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IN LOW-FREQUENCY

QUASIPERIODICALLY DRIVEN SYSTEMS

J. W. SHUAI∗ and D. M. DURAND†

Department of Biomedical Engineering,
Case Western Reserve University,

Cleveland, OH 44106, USA

Received October 1, 1999; Revised January 3, 2000

To generate strange nonchaotic attractor in quasiperiodically driven systems, there must be an
unstable region in its phase-space. In this paper, a theoretical analysis shows that the quasiperi-
odic force acts as noise to lead the trajectory running into different expanding orbits when the
trajectory repeatedly runs into the unstable region. Thus the resulting attractor is strange. The
local-phase Lyapunov exponent is introduced for the study of low-frequency quasiperiodically
driven systems. It is shown that the local-phase Lyapunov exponents can be approximated
by the exponents of autonomous systems. The statistical properties of SNA system driven by
low-frequency quasiperiodic force can then be approached by a set of autonomous systems.

1. Introduction

Strange nonchaotic attractor (SNA) is a kind of at-
tractor exhibiting some properties of periodic and
chaotic systems [Grebogi et al., 1984]. Like pe-
riodic attractors their typical trajectories exhibit
no sensitive dependence on initial conditions; like
usual chaotic attractors their geometric structures
are complicated and so the trajectories can have
a singular continuous power spectrum. SNA can
be generated in nonautonomous ordinary differen-
tial equations driven by two incommensurate peri-
odic forces or discrete maps driven by a quasiperi-
odic force. SNAs have also been observed in some
physical systems [Ditto et al., 1990; Zhou et al.,
1992; Ding et al., 1997]. SNA can be quantita-
tively characterized by a variety of methods, includ-
ing Lyapunov exponent, fractal dimension, rotation
number and phase-sensitivity exponent [Romeiras

et al., 1987; Ding et al., 1989; Pikovsky & Feudel,
1994]. The renormalization group has also been de-
veloped for the analysis of SNA [Kuznetsov et al.,
1998]. One of the important numerical observa-
tions is that the typical trajectories of SNA have
positive finite-time Lyapunov exponents, although
asymptotically, the time-independent Lyapunov ex-
ponent is negative [Pikovsky & Feudel, 1995]. Dif-
ferent mechanisms have been proposed for the cre-
ation of SNA in quasiperiodically forced systems
[Kapitaniak, 1993; Heagy & Hammel, 1994;
Yalcinkaya & Lai, 1996; Nishikava & Kaneko, 1996;
Prasad et al., 1997; Witt et al., 1997]. Most of them
involve a collision between stable and unstable re-
gions. With these methods, SNAs typically appear
in a narrow vicinity along the transition bound-
aries of chaos and torus. It has been shown that,
if the driving frequency is sufficiently low, SNAs
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can occur in a large parameter region [Shuai &
Wong, 1998, 1999].

It has been stressed that to generate an SNA
with a quasiperiodic driving force there must be an
unstable subregion in the phase space of the system
[Heagy & Hammel, 1994; Lai, 1996; Pikovsky &
Feudel, 1995]. However, if we replace the irrational
frequency of the driving force with a nearby rational
frequency, the unstable subregion still exists. But
in this case SNA can no longer be observed. Thus
an important question is what kind of role does the
quasiperiodic force play in the creation of SNA. This
question is also partly related to the argument in
[Anishchenko et al., 1996, 1997; Pikovsky & Feudel,
1997]. It was argued in [Shuai & Wong, 1998, 1999]
that the quasiperiodic force acts as a noise in an
SNA system. This conclusion was only based on
some numerical simulations and limited to the case
of low-frequency driving force. In Sec. 2 of this pa-
per, a theoretical basis for this statement is consid-
ered generally. Theoretical analysis shows that, act-
ing as a noise source, the quasiperiodic force drives
the trajectory into different expanding orbits during
different time intervals to create a strange attractor.
SNAs in low-frequency quasiperiodically driven sys-
tems have been studied numerically [Shuai & Wong,
1998, 1999]. In Sec. 3, a new analysis of the local-
phase Lyapunov exponent method is provided and
gives us some new insights on such an SNA system.
For a low-frequency driving system, its local-phase
Lyapunov exponents can be approximated by the
exponent of autonomous systems. Thus the statis-
tical properties of such a system can be discussed
with a set of autonomous systems. To confirm these
discussions, a quasiperiodically driven logistic map
is simulated in Sec. 4.

