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A general method for the creation of strange nonchaotic attractor is proposed. As an exam-
ple, the strange nonchaotic attractor in a high-dimensional globally coupled neural system is
studied numerically. For such an attractor, the time interval of continuously positive finite-
time Lyapunov exponent must be smaller than the period of the driving stimulus, although
it has a long-time positive tail. The intermittency between laminar and burst behavior is a
characteristic dynamic of the strange nonchaotic attractors. Simulation results show that the
chaotic phase occurs only within a small region around the origin in the parameter space. More
than half of the large nonchaotic region is the strange nonchaotic phase. The chaotic phase
is typically surrounded by strange nonchaotic attractors. This result also suggests that some
biological signals that have a strange structure may be nonchaotic rather than chaotic.
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1. Introduction

The dynamical properties of spatially extended
nonlinear systems such as neural networks, mul-
timode lasers and charge-density waves have at-
tracted great interest in the past decade. Such sys-
tems can be described by a set of coupled differential
equations or iterated maps. The neural networks
models and the coupled map lattices characterized
by discrete space and time variables are two simple,
computationally tractable dynamical systems that
display behaviors qualitatively similar to those of
more complicated models [Hopfield, 1982; Kaneko,
1990]. Rich spatiotemporal complex behaviors in-
cluding chaos, patterns, traveling waves, memory
and synchronization are revealed in such systems.

Often, highly complex behavior appears in chaotic
spatiotemporal systems. However, with the study
of the unidirectional coupling map lattices, it has
been shown that complex phenomena can also take
place in some nonchaotic spatiotemporal systems
[Vergni et al., 1997].

A type of complex behavior occurring in non-
chaotic systems is strange nonchaotic attractor
(SNA) that is geometrically complicated but which
trajectory does not exhibit sensitive dependence
on initial conditions asymptotically [Grebogi et al.,
1984; Ding et al., 1989; Ditto et al., 1990]. Dif-
ferent mechanisms for the creation of SNA have
been proposed in low-dimensional quasiperiodically
forced systems [Heagy & Hammel, 1994; Nishikava
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& Kaneko, 1996; Yalcinkaya & Lai, 1996; Prasad
et al., 1997; Brown & Chua, 1998; Shuai & Wong,
1998, 1999]. An interesting question is whether the
mechanism discussed for the emergence of SNA in
low-dimensional systems can be generalized to high-
dimensional systems. Most of the SNA dynamics
involve a collision between a stable and an unstable
invariant region [Heagy & Hammel, 1994; Nishikava
& Kaneko, 1996; Yalcinkaya & Lai, 1996; Prasad
et al., 1997]. In fact, the system often becomes
chaotic when the control parameter has a small
change after such a collision. So the resultant SNA
typically occurs in the narrow vicinity along the
transition boundary between chaotic and periodic
phases in the parameter space. There is little dis-
cussion whether such a narrow vicinity still remains
or can be detected when such a collision happens for
a quasiperiodically forced high-dimensional system.

The existence of SNA in the quasiperiodically
forced circle map lattices with unidirectional cou-
pling has been investigated [Sosnovtseva et al.,
1998], however the unidirectional coupling map lat-
tices are too simple and special for high-dimensional
systems. The goal of this paper is to present a
general method for the creation of SNA in high-
dimensional spatiotemporal systems. Shuai and
Wong [1998] pointed out that the low-frequency
quasiperiodically driven logistic map can occur as
SNA if the dynamics become expanding for long
time intervals, repeatedly. Based on this, a gen-
eral SNA method that is applicable to any chaotic
system is presented in Sec. 2, which is applied to
high-dimensional systems in the present paper. It
shows that the complex behavior in spatiotempo-
ral systems can be due to the strange nonchaotic
dynamics, rather than chaotic dynamics. An ex-
ample of a globally coupled neural network driven
by a quasiperiodical signal is presented in Sec. 3.
It is the first example of SNA in high-dimensional
neural systems. In Sec. 4, a simulation example is
studied in detail. Its phase diagram of the example
is discussed in Sec. 5. We show that in the param-
eter space the chaotic phase occurs only within a
small region around the origin. A notable result is
that more than half of the large nonchaotic region
is SNA phase. Another interesting observation is
that the chaotic attractors are typically surrounded
by SNAs. Conclusions are drawn out in Sec. 6. The
relevancy of our results to real neural systems is also
discussed in Sec. 6. We suggest that some biolog-
ical signals that have a strange structure may not
be chaotic.

