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Abstract. In this paper we consider a model for intracellular Ca2+ waves where
the ion channels (excitability) is distributed in spatially distinct clusters. We
report that channel noise in conjunction with spatial clustering can result in
the onset of spatially and temporally extremely coherent Ca2+ signals at levels
of stimulant well below the threshold of Ca2+ oscillations for homogeneously
distributed channels. The physiological significance of this phenomenon is
strongly enhanced cellular Ca2+-signalling capability with few agonist molecules
binding.
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1. Introduction

Calcium ions are ubiquitous in cells as intracellular messengers [1]. Ca2+ participates in a
wide range of processes such as triggering the development and differentiation of cells after
fertilization, contracting muscle cells and triggering injury response in epithelia cells to name
but a few. Different genes can be activated by varying the frequency or amplitude of Ca2+

signals [2, 3]. A very high concentration of Ca2+ is no longer a signal of life, but a signal of
death, and is invariably involved in cell death [1].

The release of calcium ions from internal stores, e.g. the endoplasmic reticulum (ER)
or sarcoplasmic reticulum (SR), into the cytosol plays a central role for calcium signals in
many excitable and non-excitable cells. Inositol triphosphate receptors (IP3R) and ryanodine
receptors (RyR) represent the two major types of intracellular calcium release channels on the
membrane of the ER or SR. Agonist binding to G-protein coupled receptors in the cell membrane
results in production of the second messenger inositol 1,4,5-triphosphate (IP3). IP3 diffuses from
the cell membrane to the nearby ER and binds to an IP3R which can open and release Ca2+ from
the ER which in turn can open more IP3 channels (calcium-induced calcium release (CICR)) and
thus cause a fast release of Ca2+ from internal stores. This Ca2+ signal is terminated when the
intracellular concentration becomes large and the Ca2+ pumps remove Ca2+ from the intracellular
space into the ER and out of the cell. This constitutes a Ca2+ signal that is repetitive if the
concentration of IP3 is larger than a threshold. Similarly to neuronal signalling, it is believed
that the frequency carries the main information in the Ca2+ signal. Thus, IP3 signals below the
threshold are not coded in a Ca2+ signal.

Recently, it has been revealed that in many cells the cytoplasm does not act as a continuous,
homogeneous excitable medium to generate Ca2+ release. Instead, Ca2+ liberation occurs
at discrete, functional release sites, spaced a few micrometres apart, that generate localized,
elementary Ca2+ signalling events, termed puffs or sparks [4, 5]. The puff sites are believed to be
formed by clusters of IP3 release channels (IP3Rs), distributed on the ER membrane. Each cluster
is comprised of a few tens of intact IP3Rs [6, 7]. The spontaneous opening of one channel, caused
by thermal fluctuations in the configuration of the channel protein, may cause more channels
to open via CICR and generate local Ca2+ release events with a broad range of amplitudes,
lifetimes and interpuff intervals [8]–[10]. Ca2+ puffs function as elementary building blocks
through which various Ca2+ waves can be generated [11]. By coordinating the spatially discrete
Ca2+ release events, a Ca2+ wave can be generated that spreads throughout the cell [12, 13].
Such intracellular waves can spread into neighbouring cells mediated by intra- and extracellular
messengers, resulting in intercellular waves [14]. Intracellular or intercellular Ca2+ signals can
display spatially and temporally complex patterns. The temporal patterns of Ca2+ observed in
a variety of cells include oscillations or repetitive spikes. Some cells, most notably Xenopus
oocytes, also exhibit interesting spatial patterns, including propagating waves, target or spiral
patterns [12, 13].

The calcium signals feature a hierarchical organization, from highly localized blips [15] and
puffs to intracellular or intercellular wave. The hierarchical calcium signals can regulate many
different cellular processes, locally or globally. For example, Ca2+ sparks in smooth muscle
cells that arise locally and near the plasma membrane activate potassium channels, causing the
muscle to relax. But when localized release events deeper in the cell are coordinated to create a
global Ca2+ signal, the muscle contracts [1]. The spatially clustered IP3R organization enables
Ca2+ to activate opposing cellular responses in the same cell but at different levels.
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Experimentally controllable parameters in cells are the IP3 concentration and calcium
diffusion coefficient D. The IP3 concentration can be stimulated and adjusted by the binding of
extracellular agonists such as hormones or neurotransmitters to receptors in the membrane [8] or
more precisely by photo-release of caged IP3 [3]. The Ca2+ diffusion coefficient can be controlled
by intracellularly loading with Ca2+ buffer EGTA. Depending on the IP3 concentration and the
Ca2+ diffusion, different patterns of Ca2+ release can be observed. Puffs are easily observed
with the loading of EGTA even at large IP3 concentration [16, 10]. It has been shown that in
Xenopus oocyte, Ca2+ puffs can be observed in narrow regions at low IP3 concentration in the
absence of EGTA [5, 8]. At slightly higher concentrations of IP3, abortive calcium waves travel
only short distances [5]. At high IP3 concentration, a large tide of Ca2+ release with no repetitive
Ca2+ waves are observed [13]. At intermediate concentrations of IP3, repetitive Ca2+ waves are
obtained.