2. Finite-Time Lyapunov Exponent

In this paper the following different maps are
investigated,

xn+1 = F(xn, sin θn) (1a)

θn+1 = (θn + 2πω) mod 2π (1b)

where x is a d-dimensional vector and F a d-
dimensional vector function of x. Suppose the at-
tractor lives in the region of (−1, 1) and the func-
tion sin θ is of the first-order in F(x, sin θ). There
are d + 1 Lyapunov exponents for Eq. (1). One
of them, corresponding to Eq. (1b), is always zero.
Assuming the other d Lyapunov exponents are all

negative, there is no other periodic function in
Eq. (1a). The d Lyapunov exponents can be ob-
tained by the evolution of the tangent vector yn:

yn+1 = DF(xn) · yn (2)

where DF denotes the Jacobian matrix of partial
derivatives of F to x. The d Lyapunov exponents λ
of the system are [Ott, 1993]

λ = lim
n→∞

λn(0) = lim
n→∞

1

n
ln |DFn(x0) · y0| (3)

with

DFn(xi) = DF(xn+i) ·DF(xn−1+i) · · ·

·DF(xi+1) ·DF(xi) (4)

Here, λn(0) is called the time-n Lyapunov exponent
from t = 0. In particular, one can define time-1
Lyapunov exponent λ1(n) at each time step n:

λ1(n) = (n+ 1)λn+1(0)− nλn(0) (5)

Then the time-τ Lyapunov exponent from time
n0 is

λτ (n0) =
1

τ

n0+τ−1∑
i=n0

λ1(i) (6)

Suppose the initial point (x0, θ0) is located
in the attractor space. Furthermore, suppose at
time m the trajectory is at point (xm, θm) with
xm − x0 < δx and θm − θ0 < δθ. Here δx and δθ
are at infinitesimal distance. Let the nearby points
(xm, θm) be another initial point, i.e. (x′0, θ

′
0) =

(xm, θm). Noticing that we have δθn ≡ δθ0, in the
following the evolution of the difference between x0

and x′0 is discussed. Applying Taylor series, one has

δx1 = DF(x0) · δx0

+
∂F

∂ sin θ

∣∣∣∣∣
θ0

cos θ0δθ0 + O(x0, θ0) (7)

Ignoring the second- and higher-order terms, the
evolution of the difference is

δxn = DFn(x0) · δx0 + Aδθ0 (8)

where the vector

A =
n−1∑
i=0

DFn−1−i(xi+1) · ∂F

∂ sin θ

∣∣∣∣∣
θi

cos θi (9)
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The negative nontrivial maximum Lyapunov expo-
nent indicates DFn(x0) = 0 for large time n. If ω
is rational, one can let δθ0 = 0. So we get δxn = 0,
δθn = 0. In this case a period-m attractor is ob-
served. However, for the quasiperiodic function, we
have θn1 6= θn2 for any n1 6= n2 and thus δxn = 0,
δθn = 0 cannot be obtained.

For almost all of the numerically investigated
SNA systems, the term sin θ is of the first-order in
the map. In this case,

∂F(xn, sin θ)

∂ sin θ

∣∣∣∣∣
θn

= F(xn, cos θn)

= F

(
xn, sin

(
θn +

π

2

))
≡ x′′n+1

(10)

Here x′′n+1 is obtained from Eq. (1) with the initial
conditions x′′0 = x0 and θ′′0 = θ0 + π/2.

The fact that d Lyapunov exponents are nega-
tive implies DFn(xi) → 0 when n � i. Thus only
the recent limited terms remain in the vector A. As-
suming that the remaining terms are from n− τ −1
to n− 1:

A = x′′n cos θn−1 + DF(xn−1) · x′′n−1 cos θn−2

+ · · ·+ DFτ (xn−τ ) · x′′n−τ cos θn−τ−1

=
τ∑
i=0

DFi(xn−i) · x′′n−i cos θn−i−1 (11)

and so

δxn = δθ0

τ∑
i=0

DFi(xn−i) · x′′n−i cos θn−i−1 . (12)

Then the maximum distance |δxn| can be estimated
as

|δxn| ≤ δθ0

τ∑
i=0

|DFi(xn−i) · x′′n−i cos θn−i−1| (13)

The time-i Lyapunov exponent is obtained from
DFi(xn−i). Defining the maximum time-i
Lyapunov exponent at time n− i as λi(n− i), and
noticing |x′′n| ≤ 1,

|DFi(xn−i) · x′′n−i| ≤ exp(i · λi(n− i)) . (14)