2. Creation of SNA in Chaotic
Systems

For an autonomous discrete map x(t + 1) =
G(x(t), ξ) with the control parameter ξ, the depen-
dent function of the maximum Lyapunov exponent
on ξ, i.e. Λξ, can be obtained. Varying ξ, the system
can be chaotic or periodic. Suppose when ξ is in re-
gion C, the system is chaotic; when ξ is in region
P, the system is periodic. Now let the parameter
ξ be replaced by a quasiperiodic function given as
follows:

ξ(t) = A0 +A1 sin(2πωt) (1)

where ω is irrational and small, and A1 > 0. Note
the driving period T = 1/ω.

The driving force ξ(t) slowly changes with time
in region R = (A0 − A1, A0 + A1) quasiperiodi-
cally. During a short time interval around time t,
the force ξ(t) can be approximated by the constant
force Ft = A0 + A1 sin(θt) with θt = 2πωt [Shuai
& Durand, 2000]. Thus, whether the dynamics of
the system x(t + 1) = G(x(t), ξ(t)) are expanding
or contracting within this short time interval can
be estimated by the dynamics of the autonomous
system x(t + 1) = G(x(t), Ft), which is driven by
the constant force Ft. Suppose part of region R
is in C and the other in P. According to the ap-
proximation of constant force, the dynamics of the
system are expanding and the trajectory runs into
a bursting state when the driving force is in region
C; while the dynamics are converging and the tra-
jectory runs into a laminar state when the force is
in P. By the name of laminar state, the trajectory
stays in a small invariant region. The bursting state
means that the trajectory chaotically oscillates in
the phase space with a random amplitude.

A low enough frequency ensures that the time
interval of expanding dynamics, i.e. the time inter-
val that the force ξ(t) stays in chaotic region C, can
be sufficiently long within a driving period. The
irrational frequency means that different values of
ξ(t) are always provided at different time t. So,
with such a time series of ξ(t), different expand-
ing orbits can be obtained under repeatedly ap-
pearing long-time expanding dynamics. A strange
geometric structure thus occurs. If the converging
dynamics are stronger than the expanding dynam-
ics, a negative maximum Lyapunov exponent can
be obtained asymptotically. The resultant attractor
is nonchaotic but strange. Accordingly, the power
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spectrum of the trajectory is a broadband spectrum
combined with sharp peaks.

The dynamics of the system can be discussed
with the finite-time Lyapunov exponent. In par-
ticular, the maximum nontrivial Lyapunov expo-
nent λτ (t) quantifies the expanding or contract-
ing exponent that the trajectory experiences from
time t to t + τ . One can discuss the distribution
of λτ (t) in two ways. The first way is to con-
sider λτ (t) versus the observing time window τ with
fixed starting time t0. Such distribution is dis-
cussed for some SNA systems [Prasad et al., 1997].
The finite-time Lyapunov exponent in the SNA sys-
tems is characterized with a long-time positive tail.
Here we show that the distribution of λτ (t0) has
an additional interesting property in SNA system
driven by a low-frequency force: typically λτ (t0)
become negative periodically with period T in the
long-time positive tail. The dynamics of system
x(t + 1) = G(x(t), ξ(t)) in a driving period can
be approximated by a number of autonomous sys-
tems x(t+1) = G(x(t), Ft). With different driving
periods, the same autonomous systems can be ap-
plied. Thus, the dynamics of the system with dif-
ferent driving periods are similar. Nonchaotic sys-
tem guarantees that contracting dynamics should
be stronger than expanding dynamics in each driv-
ing period. The maximum time interval of contin-
uously positive λτ (t0) must then be smaller than
the driving period T , although the maximum time
interval having positive λτ (t0) can be large enough.

The second way is to discuss λτ (t) versus t with
a fixed small τ [Shuai & Wong, 1998]. In this case
the observing time window τ is fixed at a small
value τ0. The distribution of λτ0 (t) versus t for
fixed τ0 can give detailed information about which
time intervals the dynamics are expanding, i.e. a
strange structure occurs. Suppose that the trajec-
tory runs into a pure expanding region in the long
time interval (t0, t0 + TA). Then all λτ0 (t) with
t1 < t < t1 + TA are positive. In fact, any small
τ � TA can be applied to discuss the dynamics
of the system. Although the exact value of λτ (t)
varies with the choice of τ , once the trajectory runs
into the pure expanding interval (t0, t0 +TA), λτ (t)
and λ2τ (t) typically have the same signs because we
have

λ2τ (t0) =
1

2
(λτ (t0) + λτ (t0 + τ)) (2)

Based on the approximation of constant force [Shuai
& Durand, 2000], the sign of the finite-time Lya-
punov exponent λτ (t) of the system x(t + 1) =

G(x(t), ξ(t)) within a small window τ can be es-
timated by the maximum Lyapunov exponent ΛF
of the autonomous system x(t+ 1) = G(x(t), Ft).