Numerically, the intracellular Ca2+ waves are widely simulated by approximating the Ca2+

channels as deterministic and spatially continuous source terms [17]–[19]. These reaction–
diffusion models explain the observed Ca2+ patterns as nonlinear waves in an excitable,
oscillatory, or bistable medium. To elucidate the transition from localized to travelling patterns,
the clustered distribution of the Ca2+ release has been taken into account [20]–[23]. With
deterministic models of clustered Ca2+ release, novel forms of waves such as pinned waves,
saltatory spreading wave, and abortive wave have been observed [22, 23]. The simulation shows
that the speed of spreading waves is proportional to the diffusion constant of calcium, rather than
its square root in the continuous medium case.

The observation of localized stochastic Ca2+ puffs created by the cluster of a few tens of
IP3Rs [8]–[10], however, suggests that stochastic effects are relevant for Ca2+ wave propagation
and need to be taken into account. Recently, several such models with stochastic and spatially
discrete IP3R sources have been proposed. Keizer and Smith [24] introduced a spatially one-
dimensional, stochastic model with a clustered distribution of Ca2+ release channels for cardiac
myocytes, showing a transition from spark to wave. Another stochastic model for cells where
Ca2+ is released from the ER, put forward by Falcke et al [25], is based on the stochastic version
of the DeYoung–Keizer model [26]. It shows a transition from spark to abortive wave to steady
wave in one spatial dimension. A back-firing state is observed in a two-dimensional version of
the model due to stochastic channel dynamics.

In this paper, we report on a novel phenomenon that occurs as consequence of the clustering
and stochasticity of IP3 receptors. We find the onset of coherent oscillations well below the
threshold of stimulation at which the spatially homogeneous model predicts Ca2+ oscillations.
These oscillations occur in a small interval of IP3 concentrations at values of Ca2+ diffusion
coefficients that are slightly below typical values. It is further remarkable that the spatial and
temporal correlations of these sub-threshold oscillations exceed significantly those in the regime
of deterministic oscillations. This phenomenon may be related to Ca2+ wave nucleation [27].

2. The model

Ca2+ is stored in internal stores, most notably the ER. It enters the cytosol via channels in the
plasma membrane of the ER. The flux through these channels is determined by the concentration
of Ca2+ in the cell and by that of the messenger IP3. According to the DeYoung–Keizer model [26]
the IP3 receptor channels (IP3Rs) consist of four subunits, where three have to be activated for
the channel to be open. Each subunit has three binding sites, one for IP3 and two for Ca2+.
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One Ca2+ binding site activates the subunit, while the other Ca2+ binding site inactivates the
subunit. Since there is a vast difference in the timescale of these three binding processes, one
can replace the occupancy of the fast IP3 binding and Ca2+ activation binding sites by their average
values and only consider dynamically the slow inactivation process. Such an elimination process
results in a two-variable model for the receptor dynamics [28] which we adopt in this paper. The
cell is modelled as a two-dimensional sheet with two domains, the cytosol and the ER. The
ER is homogenized over the entire cell so that each spatial location in the cell belongs to both
domains. The sheet is assumed thin so that the Ca2+ concentrations in the cytosol and the ER
are homogeneous across the sheet. The two domains interact via the release of Ca2+ from ER
into the cytosol through discretely distributed receptor channels and subsequent diffusion and
re-uptake by the ER. The smallness of the release clusters requires stochastic modelling of their
conductance. All intracellular Ca2+ buffers are assumed to be fast so that their presence can be
modelled by an effective diffusion coefficient D (values have been experimentally determined).
The IP3Rs are distributed in clusters positioned on a regular grid. The total number of IP3Rs is
considered fixed while they can be distributed differently, ranging from numerous small clusters
(with only one channel each) at a small distance to few large clusters at larger distances. The
equation for the intracellular Ca2+ concentration [Ca2+] is given by

d[Ca2+](x, y)

dt
= D∇2[Ca2+](x, y) +

∑
i

f (x, y)J (i)
Channel − JPump + JLeak (1)

where Ca2+ can diffuse in the cytosol with diffusion constant D. There are three fluxes of Ca2+

between the cytosol and the ER. The terms J (i)
Channel describe the Ca2+ fluxes through the release

channels localized in small intervals around the discrete sites (xi, yi) where the form function
f (x, y) is nonzero. The release sites (xi, yi) are organized on a square lattice with variable lattice
constant (see below). The flux JPump describes the Ca2+ re-uptake through SERCA pumps, and
JLeak describes leak flux. The pumps and leaks are assumed homogeneously distributed over the
plasma membrane of the ER and their fluxes are given by

