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Abstract

Dynamical properties of numerically truncated trajectories are discussed for periodically driven chaotic systems with
largely converging dynamics. Various trajectories having different initial conditions can be contracted so close to each other
that they are truncated into a single pseudotrajectory. It is more easily observed numerically if the driving frequency is
lower. Driven by an exactly periodic force, a periodic pseudotrajectory is obtained. Its period can be quite short and
independent of truncation error. q 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Computers are indispensable in the study of
chaotic systems. However, because of the exponen-
tial sensitivity of chaotic solutions to noise, small
errors in the solution can grow very rapidly with
time such that the noise due to truncation of comput-

Žers can drastically change the solution pseudotrajec-
.tory from the true trajectory of chaotic systems. For

pseudotrajectories, an important issue is the shad-
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owability, which deals with the existence of true
w xtrajectories that stay near pseudotrajectories 1–6 . It

has been shown that for hyperbolic or nearly hyper-
bolic chaotic systems there exists a true trajectory
with a slightly different initial condition that shad-
ows the pseudotrajectory for a long time. For nonhy-
perbolic chaotic systems in which the finite-time
Lyapunov exponent fluctuates about zero, the greater
the finite-time fluctuation about zero, the smaller the
power law exponent, resulting in large shadowing
distances and valid trajectories of limited length
w x7,8 .

Truncation not only induces noise that disturbs
chaotic trajectories, but also divides the continuous
phase space into a discrete lattice so that chaotic
orbits must collapse to periodic cycles if the time is
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w xsufficiently long 9–12 . The latter effect of trunca-
w xtion is called the collapsing effect 13 . Statistical

properties of truncated periodic cycles, e.g., the ex-
pected period length and expected number of peri-
odic orbits, have been investigated for various chaotic

w xsystems 9–13 . Some phenomenological models, e.g.
random mappings with a single attracting center,
have been proposed to provide a theoretical analysis

w xon these statistical properties 13–15 .
Discussions of truncation effects on chaotic sys-

tems are currently concentrated on either hyperbolic
or nonhyperbolic autonomous systems. Numerical
simulations with these autonomous systems show
that the mean period of truncated periodic cycles is a

w xpower function versus truncation error 11 . For these
systems the finite-time Lyapunov exponents have
minimal fluctuation about the Lyapunov exponent. In
this Letter, we discuss dynamical properties of trun-
cated trajectories for periodically driven chaotic sys-
tems, in which the largest nontrivial finite-time Lya-
punov exponent fluctuates about zero to a greater
extent. Such chaotic systems repeatedly show strong
converging dynamics. Compared to the autonomous

w xsystems discussed in Refs. 9–15 , pseudotrajectories
of such nonautonomous systems possess some differ-
ent properties. Various trajectories will converge and

Ž .be truncated into a single pseudotrajectory SPT . If
the driving force is exactly periodic, a rather short
periodic cycle can be obtained, whose period can be
independent of truncation error in some scales.

2. Single pseudotrajectory

SPTs can typically be observed in systems driven
by a periodic force to oscillate between chaotic and
periodic states. Consider an autonomous system

x tq1 sF x t ,b 1Ž . Ž . Ž .Ž .

with control parameter b. Suppose chaotic attractors
Ž .are obtained for b in the region a ,a and peri-0 1
Ž .odic attractors are obtained for bg a ,a . Now let1 2

b be variable and driven by a periodic force:

x tq1 sF x t ,b tŽ . Ž . Ž .Ž .

b t sb qb sin 2p ft 2Ž . Ž . Ž .0 1

Ž .with b ,b )0. If b yb g a ,a and b qb0 1 0 1 0 1 0 1
Ž .g a ,a , then the dynamics of this system alter-1 2

nate between expanding and contracting behaviors.
When, on average, the expanding dynamics are
stronger than the contracting dynamics, the resultant
attractor is chaotic. With a sufficiently low fre-
quency, the time interval that b remains in the

Ž .region a ,a during each driving period is also1 2

long enough. Under long continually converging dy-
namics, various trajectories will be converged and at
last truncated to a single trajectory once their differ-
ences are smaller than the truncation error. As a
result, an SPT is obtained.

As an example we discuss a periodically driven
logistic map:

x tq1 sax t 1yx t qAsin 2p ft 3Ž . Ž . Ž . Ž . Ž .Ž .

with as3.6 and fs0.005. The system has two
Lyapunov exponents, one of which is always zero,
corresponding to the periodic driving force. Simula-
tion results show that chaotic attractors can be ob-
tained when A is slightly smaller than 0.1178. A
plot of the nontrivial Lyapunov exponent l versus

Žamplitude A is shown in Fig. 1. In region III 0.1005
.-A-0.115 , SPTs are always observed for trunca-

tion error of 10y18. In region I, SPTs are seldom
observed while region II is a transition region. To
detect an SPT, various trajectories with different

XŽ .initial conditions x 0 are generated randomly and
Ž . Ž . XŽ .the difference Dx t sx t yx t was calculated

Ž .for x 0 s0.2. An SPT is defined by the condition
Ž .that all Dx T numerically go to zero before time

Ts106.
For example, with As0.11 the SPT can be

obtained before ts3800. Its dynamics are shown in
Ž .Fig. 2. Fig. 2 a shows the driving force. In Fig.

