodium channels ρNa are homogeneous
throughout the cluster of area A, we can express gK and gNa in terms of the con-
ductance of single open channels γK , γNa, i.e.

gK

A
=

Nopen

K γK

A
=

Nopen

K

NK

ρKγK ,

gNa

A
=

Nopen

Na γNa

A
=

Nopen

Na

NNa

ρNaγNa . (8)

Dividing (7) by the cluster area, one finds

C

A

dv

dt
= −Nopen

K

NK

ρKγK(v − vK)

−Nopen

Na

NNa

ρNaγNa(v − vNa) − gL(v − vL). (9)

For the following computations we use the characteristic values for the gi-
ant squid axon, ρK = 18/µm2, ρNa = 66/µm2, γK = 20pS, γNa = 20pS, C/A =
1µF/cm2, and gL = 0.3mS/cm2. The fraction of open channels can be obtained at
each time step by using a Markov-Monte-Carlo type technique put forward in [13].
Combining this Markov-Monte-Carlo scheme with a (linear) solver for Eq.9, one
obtains a spike train of N action potentials at times Tn with the interspike intervals
∆Tn ≡ Tn+1 − Tn where n = 1, ..., N .

In Fig.1 we show the average interspike interval < T >, and the Fano-factor η
as a function of the cluster size N , with

< T > ≡ Tl

N
,

σ2 ≡ 〈∆Tn − 〈∆T 〉〉2,
η ≡ σ

〈∆T 〉 , (10)

where Tl is the length of the spike train.
The average interspike interval, as well as the variance and the Fano factor

exhibit a minimum at a cluster size of about 2µm2. The largest firing rate goes
parallel with a minimum in the variance and Fano-Factor, suggesting maximum
coherence at the cluster size of about 1µm2. The power spectra in Fig.2 verify this
hypothesis. The power spectrum of the spike train exhibits the largest maximum
where the Fano Factor assumes a minimum.
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Fig 1. The average interval between two consecutive spontaneous spikes (a) and the Fano factor
(b) are shown as a function of the area of the ion channel cluster.
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Fig 2. Power spectrum of spike train generated by a cluster of sodium and potassium channels
of (a) 0.1 µm2, (b) 2.0 µm2 and (c) 50.0 µm2. The angular frequency ω is measured in units of
2π/ms. The peak occurs at a frequency that corresponds to an interspike interval of about 18ms
which is a few millisceonds larger that the refractory time of the deterministic Hodgkin-Huxley
model.



Use and Abuse of the Fano Factor

3. Spike coherence in a stochastic toy model

We now consider the linear, second order, stochastic differential equation,

dx

dt
= v,

dv

dt
= −

(

1

τ1

+
1

τ2

)

v − 1

τ1τ2

x +

√
D

τ1τ2

ξ(t), (11)

with arbitrary, non-zero characteristic times τ1 and τ2 and noise strength D, de-
scribing the motion of an overdamped Brownian particle (in dimensionless units)
in a parabolic potential with white, Gaussian noise ξ(t), i.e.

〈ξ(t)〉 = 0,

〈ξ(t)ξ(t′)〉 = 2δ(t − t′). (12)

Whenever the stochastic variable x is crosses the threshold x0 from below, the
system responds with a spike [14]. Denoting the times when the system crosses the
threshold from below by tn, the output s(t) of the threshold system is the train of
pulses δ(t)

s(t) = s0

∑

n

δ(t − tn). (13)

The correlation function K(τ) of the spike train can be expressed in terms of the
threshold crossing rate rcr as [14]

K(τ) = 〈s(t + τ)s(t)〉 = s2
orcrδ(t − t′) + s2

0g(τ) (14)

where g(τ) describes spike-spike correlation function and

rcr =
1

2π
exp

(

−x2
0

2σ

)

, (15)

the threshold crossing rate. The first term on the right hand side of Eq.14 describes
white shot noise with a spectral density [14]

S(ω) = s2
0rcr. (16)

Neglecting spike-spike correlations, the power spectrum is predicted flat. It has
been shown in Ref. [14] that small corrections due to spike-spike correlations do not
generate a peak in the power spectrum.

Our computer simulations confirm this prediction in Fig.3 with τ1 = τ2 = 1. In
Fig.3, we show the power spectra of the spike trains obtained by evaluating [10]

S(ω) =
1

Tl

∣

∣

∣

∣

∣

∑

n

exp (−2πiωTn)

∣

∣

∣

∣

∣

2

(17)

at various values of the noise strength D. The mean interspike interval 〈T 〉, and the
Fano factor η are shown in Fig.4 as a function of the noise strength. The variance
σ2 (not shown) decreases faster than the mean interval 〈T 〉 and thus the Fano factor
η decreases with increasing noise strength D. Thus a decreasing Fano factor in this
example does not characterize increased coherence.
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Fig 3. Power spectrum of spike train generated by the stochastic toy model at D = 0.05, D = 0.1,
and D = 0.2 at a threshold of x0 = 0.2. The frequency is measured in inverse units of the time.
The fluctuations of the power spectra are due to finite length of the spike trains. The upper panel
is focussed on a frequency range which includes the frequencies f0 that correspond to the inverse
average interspike intervals (arrows).

4. Conclusion

In this paper, we have shown that a decreasing Fano factor is not a sufficient indi-
cator of increasing temporal coherence of a spike train. It is therefore necessary to
consult the power spectrum in addition to the Fano factor to quantify coherence of
spike trains.
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Fig 4. The average interval between two consecutive spontaneous spikes (b) and the Fano factor
(b) generated by the stochastic toy model are shown as a function of the noise level D at a threshold
of x0 = 0.2.
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