JPump = vP
[Ca2+]2

k2 + [Ca2+]2
(2)

JLeak = vL([Ca2+]ER − [Ca2+]), (3)

where [Ca2+]ER denotes the Ca2+ concentration in the ER.
For the channel flux, we use the stochastic version [29, 30] of the Li–Rinzel model [28],

which is a reduction of the more detailed stochastic DeYoung–Keizer model [25] and accurate for
processes on the timescale of seconds [31]. The channels are concentrated in clusters of less than
0.5 µm diameter which is much smaller than the diffusion length of Ca2+ with a physiological
diffusion constant of D ≈ 20 µm2 s−1. This allows us to assume that the Ca2+ concentration is
constant within the cluster (see also [6]) and to model the Ca2+ flux from the ER into the cytosol
as a point source with a weight factor that describes the size of the source resulting in a Ca2+

flux through cluster (i), given by

J (i)
Channel = vCm3

∞n3
∞N (i)

open([Ca2+]ER − [Ca2+]), (4)

where vC contains the ratio of channel size and grid size (for details on this procedure see
appendix A and [32]) and
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m∞ = [IP3]

[IP3] + d4

n∞ = [Ca2+]

[Ca2+] + d5
,

(5)

where [IP3] denotes the concentration of IP3. The number of open channels of cluster (i)N (i)
open

is determined by Markov processes describing the state of each channel. The three subunits of
the IP3 receptor result in three gates in the reduced model, with opening and closing rates αh and
βh given by

αh = ad2
[IP3] + d1

[IP3] + d3

βh = a[Ca2+],
(6)

respectively. For small clusters N direct simulation of each subunit as Markov two-state
processes, the least economical but most accurate method, can be carried through.

If a subunit is at time t in the inactivated state, the probability of activation during the time
interval [t, t + δt] is given by αhδt where αh is the activation rate given in equation (6), while the
probability of remaining in the inactivated state reads 1 − αδt . In order to decide whether the
subunit remains inactivated or activates within the time interval δt , we draw a random number
from a uniform distribution over the unit interval. If it is less than or equal to αhδt , the subunit
is switched into the activated state, otherwise it remains in the inactivated state. If a subunit is at
time t in the activated state, the probability of inactivation during the time interval [t, t + δt] is
given by βhδt where βh is the inactivation rate (6), while the probability of remaining activated
reads 1 − βhδt . To decide whether the subunit remains activated or de-activates, we again draw
a random number from a uniform distribution over the unit interval. If it is less or equal to βhδt ,
the subunit is switched into the inactivated state, otherwise it remains in the activated state. The
release channel is open when all three subunits of a channels are activated. For larger numbers of
channels per cluster more economical methods are available where the channels are categorized
into groups with zero, one, two or three activated gates and only occupancy of these groups and
their transitions are recorded (see e.g. [33]).

The concentration of Ca2+ in the ER, i.e. [Ca2+]ER, is set to the constant value of 15 µM.
The size of the cell simulated is 60 µm × 60 µm. The computer cell thus has the form of a
mosaic of active and passive (still nonlinear) patches. Of critical importance is the diffusion
constant of Ca2+ in the cytosol. Effective diffusion coefficients of Ca2+ in the cytosol reported
in the literature [34] range from 10 to 220 µm2 s−1. The other parameter values in the model
are vC = 0.6 s−1, vP = 0.5 s−1, vL = 0.001 µM s−1, [Ca2+]ER = 15.0 µM, k = 0.1 µM,
a = 0.2 µM−1 s−1, d1 = 0.13 µM, d2 = 1.05 µM, d3 = 0.94 µM, d4 = 0.13 µM, and
d5 = 0.08 µM. These parameters are modified from the original Li–Rinzel model [28]. The
parameters have been chosen such that the resulting Ca2+ waves exhibit speeds that are consistent
with experimental values in Xenopus oocyte.

The stochastic partial differential equations are solved by using a standard five point
discretization scheme for the Laplacian in connection with a fully explicit solver. The accuracy
has been tested by using smaller discretization intervals.