The equation holds only when the vector x′′n−i lies in

the direction of the eigenvector of DFi(xn−i) which
eigenvalue is λi(n− i) and |x′′n| = 1. The maximum

distance |δxn| is then mainly determined by the
exponents λ1(n − 1), λ2(n − 2), . . . , λi(n − i), . . .
and λτ (n− τ), i.e.

|δxn| ≤ δθ0 + δθ0

τ∑
i=1

exp(i · λi(n− i)) . (15)

According to Eq. (6),

λi+1(n− i− 1) =
i

i+ 1
λi(n− i)

+
1

i+ 1
λ1(n− i− 1) . (16)

The value of λi+1(n − i − 1) is mainly determined
by the term λi(n− i). It implies that the change of
the exponents from λi(n− i) to λi+1(n− i− 1) is a
little smooth. Considering the fact that the time-i
Lyapunov exponent asymptotically approaches the
negative Lyapunov exponent with the increase of
time i, there are two typical situations for such
changes. The first case is that all these finite-time
Lyapunov exponents are negative. It means that
the trajectory always runs in the contracting space.
The terms exp(i · λi(n− i)) become smaller as i in-
creases. So, the distance |δxn| in Eq. (15) is of the
order of δθ0. It means that the different points in
the trajectory will converge to each other if their
phase angles are close. The resultant attractor is a
torus.

However, various studies have shown that there
may exist an unstable region in the phase space for
a nonchaotic system [Heagy & Hammel, 1994; Lai,
1996; Pikovsky & Feudel, 1995]. Therefore, the sec-
ond case is that the trajectory runs into the un-
stable region with a high frequency during a time
interval, e.g. (n0, n1). In this case, the finite-time
Lyapunov exponents λn−n0(n0) are positive and in-
crease with the increase of n from n0. After time
n1, the exponent reaches its maximum, i.e. λ0 =
λτ0(n0) = [λ1(n0) + λ1(n0 + 1) + · · · + λ1(n1)]/τ0

with τ0 = n1 − n0 + 1. Then, the trajectory runs
back into the stable region with high frequency and
λn−n0(n0) gradually decreases to become negative.
It should be noted that λn−n0(n0) discussed here is
with the fixed beginning time n0. In contrast, the
exponent λi(n − i) discussed in Eq. (15) is with a
fixed ending time n. An increase in i means the
backward time. However, despite this difference,
a similar result can be drawn for λi(n − i). As
shown in Fig. 1, λi(n1 − i) increases with the in-
crease of backward time i for the fixed ending time
ni. The maximum finite-time Lyapunov exponent
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Fig. 1. Geometric diagram of the difference between the
time-(n−n0) Lyapunov exponents λn−n0(n0) with a fixed be-
ginning time n0 and the time-i Lyapunov exponents λi(n− i)
with a fixed ending time n. Their maximum finite-time
Lyapunov exponents are λ0 which is obtained in the time
interval of (n0, n1).

is also reached in the interval of (n1, n0) and so its
value is still λ0. After that, λi(n1 − i) gradually
decreases. So, ignoring the folding dynamics, the
distance in Eq. (15) can be of the order of

|δxn| ≈ δθ0 exp(τ0λ0) . (17)

If δθ0 = 10−16 and λ0 = 0.01, |δxn| ≈ 0.43 or 0.06
be obtained with τ0 = 3600 or 3400 respectively.
So, once the trajectory runs into the expanding
region with a high frequency for a long time in-
terval, the tiny difference provided by δθ can be
enlarged exponentially. Thus, one of the notable
characteristics of SNA systems is that the finite-
time Lyapunov exponent can have a long-time pos-
itive tail [Pikovsky & Feudel, 1995].

Suppose that at time n0 before running into
the expanding region, the trajectory is at the point
(xn0, θn0). Because this point is located in the con-
tracting region, the nonchaotic trajectory will ap-
proach it repeatedly with time and then runs into
the expanding region. However, the quasiperiodic
force always provides different values to disturb the
trajectory. So the trajectory always starts from a
different point before running into the expanding
region. Furthermore, running in the expanding re-
gion, the trajectory is still disturbed by the different
values of sin θn. Thus the quasiperiodic force acts
as noise to create a strange attractor. The theoret-
ical analysis shows that it is the general conclusion
for any SNA system. If, instead of the irrational
frequency, a nearby rational frequency is applied
in the driving force, although the unstable region
still occurs in the phase space, a strange attractor
cannot be obtained because of the lack of noise-like
signal. In short, an unstable region in phase space
and a noise-like nonchaotic signal are two necessary
elements for the creation of SNA. The reason why
the SNA occurs in quasiperiodic driven systems is
that the quasiperiodic function is the simplest non-
chaotic function that can provide noise-like signal.