In short, if a spatiotemporal system is driven
by a low-frequency quasiperiodic force to experi-
ence expanding dynamics repeatedly with long time
intervals, while its asymptotic dynamics are non-
chaotic, an SNA occurs. This method can be ap-
plied to any chaotic system because one can always
find a parameter in such a manner that the system
is chaotic or periodic corresponding to different val-
ues of the parameter. In fact, the dimensionality
of the mapping G is neither mentioned nor needed
here for the creation of SNA. In the present paper
we focus on the high-dimensional neural system.

3. SNA in Neural Model

As an application, a globally coupled neural net-
work is discussed in the paper. The model consists
of N analog neurons {Si(t)}, i = 1, . . . , N , with
−1 ≤ Si ≤ 1, where every neuron Si is connected
to all other neurons Sj by random couplings {Jij}.
The following parallel dynamics are used for updat-
ing of the neurons:

Si(t+ 1) = g(hi(t)) , i = 1, . . . , N . (3)

The sigmoidal function which is a typical transfer
function in neural models is used here

g(x) = tanh(αx) (4)

with α > 0. The internal field hi of the neuron Si
is given by

hi(t) =
N∑
j=1

JijSj(t) + ξi(t) (5)

with ξi(t) as the external signal. Usually, the ex-
ternal stimulus only affects part of the neural net-
works. Therefore, assuming that only the first M
(M ≤ N) neurons are stimulated by the input
signal:

ξi(t) = ξ(t) , i = 1, . . . , M .

ξi(t) = 0 , i = M + 1, . . . , N .
(6)

Without any stimulus, the neural dynamics
are typically chaotic because of the asymmetric
coupling [Molgedey et al., 1992]. Now consider a
constant driving signal with ξ(t) = FConst. Equa-
tions (3)–(6) show that the trajectory of the system
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driven by −F with the initial conditions {Si(0)} is
the same as that driven by F with {−Si(0)}. So
the dynamical properties, including the Lyapunov
exponents, are the same for the system driven by
−F or by F .

If M = N , a large stimulus can always drive
the neural network to be periodic. This is because,
with a large stimulus, the internal fields of all the
neurons are mainly determined by the stimulus and
so Si(t)→ 1 for all neurons with any different initial
conditions. Thus a periodic attractor is obtained.
Our simulation results also show that for a large
enough M , a large stimulus can drive the neural
network to be periodic. The observation that the
stimulus F0 can drive the network to be periodic
just indicates a fact that, if the states of the firstM
neurons approach 1, the neural network intrinsically
becomes periodic. A larger stimulus F0 only means
that the states of the firstM neurons are closer to 1.
So, if a large F0 can drive the neural network to be
periodic, any larger stimulus F (> F0) can drive the
network to be periodic. There is a threshold stim-
ulus FTr that the chaotic state only appears in the
region of C = (−FTr, FTr). The fact that a F large
only means close to 1 for the states of the first M
neurons also suggests that the Lyapunov exponents
ΛF are almost constant with large F for periodic
attractors.

Now there is a chaotic region C with |F | < |FTr|
and a periodic region P with |F | > |FTr|. One can
then use the approach discussed in Sec. 2 to gener-
ate SNA. To do it, the input signal ξ in Eq. (1) is
applied. It is easy to see that the dynamical tra-
jectory of the system for ξ(t) = A0 + A1 sin(θ(t))
with initial conditions ({Si(0)}, θ0) is the same as
that for: ξ(t) = A0 − A1 sin(θ(t)) with ({Si(0)},
θ0 + π); ξ(t) = −A0 −A1 sin(θ(t)) with initial con-
ditions ({−Si(0)}, θ0); or ξ(t) = −A0 +A1 sin(θ(t))
with ({−Si(0)}, θ0 + π). Thus, the attractors of
the system are identical for the external signals of
±A0 ± A1 sin(θ(t)). In other words, the dynami-
cal properties, e.g. Lyapunov exponents and fractal
dimension, are symmetric about the A0-axis and
A1-axis in A0 − A1 plane. So in the following, we
only discuss the situation of the force in the first
quadrant in A0–A1 plane, i.e. A0, A1 > 0.