3. The limit of large diffusion coefficients

Although physiological values of the diffusion coefficient D of Ca2+ are between 15 and
30 µm2 s−1 we consider here the limit case when D is more than 10 times this value.
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Figure 1. The bifurcation diagram of equation (7) is shown as a function of
the IP3 concentration. For [IP3] < 0.24 µM the Ca2+ concentration approaches
a fixed point. Through subcritical Hopf bifurcations at [IP3]h1 = 0.24 µM and
[IP3]h2 = 0.82 µM a stable limit cycle emerges for [IP3]sn1 < [IP3] < [IP3]sn2

with [IP3]sn1 = 0.24 µM and [IP3](sn2) = 1.10 µM with saddle-node bifurcations
at [IP3]sn1 and [IP3]sn2. The central dashed curve indicates unstable fixed points,
while the other dashed curves indicate unstable periodic orbits. The inset shows
an enlargement of the region around the Hopf bifurcation at [IP3] = [IP3]h1.

For such large diffusion coefficients, Ca2+ diffuses rapidly through the entire cell and couples
the release clusters tightly. As a consequence, Ca2+ gradients and fluctuations are negligible and
the system is expected to be described by the following system of ordinary differential equations
(see also appendix B):

d[Ca2+]

dt
= −vP

[Ca2+]2

k2 + [Ca2+]2
+ (vL + vCm3

∞n3
∞h3)([Ca2+]ER − [Ca2+])

dh

dt
= αh(1 − h) − βhh,

(7)

where the fraction of open channels Nopen/N in equation (4) is replaced by the
continuous activation variable h3. These equations predict the bifurcation diagram, shown
in figure 1. There is a subcritical Hopf bifurcation at [IP3] = 0.2394 µM ≡ [IP3]h1 and at
[IP3] = 0.82 µM ≡ [IP3]h2. The upper and lower branches indicate the minimum and maximum
amplitudes of Ca2+ oscillations. Saddle-node bifurcations at [IP3] = 0.2386 µM ≡ [IP3]sn1

and [IP3] = 1.10 µM ≡ [IP3]sn2 terminate the oscillating branches. The central dashed curve
indicates an unstable fixed point while the other dashed curves indicate unstable periodic orbits.

Similar to neurons, the information of the Ca2+ signal is mostly coded in the frequency
of spikes. Thus, ER membranes with tightly coupled clusters only encode information when
the concentration of IP3 is larger than the threshold of about 0.24 µM. The assertion that the
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Figure 2. Minimum and maximum amplitudes of the Ca2+ signals are shown as
a function of the IP3 concentration. Open circles indicate numerical solutions of
the spatially explicit model (1) with a 60 µm × 60 µm cell with clusters of 36
channels at a distance of 3 µm and D = 200 µm2 s−1. The full curve and dashed
line (unstable periodic orbit) represents the predictions from equation (7).

gradients and spatial dependencies in equation (1) can be neglected in the case of a large Ca2+

diffusion coefficient is verified by comparing the cell-averaged response obtained from numerical
solution of equation (1) (D = 200 µm2 s−1) with that from the simpler spatially not explicit
model in equation (7) in figure 2. In figure 3, we show samples of Ca2+ release of a single release
cluster with N = 36 channels embedded into a patch of the ER with a large diffusion coefficient
(i.e. the gradient and inhomogeneous terms in equation (1) are neglected), described by

d[Ca2+]

dt
= −vP

[Ca2+]2

k2 + [Ca2+]2
+

(
vL + vCm3

∞n3
∞

Nopen

N

)
([Ca2+]ER − [Ca2+]) (8)

where Nopen/N is the fraction of open channels. The small number of channels N = 36 requires
stochastic modelling of the fraction of open channels. Similar as predicted by the homogeneous
model (equation (7)) for large diffusion coefficients, the stochastic model (8) for the Ca2+ release
from a single cluster predicts almost constant Ca2+ levels (with small fluctuations) well below the
threshold of [IP3](sn1). For larger IP3 concentrations, noisy oscillations emerge. Most importantly,
the Ca2+ signal does not code information for small IP3 concentrations.

4. Sub-threshold coherent Ca2+ oscillations

Lowering the Ca2+ diffusion coefficient towards physiological values, the coupling between
the release clusters, facilitated by Ca2+ diffusion through the intracellular space, is decreased
and the emergence of local Ca2+ release events is observed. This is demonstrated in the two
panels of figure 4, where we compare the cell-averaged Ca2+-signal for D = 20 µm2 s−1
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Figure 3. Trajectories of Ca2+ released by a single cluster of N = 36 IP3Rs
embedded in the ER membrane with continuously distributed pumps and leakage
under the assumption of a large Ca2+ diffusion coefficient D.