Ž . Ž . Ž .2 b , the trajectory for x 0 s0.2 is drawn. Fig. 2 c
gives the time-t Lyapunov exponents for ts5. The

t Ž .time-t Lyapunov exponent l t is defined as

t qty1 t qty10 01 d f x 1Ž .
t 1l t s ln s l t .Ž . Ž .Ý Ý0

t d x t tŽ .tst tst0 0

4Ž .

Ž .When the force Asin 2p ft is positive, the finite-time
Lyapunov exponents are typically positive and the
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Fig. 1. Lyapunov exponent l versus amplitude A from 0.09 to 0.115. The solid line of Lyapunov exponent is calculated by directly
Ž .applying sin 2p ft as a driving force. The dotted grey line is obtained by applying an exactly periodic force. SPT is seldom observed in

region I and always observed in region III; region II is a transition region.

trajectory expands to a large region. When the force
is negative, the exponents become typically negative
and a period-2 structure is obtained. The sign of

t Ž .l t reflects the diverging or contracting behavior
t Ž .for time from t to tqt . Although the value of l t

varies with the choice of t , the time-5 Lyapunov
exponent adequately characterizes the dynamics of
the present system as shown in Fig. 2. In fact, any t

with t<1rf can be used to discuss the detailed
properties of trajectories within one driving period.
This is because when the trajectory is in the diverg-

Ž .ing contracting region, the time-1 Lyapunov expo-
1 t Ž .nents l and so l t become typically positive

Ž . Ž . Ž .negative . Fig. 2 d shows the difference Dx t with
time between two trajectories with initial conditions

Ž . XŽ .of x 0 s0.2 and x 0 s0.7, respectively. It can be
seen clearly that the difference often decreases when

t Ž . t Ž .l t is negative and starts increasing when l t
becomes positive. In the contracting period, two
trajectories have a chance to approach each other.
They are truncated to the same trajectory at ts1170.

Now we show that exponentially higher precision
is required in computation to avoid SPT when the
driving frequency becomes lower. Suppose the typi-
cal time interval of the contracting movement is T .n

The dynamics during the interval T is associatedn

with time-T Lyapunov exponent lTn. During thisn

interval a vector with size on the order of the phase
space, i.e. 1, can be compressed to the order of

Ž Tn . Ž² Tn :.exp l T . Define the critical size l sexp l T ,n c n
²:where means the statistical average for various

contracting time intervals. If the truncating error of
computer is larger than l , various trajectories can bec

converged into an SPT. In Fig. 3, simulation results



( )J.-W. Shuai et al.rPhysics Letters A 267 2000 335–341338

Ž . Ž .Fig. 2. Dynamics of SPT: a the driving force with As0.11, b
Ž . Ž .the trajectory starting from x 0 s0.2, c time-t Lyapunov

Ž .exponent with t s5, and d the absolute difference between two
Ž . XŽ .trajectories starting from x 0 s0.2 and x 0 s0.7. Around ts

Ž .1170, Dx t numerically becomes zero.

² Tn :about l T versus f are plotted in log-log axes. An

linear fit indicates that

² Tn : ky l T A f 5Ž .n

Ž .with ksy1 "0.002 . So there is an exponential
law

l Aexp y1rf . 6Ž . Ž .c

As a result, at lower driving frequency, an exponen-
tially higher precision is required in computation to
avoid SPT. With a fixed truncation error, SPT can be
more easily observed numerically for a lower-
frequency periodically driven system.

Ž .In fact, the exponential relation of Eq. 6 is
Ž .general for the system given in Eq. 2 . The low-

frequency means that the driving force almost keeps
constant within a short time interval. Thus the time-t

t Ž .Lyapunov exponent l t at time ts t with t<0 0

1rf can be approximated by the Lyapunov exponent

Ž .of the autonomous system 1 driven by a constant
Ž .force b sb qb sin 2p ft . Notice that theconst 0 1 0

Ž .Lyapunov exponent of the autonomous system 1 is
typically negative when b is in the periodicconst

Ž .region a ,a . This indicates that the finite-time1 2
t Ž . Ž .Lyapunov exponents l t of system 2 typically

Ž . Ž .become negative when b qb sin 2p ft g a ,a .0 1 1 2

Thus, the time interval T is the time interval that then
Ž .driving force spends in the region of a ,a . Sup-1 2

pose there are k finite-time Lyapunov exponents
t Ž .l t in this time interval, i.e. T fkt . According ton