3. Low-Frequency Quasiperiodically
Driven Systems

SNAs in low-frequency quasiperiodically driven sys-
tems are discussed numerically in [Shuai & Wong,
1998, 1999]. A new analysis is provided here for
such systems. The force F(xn, sin θn) is periodic
in θ with period 2π and the points of the attrac-
tor are uniformly distributed on the phase axis θ
from 0 to 2π. One can divide such a 2π region
into L subregions, i.e. Θl ≡ (2π(l − 1)/L, 2πl/L)
for l = 1, 2, . . . , L. Then there are n/L points
uniformly distributed in each subregion Θl when
n → ∞. To describe the contracting or expand-
ing property in each subregion Θl, the local-phase
Lyapunov exponent λΘl is defined as

λΘl = lim
n→∞

L

n

n∑
i=1
i∈Θl

λ1(i) (18)

During each driving period, there are about 1/(Lω)
points continuously falling into each subregion. For
the case of low driving frequency, the value of
1/(Lω) is large enough. Suppose in the subregion l
we have λΘl > 0. It means that when the driving
force is in the subregion l, the trajectory is sta-
tistically driven to an unstable region. Any per-
turbation can be enlarged according to Eq. (17)
with τ0 = 1/(Lω). The maximum nontrivial Lya-
punov exponent is the average of these L local-phase
Lyapunov exponents, i.e. λ = 1/L

∑L
l=1 λΘl .

Now we show that the local-phase Lyapunov
exponent λΘl can be approximated by the
Lyapunov exponent Λ(F1) of the autonomous map
yn+1 = F(yn, Fl) with the constant value Fl =
sin(π(2l − 1)/L). This result is followed by the fol-
lowing three approaches. (1) In the case of L � 1
the driving force sin(θ) in each subregion Θl changes
so small, i.e. from sin(2π(l − 1)/L) to sin(2πl/L),
that it can be treated as a constant driving force
Fl = sin(π(2l − 1)/L). (2) With L � 1, the differ-
ence is still small between of the values of Fl and
Fl+1. So in most cases, i.e. if ignoring the crisis and
bifurcation phenomena that can lead to the sud-
den change of the attractors, the geometric struc-
tures of the attractors of maps yn+1 = F(yn, Fl)
and yn+1 = F(yn, Fl+1) are quite similar. (3) Low
enough frequency means 1/(Lω) � 1. After run-
ning about 1/(Lω) points in subregion Θl−1, the
next 1/(Lω) points of Eq. (2) run into the subre-
gion Θl. Thus, once the last 1/(Lω) points are close
to the attractor of yn+1 = F(yn, Fl−1), the next
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1/(Lω) points are naturally close to the attractor
of yn+1 = F(yn, Fl). These approaches imply that,
in most cases, the geometric structure of the trajec-
tory in subregion Θl is similar to the attractor of
the autonomous system yn+1 = F(yn, Fl). Having
similar dynamic trajectory, the exponent λΘl can
then be approximated by the exponent Λ(Fl) of the
map yn+1 = F(yn, Fl).

As a result, the statistical properties of the
low-frequency quasiperiodically driven system can
be approximated by a set of autonomous systems
xn+1 = F(xn, Fl) with Fl = sin(π(2l − 1)/L) for
l = 1, 2, . . . , L. Suppose, among the L systems,
the autonomous systems from l1 to l2 are chaotic,
i.e. Λ(Fl1), . . . , Λ(Fl2) > 0. Running into these
subregions from Θl1 to Θl2, the trajectory’s dy-
namics are expanding. The local-phase Lyapunov
exponent within these subregions is λ0 = (Λ(Fl1)
+ · · · + Λ(Fl2))/(l2 − l1 + 1). During a driving pe-
riod, the time interval for which the trajectory runs
in these regions is τ0 = (l2 − l1 + 1)/(Lω). Accord-
ing to Eq. (17), any perturbation before running
into the expanding region can be enlarged to the
order of

exp(τλ0) = exp

 l2∑
l=l1

Λ(Fl)

/
Lω

 (19)

In the case of 1/Lω � 1, this is a large number
and a strange structure can be generated in these
subregions.