Figure 4. Ca2+ release as a function of time of the centre cluster of the cell
at D = 20 µm2 s−1 (upper panel) and D = 100 µm2 s−1 (lower panel)
for [IP3] = 0.15 µM < [IP3]sn1, i.e. below the threshold of Ca2+ oscillations
predicted by the deterministic model equation (7).

(upper panel) and D = 100 µm2 s−1 (lower panel) at [IP3] < [IP3]sn1, i.e. below the threshold
of Ca2+ oscillations predicted by the deterministic model (7). The cell-averaged Ca2+ signal
exhibits a larger spontaneous activity at the smaller diffusion coefficient. In figure 5 we show the
minimum and maximum amplitudes of the calcium signals generated by the whole-cell model (1)
as a function of [IP3] for D = 20, 15, 10 and 5 µm2 s−1. For D = 20 µm2 s−1 we observe—
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Figure 5. Minimum and maximum cell-averaged Ca2+ concentrations as a
function of the IP3 concentrations for various values of the Ca2+ diffusion
coefficient D. In the cell model, each release cluster comprises N = 36 channels
and the clusters are 3 µm apart.

as expected—a smooth transition from the non-oscillatory to the oscillatory regime, smoothed
by channel noise. Oscillations extend to concentrations of IP3 well below the deterministic
threshold. For D = 15 µm2 s−1 we observe that the oscillations occur in two distinctly
different ranges of IP3 concentrations, one below the deterministic threshold (the small ‘bubble’
at 0.15 µM < [IP3] < 0.22 µM) and one within the IP3 interval of oscillations predicted by (7)
at [IP3] > 0.3 µM. In figure 6 trajectories of the cell-averaged Ca2+ concentration and the Ca2+

concentration at the centre cluster are shown for concentrations of IP3 within this sub-threshold
oscillatory regime and beyond.

The cell-averaged Ca2+ signal exhibits a large amplitude and a more coherent structure
in the ‘bubble’ of sub-threshold oscillations as compared to concentrations of IP3 below and
above the bubble (see the upper three panels in figure 6). For further decreasing D, the bubble
of sub-threshold oscillations shifts to smaller values of the IP3 concentrations and becomes
smaller in amplitude (see figure 5). The deterministically predicted supra-threshold oscillations
(equation (7)) occur at larger concentrations of IP3 (see figure 5) and their amplitudes become
smaller as D is decreased.

For D = 15 µm2 s−1 the Ca2+ supra-threshold oscillations (at the centre cluster and cell-
averaged) are shown in the fourth panels from above in figure 6. Comparing the second and the
fourth panels (from above) in figure 6 one can see that the supra-threshold oscillations are less
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Figure 6. Trajectories of the cell-averaged Ca2+ concentration (left panels) and
the Ca2+ concentration at the centre cluster (right panels) are shown for various
concentrations of IP3 at D = 15 µm2 s−1. In the cell model, each release cluster
comprises N = 36 channels and the clusters are 3 µm apart.

Figure 7. Cross-correlation function equation (9) between the Ca2+ release at the
centre cluster and sites at increasing distance are shown at various concentrations
of IP3. The clusters each comprise 36 channels and are 3 µm apart from each
other.
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Figure 8. The normalized autocorrelation functions equation (10) of the Ca2

concentration at the centre cluster are shown at various concentrations of IP3.
The clusters each comprise 36 channels and are 3 µm apart from each other.

coherent in time although larger in amplitude. Figure 7 shows the normalized cross-correlation
function between the Ca2+ concentrations at the central release cluster [Ca](0, t) and a distance
d away from the centre cluster Ca2+(d, t), i.e.

η(d) =
∫ T

0 (C(t, 0) − 〈C(0)〉)(C(t, d) − 〈C(d)〉) dt√∫ T
0 (C(t, 0) − 〈C(0)〉)2 dt

∫ T
0 (C(t, d) − 〈C(d)〉)2 dt

(9)

where C(t, 0) ≡ [Ca2+](0, t) and C(t, d) ≡ [Ca2+](d, t). While the correlations decay
rapidly for [IP3] = 0.15 µM, they decay much more slowly at the maximum of the ‘bubble’ (at
[IP3] = 0.18 µM) and decay rapidly again at [IP3] = 0.25 µM. Thus, the temporally coherent
sub-threshold oscillations (within the bubble) are also spatially coherent. The spatial coherence
increases again for larger concentrations of IP3 where supra-threshold oscillations occur to a lesser
degree as the sub-threshold oscillations (compare the third panel from above (supra-threshold) in
figure 7 with the second panel from above (sub-threshold)). Temporal correlations are described
by the normalized autocorrelation function of the Ca2+ release at a release site (we picked the
centre site)

