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Abstract

Dynamical properties of numerically truncated trajectories are discussed for periodically driven chaotic systems with
largely converging dynamics. Various tragjectories having different initial conditions can be contracted so close to each other
that they are truncated into a single pseudotrajectory. It is more easily observed numericaly if the driving frequency is
lower. Driven by an exactly periodic force, a periodic pseudotrgjectory is obtained. Its period can be quite short and
independent of truncation error. © 2000 Published by Elsevier Science B.V. All rights reserved.

PACS 05.45.+ b

Keywords: Chaos; Finite precision; Intermittency; Lyapunov exponent

1. Introduction

Computers are indispensable in the study of
chaotic systems. However, because of the exponen-
tiad sensitivity of chaotic solutions to noise, small
errors in the solution can grow very rapidly with
time such that the noise due to truncation of comput-
ers can drastically change the solution (pseudotrajec-
tory) from the true trajectory of chaotic systems. For
pseudotrajectories, an important issue is the shad-
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owability, which deals with the existence of true
trajectories that stay near pseudotrajectories [1-6]. It
has been shown that for hyperbolic or nearly hyper-
bolic chaotic systems there exists a true trgjectory
with a dightly different initial condition that shad-
ows the pseudotrajectory for a long time. For nonhy-
perbolic chaotic systems in which the finite-time
Lyapunov exponent fluctuates about zero, the grester
the finite-time fluctuation about zero, the smaller the
power law exponent, resulting in large shadowing
distances and valid trgectories of limited length
[7,8].

Truncation not only induces noise that disturbs
chaotic trajectories, but aso divides the continuous
phase space into a discrete lattice so that chaotic
orbits must collapse to periodic cycles if the time is
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sufficiently long [9-12]. The latter effect of trunca
tion is called the collapsing effect [13]. Statistical
properties of truncated periodic cycles, eg., the ex-
pected period length and expected number of peri-
odic orhits, have been investigated for various chaotic
systems[9-13]. Some phenomenological models, e.g.
random mappings with a single attracting center,
have been proposed to provide a theoretical anaysis
on these statistical properties [13—15].

Discussions of truncation effects on chaotic sys-
tems are currently concentrated on either hyperbolic
or nonhyperbolic autonomous systems. Numerical
simulations with these autonomous systems show
that the mean period of truncated periodic cyclesis a
power function versus truncation error [11]. For these
systems the finite-time Lyapunov exponents have
minimal fluctuation about the Lyapunov exponent. In
this Letter, we discuss dynamical properties of trun-
cated trgjectories for periodicaly driven chaotic sys-
tems, in which the largest nontrivial finite-time Lya-
punov exponent fluctuates about zero to a greater
extent. Such chaotic systems repeatedly show strong
converging dynamics. Compared to the autonomous
systems discussed in Refs. [9—-15], pseudotrajectories
of such nonautonomous systems possess some differ-
ent properties. Various trajectories will converge and
be truncated into a single pseudotrajectory (SPT). If
the driving force is exactly periodic, a rather short
periodic cycle can be obtained, whose period can be
independent of truncation error in some scales.

2. Single pseudotr ajectory

SPTs can typically be observed in systems driven
by a periodic force to oscillate between chaotic and
periodic states. Consider an autonomous system

x(t+1) =F(x(1).8) (€]

with control parameter 8. Suppose chaotic attractors
are obtained for B in the region (g, ;) and peri-
odic attractors are obtained for 8 € (a4, a,). Now let
B be variable and driven by a periodic force:

x(t+1) =F(x(1),8(1))
B(1) = Bo + BiSin(2mft) (2)

with By, B8, > 0. If By — B; € (ag,ay) and By + By
€ (ay,,), then the dynamics of this system alter-
nate between expanding and contracting behaviors.
When, on average, the expanding dynamics are
stronger than the contracting dynamics, the resultant
attractor is chaotic. With a sufficiently low fre-
guency, the time interval that B remains in the
region (ay,a,) during each driving period is aso
long enough. Under long continually converging dy-
namics, various trajectories will be converged and at
last truncated to a single trgjectory once their differ-
ences are smaller than the truncation error. As a
result, an SPT is obtained.