This approach provides us with a simple
method to distinguish SNA from torus in a non-
chaotic system: If some Λ(Fl) are positive, the non-
chaotic attractor of system xn+1 = F(xn, sin θn)
is strange. Because the selection of L is some-
what arbitrary, a simpler conclusion is that the
SNA occurs for Eq. (1) if there is a chaotic phase
for the system xn+1 = F(xn, F ) in the region
−1 ≤ F ≤ 1. Driven by a force with frequency
ω = (

√
5 − 1)/2, the SNA typically appears in a

narrow parameter region [Heagy & Hammel, 1994;
Yalcinkaya & Lai, 1996; Prasad et al., 1997; Witt
et al., 1997]. For a low driving frequency, if the
system xn+1 = F(xn, sin θn) slowly oscillates in
the chaotic and periodic boundaries of the system
xn+1 = F(xn, F ) and if the periodic dynamics dom-
inates over the chaotic dynamics, a nonchaotic but
strange attractor can be observed. In this case,
SNA can occur in a large parameter region. So an
easy way to construct SNA in physical systems is
to apply a low-frequency quasiperiodic force.

This approach also suggests that the Lyapunov
exponent λ can be obtained from Λ(Fl):

λ ≈ 1

L

L∑
l=1

Λ(Fl) (20)

Driven by the lower frequency force, the dynamics
of the system can still be approached by the same L
autonomous systems. Thus the Lyapunov exponent
λ is almost independent of the driving frequency if
the frequency is small enough.

4. Simulation Results

A simulation example given as follows is discussed
in this section to confirm the above discussions,

xn+1 = α(1− ε cos θn)xn(1− xn)

θn+1 = (θn + 2πω) mod 2π
(21)

If the initial condition of θ0 is replaced by θ0 + π,
this system is the same as that discussed in [Heagy
& Hammel, 1994; Prasad et al., 1997]. Its time-1
Lyapunov exponent is

λ1(n) = ln[a(1 − ε cos θn)] + ln(|1− 2xn|) (22)

It has been shown that there is a small region in
the a − ε parameter plane with a nonzero mea-
sure where the SNA exists between the torus and
chaos when ω = (

√
5 − 1)/2 [Prasad et al., 1997].

The case for low-frequency driving force is discussed
here. Simulation results show that a nonchaotic at-
tractor can be obtained with nontrivial Lyapunov
exponent λ = −0.2789 for α = 3.25, ε = 0.1 and
ω = 10−6

√
2. The trajectory is shown in Fig. 2(a).

In Fig. 2(b), its corresponding finite-time Lyapunov
exponents λτ (n) are given with the fixed time inter-
val τ = 50. The values of λτ (n) repeatedly become
positive with time, indicating that the trajectory
runs into the expanding region repeatedly.

In order to discuss the diverging dynamics in
detail, the finite-time Lyapunov exponent λτ (n0)
versus τ from n0 = 331, 500 is given in Fig. 3(a).
A long positive finite-time Lyapunov exponent can
be observed clearly in this figure. Around n =
332, 000, θn = 169◦ (as shown with arrow A in
Fig. 3), the trajectory runs into the expanding re-
gion. When n = 373, 000 (i.e. τ = τ0 = 41, 000),
the finite-time Lyapunov exponent approaches its
maximum λ0 ≈ 0.06. It means that any perturba-
tion with the order of exp(−τ0λ0) provided by xn or
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Fig. 2. Simulation result of Eq. (21) for α = 3.25, ε = 0.1
and ω = 10−6

√
2. (a) The trajectory from time 702,000 to

3,500,000. (b) Its corresponding time-τ Lyapunov exponents
with τ = 50. The initial 702,000 points are ignored.

Fig. 3. (a) Finite-time Lyapunov exponent λτ(n0) versus τ
from n0 = 331, 500. (b) The difference between two points
x′n and xn versus time n from 330,000 to 345,000. Around
the point A, the trajectory runs into the expanding region.

Fig. 4. (a) Attractor in the x− θ plane. (b) Its local-phase
Lyapunov exponents λΘl for l = 1, 2, . . . , L with L = 1000.

θn at time n = 332, 000 can be enlarged to the or-
der of 1 at time n = 373, 000. At time n = 330, 000,
the trajectory is at the point with xn = 0.34383 . . . ,
θn = 0.46669 . . . . Suppose there is a nearby point
with x′n = xn and θ′n = θn + 10−16. The difference
between x′n and xn with time n is given in Fig. 3(b).
One can see that the differences are of the order
of 10−16 when the trajectories are in the contract-
ing region. After n = 332, 000, the trajectories are
driven to expanding region and their differences are
exponentially enlarged to reach the order of 0.01.