With a low frequency, the slowly changed stim-
ulus ξ(t) can be approximated by the constant input
Ft = A0 +A1 sin(θ(t)) within a small time interval.
If A0 +A1 < FTr, i.e. the stimulus is always within
the chaotic region C, the dynamics of the networks
are typically expanding, resulting in a chaotic at-

tractor. If A0 − A1 > FTr, i.e. the stimulus is al-
ways out of chaotic region C, the dynamics of the
networks are typically contracting, resulting in a
torus. If A0 + A1 > FTr > A0 − A1, the stimulus
ξ(t) goes in and out of the chaotic region C twice
during each driving period. So its dynamics be-
come expanding or contracting repeatedly. In this
region, a strange but nonchaotic attractor may be
generated. In the following, a simulation example
is discussed in detail to confirm this discussion.

4. Simulation Results of SNA

In the simulation, let N = 100 and M = 20. A
set of randomly selected coupling weights {Jij} uni-
formly distributed from −1 to 1 is used in the sim-
ulation. Without any extended signal, the neural
dynamics are chaotic with the maximum Lyapunov
exponent Λ = 0.095. Figure 1(a) gives the depen-
dence of the Lyapunov exponent ΛF as a function
of positive scalar stimulus F . The chaotic attractor
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Fig. 1. (a) Lyapunov exponent ΛF and (b) the bifurcation
diagram of neuron 100 versus the constant signal F for the
neural system driven by F . Here F is from 0 to 15.



Strange Nonchaotic Attractor in High-Dimensional Neural System 255

undergoes a transition to periodic when F = FTr ≈
5.56. The chaotic states only appear in a finite re-
gion C = (−FTr, FTr) of the parameter space. As
expected, ΛF is almost constant for F > 10. Fig-
ure 1(b) gives its bifurcation diagram of neuron 100
with F from 0 to 15.

In this paper, a quasiperiodical stimulus ξ(t)
with ω = 0.001 ·

√
5, i.e. the driving period T ≈ 448

is used to stimulate the network. Simulation results

show the following: (1) for A0 = 9 and A1 = 2, a
torus attractor A is obtained with the nontrivial
maximum Lyapunov exponent Λ = −0.074; (2) for
A0 = 2 and A1 = 9, a nonchaotic attractor B is ob-
tained with Λ = −0.085; (3) for A0 = 2 and A1 = 8,
a chaotic attractor C is obtained with Λ = 0.005;
and (4) for A0 = 2 and A1 = 2, a chaotic attractor
D is obtained with Λ = 0.078. The spatiotempo-
ral patterns of these four attractors are shown in
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Fig. 2. Oscillating states of the 100 neurons via time from 10 000 to 11 000 of the attractor (a) A, (b) B, (c) C and (d) D.
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Fig. 2 which shows that both the nonchaotic attrac-
tor B and the chaotic attractor C possess the in-
termittency behavior between laminar and bursting
states. Their geometric structures are quite similar.
These observations suggest that attractor B is an
SNA.

SNAs also exhibit a singular continuous
power spectrum lying among the sharp peaks. In
Figs. 3(A)–3(D), the power spectra versus fre-
quency plots are given for the four trajectories of
the 100th neuron which is not driven directly by the
sine signal. The spectral shape of attractors B and
C are quite similar as shown in Figs. 3(B) and 3(C).
There is a broadband spectrum with the addition
of some large peaks as expected from the combined
behavior of periodic [Fig. 3(A)] and chaotic systems
[Fig. 3(D)]. The broad band spectrum for attractor
B implies that there is a finite-time expanding be-
havior in a chaotic manner that yields a strange
structure, rather than a torus.

The finite-time nontrivial maximum Lyapunov
exponents λτ0 (t) versus time t with the observing
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Fig. 3. Power spectra versus frequency in the region of
(0, 1000) for the trajectories of neuron 100 of the four at-
tractors. Here 16384 points are calculated for each curve.
The frequency is in arbitrary unit.
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time window τ0 = 10 are plotted in Fig. 4 for the
four attractors. For attractor A, λτ0 (t) is typi-
cally negative, indicating an torus obtained. For
attractor D, λτ0 (t) is typically positive. Therefore
a chaotic attractor occurs. For attractors B and
C, driven by the quasiperiodical force, λτ0 (t) os-
cillates between negative and positive values. In
particular, their signs change from the negative to
the positive twice in a driving period. The intermit-
tency between laminar and burst behavior is then
a characteristic dynamic of such attractors.