As an example we discuss a periodically driven
logistic map:

X(t+1) =ax(t)(1—x(t)) + Asin(2ft) (3)

with a=3.6 and f=0.005. The system has two
Lyapunov exponents, one of which is always zero,
corresponding to the periodic driving force. Simula
tion results show that chaotic attractors can be ob-
tained when A is dlightly smaller than 0.1178. A
plot of the nontrivial Lyapunov exponent A versus
amplitude A isshownin Fig. 1. Inregion Il (0.1005
< A < 0.115), SPTs are aways observed for trunca
tion error of 1078 In region I, SPTs are seldom
observed while region 1l is a transition region. To
detect an SPT, various trgectories with different
initial conditions x'(0) are generated randomly and
the difference Ax(t) = x(t) —X'(t) was caculated
for x(0) = 0.2. An SPT is defined by the condition
that all Ax(T) numerically go to zero before time
T=10°.

For example, with A=0.11 the SPT can be
obtained before t = 3800. Its dynamics are shown in
Fig. 2. Fig. 2(@ shows the driving force. In Fig.
2(b), the trajectory for x(0) = 0.2 is drawn. Fig. 2(c)
gives the time-7 Lyapunov exponents for 7= 5. The
time-7 Lyapunov exponent A(t) is defined as

tot7—1

V() == ¥ In

t=to

1 tot7—1

=— Y AY1).

(4)

df(x)
dx(t)

When the force Asin(27 ft) is positive, the finite-time
Lyapunov exponents are typically positive and the
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Fig. 1. Lyapunov exponent A versus amplitude A from 0.09 to 0.115. The solid line of Lyapunov exponent is calculated by directly
applying sin(27 ft) as a driving force. The dotted grey line is obtained by applying an exactly periodic force. SPT is seldom observed in
region | and always observed in region I11; region |l is a transition region.

trajectory expands to a large region. When the force
is negative, the exponents become typically negative
and a period-2 structure is obtained. The sign of
A"(t) reflects the diverging or contracting behavior
for time from t to t + 7. Although the value of A™(t)
varies with the choice of 7, the time-5 Lyapunov
exponent adequately characterizes the dynamics of
the present system as shown in Fig. 2. In fact, any 7
with 7 << 1/f can be used to discuss the detailed
properties of trajectories within one driving period.
This is because when the trgjectory is in the diverg-
ing (contracting) region, the time-1 Lyapunov expo-
nents A! and so A"(t) become typically positive
(negative). Fig. 2(d) shows the difference Ax(t) with
time between two trajectories with initial conditions
of x(0)=0.2 and x'(0) = 0.7, respectively. It can be
seen clearly that the difference often decreases when

A"(1) is negative and starts increasing when A™(t)
becomes positive. In the contracting period, two
trajectories have a chance to approach each other.
They are truncated to the same trgjectory at t = 1170.

Now we show that exponentially higher precision
is required in computation to avoid SPT when the
driving frequency becomes lower. Suppose the typi-
cal time interva of the contracting movement is T,.
The dynamics during the interval T, is associated
with time-T, Lyapunov exponent A™. During this
interval a vector with size on the order of the phase
space, i.e. 1, can be compressed to the order of
exp(A™"T.). Definethe critical size |, = exp({A™"T)),
where () means the statistical average for various
contracting time intervals. If the truncating error of
computer is larger than |, various trajectories can be
converged into an SPT. In Fig. 3, simulation results
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Fig.2. Dynamics of SPT: (a) the driving force with A= 0.11, (b)
the tragjectory starting from x(0)=0.2, (c) time-r Lyapunov
exponent with 7 = 5, and (d) the absolute difference between two
trajectories starting from x(0) = 0.2 and X'(0)=0.7. Around t =
1170, Ax(t) numerically becomes zero.

x(t)

Asin(2nft)

about (A™"T, ) versus f are plotted in log-log axes. A
linear fit indicates that

—(ATT) o £ (5)

with k= —1(+0.002). So there is an exponentia
law

l.ocexp(—1/f). (6)

As aresult, at lower driving frequency, an exponen-
tialy higher precision is required in computation to
avoid SPT. With afixed truncation error, SPT can be
more easily observed numericaly for a lower-
frequency periodically driven system.