ξ(τ ) =
∫ T

0 (C(t) − 〈C〉)(C(t + τ) − 〈C〉) dt∫ T
0 (C(t) − 〈C〉)2 dt

, (10)

where C(t) denotes the Ca2+ concentration at a release site and 〈C(t)〉 the temporally averaged
Ca2+ concentration at this site. In figure 8, the normalized autocorrelation functions are shown
for various IP3 concentrations including those where sub-threshold oscillations occur. The
longest temporal correlations are observed at [IP3] = 0.18 µM, i.e. where the sub-threshold
oscillations have the largest amplitude. It is remarkable that the temporal correlations of the
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Figure 9. Snapshots of the Ca2+ concentrations in the cell are shown at
[IP3] = 0.15 µM (A), 0.18 µM (B), 0.25 µM (C), 0.5 µM (D), and 1.00 µM
(E). The time interval between the snapshots is 3 s. The cell has the dimensions
60 µm × 60 µm and comprises clusters with N = 36 channels at a distance of
3 µm. Lighter grey indicates a higher Ca2+ concentration.

supra-threshold oscillations ([IP3] = 0.5 µM) (see figure 8) are shorter than those of the sub-
threshold oscillations.

The strongly enhanced spatiotemporal coherence of the sub-threshold oscillations can be
seen in the snapshots of the Ca2+ concentration of the 2D whole-cell model shown in figure 9.
Each row in figure 9 represents a sequence of snapshots (each 3 s apart) at a different IP3

concentration. Lighter grey indicates a higher Ca2+ concentration. While only Ca2+ puffs
(localized release events) can be seen for [IP3] = 0.15 µM, temporally and spatially coherent
oscillations are observed at [IP3] = 0.18 µM (i.e. at the maximum of the bubble of sub-threshold
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Figure 10. Power spectra of the cell-averaged Ca2+ signal at D = 15 µm2 s−1 and
[IP3] = 0.15, 0.18, 0.25 and 0.5 µM. The cell’s dimension is 60 µm × 60 µm,
the cluster distance is 3 µm and each cluster comprises 36 channels.

oscillations). The Ca2+ activity for [IP3] = 0.25 µM is again spatially and temporally less
coordinated across the cell. At an IP3 concentration of 0.5 µM, the coherence is enhanced again
due to the onset of supra-threshold oscillations.

From a physiological point of view, the actual frequency of the oscillations is of great
relevance since it encodes information. In figure 10 we show power spectra of the cell-averaged
Ca2+ signal at D = 15 µm2 s−1 and IP3 concentrations that include the regime of sub-threshold
oscillations. The power spectrum exhibits strong peaks (fundamental and higher harmonics)
when sub-threshold oscillations are observed. These peaks are higher and sharper than those for
supra-threshold oscillations (see panel for [IP3] = 0.5 µM). In figure 11 we show the base-
frequency and peak height as a function of [IP3]. In the regime of optimal sub-threshold
oscillations (i.e. [IP3] ≈ 0.18 µM) the frequency is lower than for supra-threshold oscillations
and the peak height is larger by almost one order of magnitude, underpinning the dramatic
coherence of the sub-threshold oscillations. The frequency first increases with increasing IP3

concentration and then slowly decreases towards the frequency of the spatially homogeneous
(i.e. noise-free) model (7).

5. Optimal clustering

Related to the coherent sub-threshold oscillations described in the previous section is the
occurrence of optimal clustering [35]. We consider the case of small IP3 concentrations,
i.e. [IP3] < 0.24 µM, corresponding to a situation where only few agonist molecules are binding.
Given that the typical cluster distance in Xenopus oocyte is about 3 µm and that there are about
20–40 channels/cluster, our 60 µm × 60 µm size cell comprises 12 000–16 000 release channels
and we pick 14 400 [35]. Given this fixed total number, we seek to find the optimal geometric
configuration of these channels in order to achieve the best signalling response to stimulation by
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Figure 11. The base frequency (lower panel) and peak heights (upper panel) in
the power spectra of the cell-averaged Ca2+ concentration are shown as a function
of the IP3 concentration. The cell’s dimension is 60 µm × 60 µm, the cluster
distance is 3 µm and each cluster comprises 36 channels. The dashed curve
represents the frequency of the Ca2+ oscillations predicted by the homogeneous
model equation (7).