Ž . TnEq. 4 , the time-T Lyapunov exponent l can ben

given as

ky1t
T tnl s l t q it 7Ž . Ž .Ý 1Tn is0

where t is the beginning time at which the force1
Ž . Ž .b qb sin 2p ft runs into the region a ,a . Now,0 1 1 2

for a lower frequency f X sr f with r-1, the time
interval is T X sT rr. Similarly, lTn

X

can also ben n
t

XŽ .given by k finite-time Lyapunov exponents l t
X ky1tX X X XT tnl s l t q it 8Ž . Ž .ÝX 1Tn is0

with t
X strr. Here tX is the time at which the force1

Ž X . Ž .b qb sin 2p f t runs into a ,a . Obviously, the0 1 1 2
t Ž .finite-time Lyapunov exponent l t q it is equal1

t
XŽ X X.to l t q it , since both of them can be approxi-1

² Tn :Fig. 3. Logarithm of y l T versus logarithm of frequency fn

of sinusoidal force, for several values of the amplitude A. Here,
Ž .the slope of the fitted line is y1 "0.02 .
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mated by the autonomous map driven by the same
Ž Ž ..constant force b sb qb sin 2p f t q it sconst 0 1 1

Ž XŽ X X.. Tnb qb sin 2p f t q it . As a result, fl T f0 1 1 n
X Tn

X X Tn Ž .f l T . Considering the negative sign of l , Eq. 6n

follows.

3. Numerically periodic SPT

The statistical properties of truncated periodic
trajectories have been discussed in detail for some

w xone- or two-dimensional chaotic maps in Ref. 11 .
For example, the mean period of the truncated cycle
with truncation error e is as ey1r2 for the logistic

2 w x y18map x s1y2 x 11 . So if es10 , the meannq1 n

period is as long as 109. For a truncated cycle, if its
period is sufficiently long, the resulting density dis-
tribution of pseudotrajectory can approach the real
invariant density. As a result the properties of chaotic
system can still be discussed with such a pseudotra-
jectory. In this section we show that for a chaotic
system driven by an exactly periodic force with low
frequency, the period of the periodic SPT may be
short, on the order of 103, and may be independent
of truncation error in some scales.

Suppose the driving frequency v is rational. Then
an integer period T snrv can be obtained for a0

Ž .suitably selected integer n. For system 2 , suppose
within time T the SPT is obtained for various trajec-
tories with different initial conditions. Then for func-
tion

x Tq t sFT x t ,b tŽ . Ž . Ž .Ž .0 0 0

s FP . . . PF x t ,b t 9Ž . Ž . Ž .Ž .0 0
^ ` _

T

we have

E x Tq tŽ .0
s0 10Ž .

E x tŽ .0

Ž .for various x t . So0

x Tq t sG b t ,T 11Ž . Ž . Ž .Ž .0 0

For t s0 and t sT T , we have0 0 0

x T sG b 0 ,TŽ . Ž .Ž .

x TqT T sG b T T ,T 12Ž . Ž . Ž .Ž .0 0

Ž . Ž .respectively. Noticing b t sb tqT , the follow-0

ing equation is obtained,

x TqT T sx T . 13Ž . Ž . Ž .0

So an SPT is a periodic trajectory with a period of at
Ž .least T T. The exponential law in Eq. 6 indicates0

that, with a sufficiently low frequency, the various
Ž .trajectories for system 2 will experience a long

time of purely converging dynamics during a driving
period. In this case, the trajectory may be contracted
to the same truncated orbit in each driving period
and so the period of SPT is equal to the driving
period.

First, consider the logistic map driven by a square
Ž . Ž .Žfunction. For the logistic map x tq1 sax t 1y

Ž ..x t , a fixed point x s0.65517 PPP is obtainedF

with Lyapunov exponent l sy0.105 for asa s1 1

2.9. Simulation results show that various trajectories
converge to the fixed point x within 350 iterations.F

On the other hand, a chaotic attractor with l s0.1832

is obtained for asa s3.6. Within 320 iterations,2

any difference on the order of 10y17 can approach a
value of 0.1. For these two attractors, the transient
time of a trajectory from any initial point to the
attractor basin should be no more than 400. Now, a
periodic square wave is applied to control the vari-
able a. In particular, a periodically alternates be-
tween a and a with time intervals T and T ,1 2 1 2

respectively. If T and T are much larger than the1 2

transient time, the finite-time Lyapunov exponents in
time intervals T and T can be approximated by l1 2 1

and l , respectively. The nontrivial Lyapunov expo-2
w xnent l of the system can be estimated by 16

T l qT l1 1 2 2
ls . 14Ž .