In fact, the exponential relation of Eq. (6) is
general for the system given in Eq. (2). The low-
frequency means that the driving force amost keeps
constant within a short time interval. Thus the time-7
Lyapunov exponent A"(t,) at time t=t, with 7 <
1/f can be approximated by the Lyapunov exponent

of the autonomous system (1) driven by a constant
force Beons = Bo + B1SinN(27 fty). Notice that the
Lyapunov exponent of the autonomous system (1) is
typicaly negative when B, iS in the periodic
region (ay,a,). This indicates that the finite-time
Lyapunov exponents A7(t) of system (2) typically
become negative when B, + B,sin(27 ft) € (ay, a,).
Thus, the time interval T, isthe timeinterval that the
driving force spends in the region of (a,,a,). Sup-
pose there are k finite-time Lyapunov exponents
A"(t) in thistime interval, i.e. T, = kr. According to
Eq. (4), the time-T, Lyapunov exponent A™ can be
given as

=— Z N(t, +i7) (7)
n| 0
where t, is the beginning time at which the force
Bo + B,Sin(27 ft) runsinto the region (a,, «,). Now,
for a lower frequency f' = pf with p <1, the time
interval is T.=T,/p. Similarly, A" can aso be
given by k finite-time Lyapunov exponents A™ (t)

k-1
= Y A(t+ir) (8)

n i=0
with 7" = 7/p. Here t is the time at which the force
Bo + B1sin(27f't) runsinto (a4, a,). Obviously, the
finite-time Lyapunov exponent A™(t, +i7) is equal
to A" (t, +ir"), since both of them can be approxi-
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Fig.3. Logarithm of —(A"™T,) versus logarithm of frequency f
of sinusoidal force, for severa values of the amplitude A. Here,
the dope of the fitted line is —1 (+0.02).
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mated by the autonomous map driven by the same
constant force By = Bo + BN f(t, +i7)) =
Bo+ BiSNmf'(ty +i7'). As a result, fA"'T, =
fATnT’. Considering the negative sign of A™, Eq. (6)
follows.

3. Numerically periodic SPT

The statistical properties of truncated periodic
trajectories have been discussed in detail for some
one- or two-dimensiona chaotic maps in Ref. [11].
For example, the mean period of the truncated cycle
with truncation error € is as € /2 for the logistic
map X,,,=1—2x2[11]. Soif €= 10"'%, the mean
period is as long as 10°. For a truncated cycle, if its
period is sufficiently long, the resulting density dis-
tribution of pseudotrajectory can approach the rea
invariant density. As aresult the properties of chaotic
system can still be discussed with such a pseudotra-
jectory. In this section we show that for a chaotic
system driven by an exactly periodic force with low
frequency, the period of the periodic SPT may be
short, on the order of 103, and may be independent
of truncation error in some scales.

Suppose the driving frequency w is rational. Then
an integer period T,=n/w can be obtained for a
suitably selected integer n. For system (2), suppose
within time T the SPT is obtained for various trajec-
tories with different initial conditions. Then for func-
tion

X(T+1) =F"(x(t),B(t))
CFLCE(X()B() (9

we have

IX(T+ty)

i " o

for various x(t,). So

X(T+1t,) =G(B(t,).T) (11)

For t,=0and t,= T,T, we have

x(T) =G(B(0).T)

X(T+T,T)=G(B(T,T),T) (12)

respectively. Noticing B(t) = B(t + T,), the follow-
ing equation is obtained,

X(T+T,T) =x(T). (13)

So an SPT is a periodic trgjectory with a period of at
least T,T. The exponential law in Eq. (6) indicates
that, with a sufficiently low frequency, the various
trgjectories for system (2) will experience a long
time of purely converging dynamics during a driving
period. In this case, the trgjectory may be contracted
to the same truncated orbit in each driving period
and so the period of SPT is equa to the driving
period.

First, consider the logistic map driven by a square
function. For the logistic map x(t + 1) = ax(t)(1 —
x(1)), a fixed point x. = 0.65517 - - - is obtained
with Lyapunov exponent A, = —0.105 for a=a, =
2.9. Simulation results show that various traectories
converge to the fixed point x. within 350 iterations.
On the other hand, a chaotic attractor with A, = 0.183
is obtained for a=a, = 3.6. Within 320 iterations,
any difference on the order of 10!’ can approach a
value of 0.1. For these two attractors, the transient
time of a trajectory from any initial point to the
attractor basin should be no more than 400. Now, a
periodic square wave is applied to control the vari-
able a. In particular, a periodically aternates be-
tween a, and a, with time intervals T, and T,,
respectively. If T, and T, are much larger than the
transient time, the finite-time Lyapunov exponentsin
time intervals T, and T, can be approximated by A,
and A,, respectively. The nontrivial Lyapunov expo-
nent A of the system can be estimated by [16]