3µm 6µm

Figure 12. Sketches of two possible configurations of IP3Rs are shown as
examples. In the left panel, the clusters are 3 µm apart and each contain 36
channels. In the right panel each cluster contains 144 channels and their distance
is 6 µm.

a small concentration of IP3. The configurations we choose from are square arrays of clusters of
release channels with different numbers of channels per cluster and cluster distances so that the
total number of channels is conserved (see figure 12 for two possible configurations).

We start with single channels distributed homogeneously at a distance of d = 0.5 µm over a
cell, i.e. in 120 ×120 clusters of single channels (N = 1) at a physiological diffusion coefficient
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Figure 13. The time traces of the Ca2+ concentrations at active sites are shown
in the upper panels for cluster distances of d = 0.5 µm (homogeneous channel
distribution), d = 3 and 5 µm (from left to right). The lower panels show the
corresponding cell-averaged Ca2+ signals. For all panels we used the parameters
[IP3] = 0.21 µM and D = 20 µm2 s−1.

of D = 20 µm2 s−1 and [IP3] = 0.21 µM. The Ca2+ traces shown in the upper left panel in
figure 13 are obtained from a cluster site. The panel below it depicts the cell-averaged Ca2+

concentration. The cell-averaged Ca2+ signal does not exhibit spikes that could be interpreted
as a signal in response to the stimulation by IP3. In the next step we increase the distance d
of the clusters of the IP3Rs to 3 µm but increase their sizes to N = 36 channels so that the
total number of channels remains 14 400. A trace of Ca2+ taken at a cluster site is shown in the
central upper panel in figure 13. The panel below it shows the cell-averaged Ca2+ concentration.
The cell-averaged Ca2+ response as well as that at a single release site is almost periodic with
an amplitude that is orders of magnitude larger than in the previously discussed case where the
cluster distance was only 0.5 µm. Increasing the distance between the clusters further to 5 µm
with a cluster size of N = 100 channels results again in a stochastic Ca2+ signal (see upper right
panel in figure 13). The cell-averaged Ca2+ signal is temporally incoherent. Thus, similar as for
d = 0.5 µm, the cell cannot produce a global Ca2+ signal upon weak stimulation with IP3.

To describe the capability of the cellular Ca2+ signalling mechanism we plot the minimum
and maximum amplitudes of the computed cell-averaged Ca2+ concentrations as a function of the
cluster distance in figure 14 at the sub-threshold IP3 concentration of 0.21 µM at various values
of the Ca2+ diffusion coefficient D. Large gaps between minimum and maximum amplitudes
in figure 14 correlate with spatiotemporal coherence as shown in figure 15. For small and
large cluster distances, minimum and maximum amplitudes are very close, i.e. the cell is not
capable of signalling upon the weak stimulation of IP3. In between, we find intervals of cluster
distances at which the cell is capable of generating large amplitude and coherent Ca2+ signals
that may be decoded in the cell to trigger downstream processes. At physiological values of
D ≈ 20–30 µm2 s−1 optimal cluster distances are predicted by the model at about 3 µm which
agrees with measured average cluster distances of Xenopus oocyte [36]. A cluster distance of
3 µm corresponds to a cluster size of 36 channels, which is well in the range of estimated
values at Xenopus oocyte [6]. In figure 16, we show minimum and maximum amplitudes of the
cell-averaged Ca2+ signals at the supra-threshold concentrations of [IP3] = 0.25 µM. Above the
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Figure 14. The minimum and maximum amplitudes of the cell-averaged Ca2+

are shown as a function of the cluster distance at various values of D at an IP3

concentration of 0.21 µM. Large gaps between the minimum and the maximum
amplitudes indicate a signal of large amplitude. In the same intervals, the cell-
averaged Ca2+ signal is also temporally coherent and the clusters are phase
synchronized (see figure 15 and [35]).

oscillation threshold of [IP3] = 0.24 µM, the bubbles are of optimal extent to the homogeneous
distribution of clusters. Clustering here has no enhancing effect on encoding an IP3 signal (see
figure 16).