As shown in Fig. 1, the dynamics of the net-
works are expanding only when F falls into the
chaotic region C = (−5.56, 5.56). For attractor
A, stimulus 9 + 2 sin(2πωt) is always out of re-
gion C, so λτ0 (t) is typically negative and its tra-
jectory is a laminar state. For attractor D, stimu-
lus 2 + 2 sin(2πωt) is always within region C and
so λτ0 (t) is typically positive and the trajectory is
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Fig. 5. Finite-time Lyapunov exponents λτ (t) versus observing time window τ from 0 to 2000 for attractors B with the
starting time (a) t1 = 10 033 and (b) t2 = 10 215.

always bursting. For attractor B or C, stimulus
2 + 9 sin(2πωt) or 2 + 8 sin(2πωt) goes in and out
of the chaotic region C twice during each driving
period, so λτ0 (t) changes its sign twice in a driv-
ing period. Simulation results also confirm that the
changes of the sign occur when F (t) ≈ ±5.56. Here
τ0 = 10. The subsequent time interval of expand-
ing dynamics is about TA = 10τ0 = 100 for attrac-
tor B, as shown in Fig. 4(b). Within the repeatedly
expanding time intervals, a strange geometric struc-
ture is yielded for nonchaotic attractor B.

Figure 5 gives the plot of λτ (t) versus observ-
ing time window τ for attractor B with fixed start-
ing time t1 = 10033 and t2 = 10215 which are
in the same period of the driving force. At time
t1, t2, the driving forces are about 5.56 and −5.56,
respectively, and the trajectory is being driven to
the expanding region. In this case, the maximum
time interval for a positive finite-time Lyapunov ex-
ponent can be obtained. Figure 5(a) shows that
the exponents have large positive values as long
as τ = TA = 90, within which the dynamics are
expanding. Then for 90 < τ < 182, the trajec-
tory is driven to the contracting region although
λτ (t) only decreases to a small positive level. When
τ = 182 (i.e. t = t2), the dynamics become ex-
panding again and then λτ (t1) reaches another pos-
itive peak. Exponent λτ (t) remains positive until
τ = TB = 430. However, λτ (t1) is positive for τ as

long as 1620. Simulation results show that λτ (t1)
asymptotically approach to −0.085 in an oscillating
manner with longer τ . In Fig. 5(b), λτ (t) can be
positive when τ = 980. As discussed above, λτ (t)
is always negative when τ = nT , which means that
the contracting dynamics are stronger than the ex-
panding dynamics in each driving period and there-
fore its asymptotic Lyapunov exponent is negative.
Simulations show that similar results can be ob-
served with any starting time t = t1,2 + nT .

5. Phase Diagram

For a dynamic system, one can distinguish its
chaotic phase from nonchaotic phase easily by
checking if the value of its maximum nontrivial
Lyapunov exponent Λ is positive. A nonchaotic at-
tractor is by definition an SNA if it has a strange
geometric structure. In particular, we observe the
geometric structure of the nonchaotic attractor in
the S–θ phase space. The phase space of a neuron
is (−1, 1). For a typical SNA, its trajectory repeat-
edly bursts in a chaotic manner to a large phase
space (whose scale is more than 1) with a long time
period. In other words, a long positive finite time
Lyapunov exponent can be observed for an SNA.
Simulation results of phase diagram are given in
Fig. 6 in A0–A1 plane with 0 < A0, A1 < 25 for the
present example.
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As shown in Fig. 6, the chaotic phase only oc-
curs in a finite region near the origin in A0–A1

plane. This can be comprehended based on the
approximation of constant driving force which sug-
gests that the Lyapunov exponent Λ of the sys-
tem can be estimated from the average of a set of
Lyapunov exponents ΛF of the autonomous systems
[Shuai & Durand, 2000]. If the values of A0 or A1

of the driving force are quite larger than FTr, most
of the applied constant forces Ft must be larger
than FTr and so most of the finite-time Lyapunov
exponents are negative. As a result, a negative
Lyapunov exponent Λ can be expected, indicating
a nonchaotic attractor.