T, A +ToA,

T,+T, (14)
Let T, =T,=2000. Eq. (14) suggests that the
nontrivial Lyapunov exponent should be 0.039, indi-
cating a chaotic attractor is generated. However,
obvioudly, numerical trajectories always converge to
Xg during each T, timeinterval. So the period of this
periodic SPT is 4000. Furthermore, the period is
independent of truncation error changing from the
order of 10718 to 10~°. Following this periodic SPT,
simulation results show that A = 0.041(+ 0.001).
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The short periodic SPT gives an incorrect density
distribution. Following such an SPT, one cannot
correctly discuss the properties of the chaotic system,
including the Lyapunov exponent. However, it has
been suggested that the collapsing effect can be
prevented by the addition of noise [12,15]. In the
present case, with the disturbance of micro-noise
upon the periodic SPT, an ergodic trgjectory is ob-
tained. Driven by the same periodic force and same
noisy time series, this ergodic trajectory is still an
SPT. However, a reasonable supposition is that the
real invariant density of the system can be ap-
proached by such a ergodic trgectory. Thus, the
statistical properties, e.g, the Lyapunov exponent, of
the real chaotic trgjectory can be approximately re-
produced with it. To approach chaotic ergodicity,
random noise on the order of 10718 is always ad-
ded to the variable x(t). With this process, the nu-
merical result of the Lyapunov exponent is A =
0.039(+0.001).

Now we discuss the Lyapunov exponent of the
example discussed in Section 2. With A= 0.11, the

FPT obtained is periodic with period 2600. To see
this clearly, the SPT trgectory is given in Fig. 4(a)
in the x—0 plane with

6(t+1)=6(t)+fmodl. (15)

In the Figure 20000 points are drawn from t = 10000
to 30000 with x(0) = 0.2. However, rather than a
chaotic attractor, a periodic attractor is obtained nu-
merically. Simulation also shows that the period is
independent of truncation error changing from the
order of 1078 to 10~°. Following such a periodic
SPT, the nontrivial Lyapunov exponent is A =
0.053(+0.001). Following application of noise on
the order of 107! to the system, the resulting
trajectory has a Lyapunov exponent of 0.061 + 0.002.
In comparison, the value of 0.053 has an error more
than 13%. In fact, the simulation results given in Fig.
1 are all calculated with the disturbance of noise in
order to obtain an ergodic trajectory. The Lyapunov
exponent calculated with the periodic SPT is also
presented in Fig. 1 with a dotted grey line. One can
see that the difference of Lyapunov exponents ob-
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Fig.4. SPT in the x—6 plane for Eqg. (3) with a=3.6, A=0.11 and f=0.005. (@) An exactly periodic force is applied. (b) A disturbed
periodic force is applied. In the Figure, 20000 points are drawn from t = 10000 to 30000 with x(0) = 0.2.
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tained from the two kinds of trgjectories is quite
obvious in the region of SPT, region IIl. The consis-
tency of the two Lyapunov exponents in region |
suggests that the real Lyapunov exponent of Eq. (3)
can be approximately calculated with the distorted
periodic force.

Because the finite-time Lyapunov exponent has
large fluctuation about zero, the system is nonhyper-
bolic. The unshadowability of the short periodic SPT
is obvious. A shadowable chaotic pseudotrajectory
must be similar to the true chaotic trgjectory, e.g.
being sensitive to noise and possessing ergodicity
rather than a single periodic cycle with short period.
In the simulation, in order to get an exactly periodic
force, 200 values of the force Asin(2 ft) within a
period are stored in a vector and used repeatedly to
drive the logistic map. If we use Asin(2 ft) directly
in the computer simulation, the obtained time series
of driving force cannot be exactly periodic. Thus,
according to Eqg. (13), an interesting results is that
the SPT obtained cannot be periodic.

4. Conclusion

In this Letter, the numerically truncated trgjectory
for a periodically driven chaotic system is discussed.
With a low-frequency driving force, the dynamics of
the system repeatedly atternate between expansion
and contraction for long stretches of time. Compared
to autonomous systems, the truncated trgjectory of
such a system shows some different properties. The
deeply converging dynamics within a driving period
can contract various trajectories to an single pseudo-
trajectory. An SPT is more easily observed numeri-
caly with a lower frequency driving force. Driven
by an exactly periodic force, the SPT is numerically
periodic. Its period is short and independent of trun-
cation error in some scales. A short period SPT is
obviously unshadowable. It cannot give us correct

properties for the chaotic system. However, a noise-
disturbed SPT can approach the real invariant den-
sity of the system and thus provide reasonable re-
sults. On the other hand, if the driving force is not
exactly periodic, an SPT cannot collapse to a peri-
odic cycle.
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