6. Discussion and conclusion

Using mathematical modelling, we have demonstrated dramatic changes in intracellular calcium
signalling patterns due to clustering of the IP3 receptors. The dynamic behaviour of Ca2+ release
from internal stores predicted for homogeneous distributions of IP3 receptors is altered most
dramatically at low concentrations of the second messenger IP3. Our model, incorporating
physiologically meaningful values for the size of the cluster and their spacing, predicts a range
of sub-threshold IP3 concentrations at which the cell responds extremely coherently and thus
codes effectively for the IP3 signal. We have also shown that a homogeneous distribution of
channels in the same regime would not result in a coherent cellular Ca2+ signal and thus would
not permit coding of the weak IP3 signal. The effect is due to synergetic interaction of channel
fluctuations and geometric distribution of the channels in clusters.
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Figure 15. Snapshots of the Ca2+ concentration are shown at a cluster–cluster
distance of 1.5 µm (top row), 2.0 µm (second row from top), 2.5 µm (third row
from top), 2.5 µm (third row from top), 3.0 µm (fourth row from top), 4.0 µm
(bottom row from top) at [IP3] = 0.21 µM and D = 20 µm2 s−1. Each snapshot
has a size of 60 µm × 60 µm. The grey scales from black to white represent
Ca2+ concentration from 0.05 to 0.25 µM.

What is most remarkable and surprising is that the temporal and spatial correlations of
this additional branch of Ca2+ oscillations exhibits a larger temporal and spatial coherence than
those oscillations predicted for a homogeneous distribution of IP3Rs at larger values of IP3

concentration. The spatial and temporal coherence of the cellular Ca2+ signal correlates with
a coherent spatiotemporal Ca2+ wave that can trigger other downstream processes, including
modification of gene regulatory networks, and is thus of physiological relevance.

While many oscillatory and excitable models that predict pattern formation have been
published in the context of fluid dynamics, chemical reactions and membrane physiology, most
of them are spatially homogeneous. In the type of model we are discussing here (see also recent
work by [24] and [25]), the active sites, responsible for the pattern formation, are distributed in
small clusters, often not bigger than 0.1 µm and a few microns apart. The smallness of these
clusters not only influences the spatiotemporal patterns by their geometrically heterogeneous

New Journal of Physics 5 (2003) 132.1–132.20 (http://www.njp.org/)

http://www.njp.org/


132.18

Figure 16. The minimum and maximum amplitudes of the cell-averaged Ca2+

signals are shown as a function of the cluster distance at [IP3] = 0.25 µM. The
Ca2 signal present at small cluster distances disappears when the clusters become
too far apart to synchronize.

distribution, but also generates strong local fluctuations due to thermal motion of the receptor
proteins resulting in stochastic fluxes. A strongly clustered distribution of excitability changes
the spatiotemporal properties of the nonlinear waves dramatically at realistic physiological values
of the diffusion coefficient of Ca2+. A wealth of novel pattern formation phenomena has emerged
out of this type of system (some of which are described in this paper) that are being currently
explored computationally but are not well understood conceptually.
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Appendix A. The stochastic calcium flux density through clustered IP3Rs (equation (4))

For one open IP3R channel, the flux density can be expressed as

J1 = vIP3Rm3
∞n3

∞([Ca2+]ER − [Ca2+]) (11)
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where vIP3R denotes the maximum conductance. If the size of the channel is given by SIP3R, the
total calcium flux through one open channel is given by

J̄1 = SIP3R J1 = νIP3R SIP3Rm3
∞n3

∞([Ca2+]ER − [Ca2+]). (12)

The total flux through a cluster of N channels with Nopen channels open then reads

J̄N = Nopen J̄1

= vIP3R SIP3Rm3
∞n3

∞Nopen([Ca2+]ER − [Ca2+]). (13)

In our simulations, each cluster is localized as a point source on a single grid element, with size
δx2 (δx = 0.5 µm). Thus the flux density of Ca2+ at a single grid is given by

Jchannel = J̄N

δx2

= vcm
3
∞n3

∞ Nopen([Ca2+]ER − [Ca2+]) (14)

with

vc = SIP3R

δx2
νIP3R (15)

which contains the ratio of channel size and grid size.

Appendix B. The deterministic calcium flux density through IP3Rs (equation (7))

Suppose the cell has a size of Scell and M IP3R channels distributed in it. With a large diffusion
coefficient D, Ca2+ diffuses rapidly through the entire cell and couples all the release channels
tightly. As a consequence, calcium gradients and fluctuations can be ignored and the system
can be treated as a point model. For this point model, the total Ca2+ flux through Mopen open
channels is given by (see equation (12))

J̄cell = Mopen J̄1. (16)

The flux density of Ca2+ is then obtained as

Jcell = J̄cell

Scell

= vcellm
3
∞n3

∞
Mopen

M
([Ca2+]ER − [Ca2+]) (17)

with

vcell = vc
δx2

Scell
M = M

Scell
SIP3RvIP3R. (18)

For our particular choices of M = 14 400, δx = 0.5 µm, and Scell = 60 × 60 µm2, i.e. one
channel per grid element in the average, we find

Jcell = vcm
3
∞n3

∞h3([Ca2+]ER − [Ca2+]). (19)
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