In Fig. 6, two types of torus (type-I and II
torus) are distinguished. The type-I torus is in the
region with A1 < A0 − FTr = A0 − 5.56. Because
the instant driving force is always in the periodic
region, the dynamics of a type-I torus are typi-
cally contracting and its finite-time Lyapunov ex-
ponent is always negative. The dynamics of a type-
II torus sometimes can become expanding, i.e. its
finite-time Lyapunov exponent can be positive. The
expanding time interval can sometimes be as long
as 50. But the corresponding time intervals are so
small that the resultant trajectory does not show a

large bursting state. Simulation results show that
in the nonchaotic region between A1 < A0 − 4 and
A1 > A0−5.56 type-II torus is observed. By further
increasing the parameter A1, the scales of the burst-
ing states are enlarged gradually and the attrac-
tor translates from torus to SNA after a transition
region.

SNAs can be found typically in the nonchaotic
region of A1 > A0 − 3.2. According to the ap-
proximation of constant force, in order to obtain a
piece of expanding dynamics, the region of driving
force ξ(t), i.e. (A0−A1, A0 +A1), must overlap the
chaotic region C = (−FTr, FTr). So, A0−A1 < FTr.
Furthermore, to generate a strange structure, ex-
panding dynamics must occur for long time in-
tervals. Long-time expanding dynamics guarantee
the trajectory can burst in a chaotic manner to a
large phase space. Simulation results show that if
each time interval of expanding dynamics is more
than 80, a largely bursting state can occur. Thus,
A1 > A0 − 3.2 can be expected. Because the dy-
namic properties (Lyapunov exponents and fractal
dimension) are symmetric about the A0-axis and
A1-axis in the A0–A1 plane, the phase diagram of
the present neural network in A0 − A1 plane can
be easily obtained. The chaotic phase occurs only
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within a small region around the origin in A0–A1

plane. The nonchaotic phase exists in a large region,
more than half of which is the SNA phase. This is
the first example to observe an SNA region that is
larger than chaotic region or torus region. Another
interesting observation is that, except near the A0-
axis, the chaotic phase is typically surrounded by
SNAs.

6. Discussion and Conclusion

A general method is presented in this paper for
the creation of SNA in spatiotemporal systems that
can be chaotic or periodic depending on a constant
driving force. When a low-frequency quasiperiodic
force is applied, the dynamics of the system can
be driven to oscillate between expanding and con-
verging states. Long-time expanding dynamics lead
to a strange attractor. If the contracting dynam-
ics dominate the expanding dynamics, the resul-
tant attractor is strange but nonchaotic. With this
method SNAs can occur in a large area in parameter
space. For such an SNA, the time interval of contin-
uously positive finite-time Lyapunov exponent must
be smaller than the period of the driving force, al-
though it has a long-time positive tail.

A simple neural network driven by a low-
frequency quasiperiodic signal is discussed as an ex-
ample. Driven by the low-frequency quasiperiodic
stimulus, the chaotic phase of the neural network
appears only in a small region around the origin
in A0–A1 plane and the SNA can occur in a large
area of the nonchaotic region. Because this simple
neural model contains some important features of
the real neural system, it is capable of reproducing
some basic behavior of real neural networks. It has
been difficult to prove whether a biological signal is
chaotic [Freeman, 1987; Lutzenberger et al., 1995].
However, our results indicate that some complex bi-
ological signals that have a strange structure may
not be chaotic. SNAs may be observed in some real
neural systems. This new classification could have
important consequences in the analysis of the bi-
ological signals, particularly for complex biological
signals such as those seen in epilepsy.

Strange nonchaotic dynamics could be applica-
ble to the analysis of biological neural signals gen-
erated by biological networks such as the electroen-
cephalogram (EEG). It has been shown that the
human EEG has a fractal dimension [Lutzenberger
et al., 1995]. The EEG has been studied in the view

of low-dimensional chaotic dynamics [Babloyantz
et al., 1985; Freeman, 1987]. However, a number
of recent studies analyzing the Lyapunov exponent
[Theiler, 1995] and surrogate data [Rombouts et al.,
1995; Palus, 1996; Stam et al., 1997] suggest that
the EEG is unlikely to be chaotic. It is also shown
that a positive Lyapunov exponent could be calcu-
lated with time series of SNA [Shuai et al., 2001].
Different mechanisms such as a noisy limit cycle,
a noisy two-frequency oscillation and quasiperiodic
oscillations, as well as the linearly filtered noise,
have been proposed to explain the EEG dynamics
[Theiler, 1995; Rombouts et al., 1995; Palus, 1996;
Stam et al., 1997]. It has been shown that differ-
ent neuronal population in the cortex can oscillate
at different frequencies [Gray et al., 1989]. If the
quasiperiodic dynamics can occur and the EEG is
not chaotic, it is then a reasonable hypothesis that
EEG dynamics may be due to strange nonchaotic
behavior.
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