The attractor structure in x− θ plane is shown
in Fig. 4(a). Driven by the low-frequency force, the
dynamics of the trajectory are quite similar during
different periods. In particular, the dynamics are
expanding when the driving angles θn are in the
region of 0.47 < θ < 0.53. The dynamics can be
described by the local-phase Lyapunov exponents,
as shown in Fig. 4(b) with L = 1000. In the region
of λΘl > 0, the strange structure occurs. If, instead
of the irrational frequency, let ω = 1.414 × 10−6,
the periodically positive finite-time Lyapunov ex-
ponents can still be observed. But because there is
no noise-like signal, an exactly periodic trajectory
is obtained.
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Fig. 5. (a) Bifurcation diagram and (b) the Lyapunov ex-
ponents of the logistic map yn+1 = byn(1 − yn) for b =
α[1−ε cos(π(2l−1)/L)] with l = 1, 2, . . . , L. Here L = 1000.

With a low driving frequency, the parameter
α(1 − ε cos θn) gradually increases from α(1 − ε)
to α(1 + ε) and then decreases to α(1 − ε) during
a driving period. Thus, the attractor structure in
x − θ plane can be approached by the bifurcation
diagram of the logistic map yn+1 = blyn(1− yn) for
bl = α[1 − ε cos(π(2l − 1)/L)] with l = 1, 2, . . . , L,
as shown in Fig. 5(a). The corresponding Lyapunov
exponent versus l is given in Fig. 5(b). As expected,
Figs. 5(a) and 5(b) are quite similar to Figs. 4(a)
and 4(b) respectively. According to Eq. (20), the
Lyapunov exponent of the system (21) is about
−0.2794 which is within 0.2% of the exact value
−0.2789. The chaotic region occurs when b > b0 =
3.5699 . . . for the logistic map. Thus, the expand-
ing region appears whenever α(1 + ε cos θn) > b0.
With α = 3.25 and ε = 0.1, the expanding region is
0.47 < θ < 0.53.

For Eq. (21) the chaotic and nonchaotic phases
in α− ε plane can be distinguished by checking the
sign of the Lyapunov exponent λ. To distinguish
SNA from torus, the following method is used: If
α(1 + ε) > b0, some approaching logistic maps are
chaotic and so the attractor must have a strange
structure. Accordingly, Fig. 6 gives the phase

Fig. 6. Phase diagram of Eq. (21) in the α− ε plane. The
dotted region is SNA phase.

Fig. 7. Lyapunov exponent λ of Eq. (21) versus driving
frequency from 10−9

√
2 to 10−2

√
2.

diagram of Eq. (21) in α − ε plane. Different from
the results in [Prasad et al., 1997], SNA occurs here
in a large region.

The Lyapunov exponent λ of Eq. (21) versus
the driving frequency is shown in Fig. 7. As ex-
pected, the Lyapunov exponents are almost con-
stant with the low frequency. They only change
within 2.8% when the driving frequency decreases
from 10−5 to 10−9. For the logistic map, the pe-
riodic windows are dense throughout the chaotic
range [Ott, 1993]. That is, given a value of b for
which the orbit is chaotic, then in any ε neighbor-
hood of that b value [r−ε, r+ε], one can always find
periodic windows no matter how small ε is. For ex-
ample, as shown in Fig. 3, when the time is around
340,000, α(1 + ε cos θn) falls into a periodic win-
dow. Thus the difference is contracted to the order
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of 10−10 as shown with arrow B in Fig. 3(b). With
the lower frequency in Eq. (21), the smaller peri-
odic windows of the logistic map can be detected
and more fluctuations of the local-phase Lyapunov
exponents appear. However, because the Lyapunov
exponent of Eq. (21) is an average of a set of logis-
tic maps, this kind of oscillation is averaged and an
almost constant Lyapunov exponent is obtained.

5. Conclusion

In this paper, the dynamics of SNA are discussed
theoretically for quasiperiodically driven systems.
An unstable region in phase space and a noise-like
nonchaotic signal are two necessary elements for the
creation of SNA. The reason why the SNA typically
appears in quasiperiodic driven systems is that the
quasiperiodic function is the simplest nonchaotic
noise-like signal. For the low-frequency quasiperi-
odically driven system, the local-phase Lyapunov
exponent is defined to discuss its properties. Thus,
a set of autonomous systems can be applied to ap-
proach such a system. If some of the autonomous
systems are chaotic, the nonchaotic nonautonomous
system must be SNA.
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