T qT1 2

Ž .Let T sT s2000. Eq. 14 suggests that the1 2

nontrivial Lyapunov exponent should be 0.039, indi-
cating a chaotic attractor is generated. However,
obviously, numerical trajectories always converge to
x during each T time interval. So the period of thisF 1

periodic SPT is 4000. Furthermore, the period is
independent of truncation error changing from the
order of 10y18 to 10y9. Following this periodic SPT,

Ž .simulation results show that ls0.041 "0.001 .
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The short periodic SPT gives an incorrect density
distribution. Following such an SPT, one cannot
correctly discuss the properties of the chaotic system,
including the Lyapunov exponent. However, it has
been suggested that the collapsing effect can be

w xprevented by the addition of noise 12,15 . In the
present case, with the disturbance of micro-noise
upon the periodic SPT, an ergodic trajectory is ob-
tained. Driven by the same periodic force and same
noisy time series, this ergodic trajectory is still an
SPT. However, a reasonable supposition is that the
real invariant density of the system can be ap-
proached by such a ergodic trajectory. Thus, the
statistical properties, e.g, the Lyapunov exponent, of
the real chaotic trajectory can be approximately re-
produced with it. To approach chaotic ergodicity,
random noise on the order of 10y18 is always ad-

Ž .ded to the variable x t . With this process, the nu-
merical result of the Lyapunov exponent is ls

Ž .0.039 "0.001 .
Now we discuss the Lyapunov exponent of the

example discussed in Section 2. With As0.11, the

FPT obtained is periodic with period 2600. To see
Ž .this clearly, the SPT trajectory is given in Fig. 4 a

in the x–u plane with

u tq1 su t q f mod 1. 15Ž . Ž . Ž .
In the Figure 20 000 points are drawn from ts10 000

Ž .to 30 000 with x 0 s0.2. However, rather than a
chaotic attractor, a periodic attractor is obtained nu-
merically. Simulation also shows that the period is
independent of truncation error changing from the
order of 10y18 to 10y9. Following such a periodic
SPT, the nontrivial Lyapunov exponent is ls

Ž .0.053 "0.001 . Following application of noise on
the order of 10y18 to the system, the resulting
trajectory has a Lyapunov exponent of 0.061 "0.002.
In comparison, the value of 0.053 has an error more
than 13%. In fact, the simulation results given in Fig.
1 are all calculated with the disturbance of noise in
order to obtain an ergodic trajectory. The Lyapunov
exponent calculated with the periodic SPT is also
presented in Fig. 1 with a dotted grey line. One can
see that the difference of Lyapunov exponents ob-

Ž . Ž . Ž .Fig. 4. SPT in the x–u plane for Eq. 3 with as3.6, As0.11 and fs0.005. a An exactly periodic force is applied. b A disturbed
Ž .periodic force is applied. In the Figure, 20 000 points are drawn from ts10 000 to 30 000 with x 0 s0.2.
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tained from the two kinds of trajectories is quite
obvious in the region of SPT, region III. The consis-
tency of the two Lyapunov exponents in region I

Ž .suggests that the real Lyapunov exponent of Eq. 3
can be approximately calculated with the distorted
periodic force.

Because the finite-time Lyapunov exponent has
large fluctuation about zero, the system is nonhyper-
bolic. The unshadowability of the short periodic SPT
is obvious. A shadowable chaotic pseudotrajectory
must be similar to the true chaotic trajectory, e.g.
being sensitive to noise and possessing ergodicity
rather than a single periodic cycle with short period.
In the simulation, in order to get an exactly periodic

Ž .force, 200 values of the force Asin 2p ft within a
period are stored in a vector and used repeatedly to

Ž .drive the logistic map. If we use Asin 2p ft directly
in the computer simulation, the obtained time series
of driving force cannot be exactly periodic. Thus,

Ž .according to Eq. 13 , an interesting results is that
the SPT obtained cannot be periodic.

4. Conclusion

In this Letter, the numerically truncated trajectory
for a periodically driven chaotic system is discussed.
With a low-frequency driving force, the dynamics of
the system repeatedly atternate between expansion
and contraction for long stretches of time. Compared
to autonomous systems, the truncated trajectory of
such a system shows some different properties. The
deeply converging dynamics within a driving period
can contract various trajectories to an single pseudo-
trajectory. An SPT is more easily observed numeri-
cally with a lower frequency driving force. Driven
by an exactly periodic force, the SPT is numerically
periodic. Its period is short and independent of trun-
cation error in some scales. A short period SPT is
obviously unshadowable. It cannot give us correct

properties for the chaotic system. However, a noise-
disturbed SPT can approach the real invariant den-
sity of the system and thus provide reasonable re-
sults. On the other hand, if the driving force is not
exactly periodic, an SPT cannot collapse to a peri-
odic cycle.
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