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Abstract

In coupled chaotic oscillators, the synchronization with weak phase-coherent attractors is different from that with strong
phase-coherent ones. The properties of phase locking for weak phase-coherent attractors are studied with examples. For a small
parameter mismatch, transition to phase locking is close to the position where the second zero Lyapunov exponent becomes
negative and one of the positive Lyapunov exponents becomes zero simultaneously. However, for a large mismatch, it occurs
at a farther position evidently. These results lead to a better understanding of the properties of synchronization in coupled
oscillators. 2001 Published by Elsevier Science B.V.
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1. Introduction

Synchronization of interacting oscillators is of fun-
damental interest for many applications of nonlinear
dynamics in chemistry [1], electronics [2] and biol-
ogy [3]. A complete coincidence of states in the sys-
tems of concern is referred ascomplete or full syn-
chronization [4] while a time-shifted coincidence is
calledlag synchronization [5]. There is alsophase syn-
chronization (PS) [5–12], a phenomenon observed in
a system formed by two coupled chaotic oscillators or
in a single self-sustained chaotic oscillator subject to
external force. This phenomenon usually refers to the
situation that phases of the interacting systems appear
to have a certain relation but the amplitudes remain
chaotic and uncorrelated [11]. PS is an area of recent
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interest as it can help in understanding the synchro-
nization of neuronal activity of remote areas in human
brain [13] and multichannel nonlinear digital commu-
nications [14].

At first, PS behavior is discussed in weakly coupled
chaotic oscillators that typically show weak correla-
tion between their amplitudes. If phase coincidence is
obtained at strong coupling, their amplitudes have a
relatively large correlation. In some papers, the phase
coincidence at strong coupling is also referred to as
PS [15]. For better understanding, the term “phase
locking” (PL) is used in this Letter to describe phase
coincidence regardless of the correlation of ampli-
tudes.

As PL of coupled oscillators leads to various appli-
cations, it is important to find out its properties for var-
iousphase-coherent attractors (PCA) [11,16]. Recent
investigations mainly focus on the properties of PL for
strong PCA [5,15] and so the relationship between the
transition to PL and the corresponding Lyapunov ex-
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Fig. 1. Projections of phase portraits of the single Rössler oscillator. Strong PCA,α = 0.16 in (a) (x, y)-plane and (c)(ẋ, ẏ)-plane. Funnel
attractor which belongs to weak PCA,α = 0.25 in (b)(x, y)-plane and (d)(ẋ, ẏ)-plane.

ponents are not clear for weak PCA. Strong PCA im-
ply that the phase dynamics is relatively regular. In the
power spectrum of one of the two variables that com-
pose this type of attractors, there is a sharp peak on
top of a broadband component. While for weak PCA,
no sharp peak can be found in the spectrum [11,16].
The strength of phase coherence could be quantified
by the diffusion constant defined in Eq. (6). In order to
compare the properties of PL between strong and weak
PCA extensively, a system formed by two coupled
Rössler oscillators is used. This is because the attrac-
tors can vary from strong to weak PCA by adjusting a
single parameter only. The weak PCA of Rössler os-
cillator always appears as a funnel shape, as shown in
Fig. 1(b) [11,16–18]. Its trajectory sometimes makes
a roundtrip around the origin in the(x, y)-plane but
sometimes only a half of it is made. Because of the
irregular trajectory, it is named funnel attractor and
no effective method has been proposed to measure

the instantaneous phase. In this Letter, we propose a
method to measure the phase of attractors whose tra-
jectories have a single direction of rotation, no matter
whether they are phase-coherent or funnel. With this
method, the properties of PL with various PCA can be
investigated conveniently. We find that for a small pa-
rameter mismatch, the synchronization properties of
weak PCA are different from those of strong ones. For
strong PCA, the transition to PL is close to the posi-
tion where the first zero Lyapunov exponent goes neg-
ative [15]. However, for weak PCA, it is near to the po-
sition where the second zero Lyapunov exponent turns
negative and one of the positive Lyapunov exponents
becomes zero simultaneously. We also show that for a
large parameter mismatch and weak PCA, the transi-
tion to PL occurs at a farther position evidently. Fur-
thermore, we take two coupled Lorenz attractors as an-
other example to emphasize that the properties of PL
can be found in a variety of oscillators with weak PCA.
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Finally, some conclusions are obtained. These results
can lead to a better understanding of the properties of
PL for various PCA.

2. Phase locking between two coupled Rössler
oscillators

2.1. Phase measurement for trajectories with a single
direction of rotation

A single Rössler oscillator [19] is considered first:

ẋ = −ωy − z,

ẏ = ωx + αy,

(1)ż = 0.1+ z(x − 8.5),

where the natural frequencyω = 1. The coherence
of the attractor is determined by the value of the
parameterα. Whenα = 0.16, the attractor appears to
have a strong phase coherence, as shown in Fig. 1(a).
However, if α = 0.25, a funnel attractor with weak
phase coherence is observed and is shown in Fig. 1(b).
The trajectory of the funnel attractor is found to
encircle the origin of the(x, y)-plane completely at
some particular moments, but sometimes it performs
this only partially. These irregular phase shifts can be
interpreted as the interruption of phase coherence by a
large fluctuation [16].

It is difficult to obtain the instantaneous phase with
existing phase definitions [11]. Therefore we have to
develop a novel method to measure this value before
investigating the properties of PL at weak PCA. The
phase measurement for funnel attractors could be
developed from a similar definition for attractors with
strong phase coherence. Suppose that an attractor in
the(x, y)-plane has a center of rotation (x0, y0). Then
its phase can be defined as

(2)φT = arctan

(
x − x0

y − y0

)
.

The advantage of this definition is that the phase at
time t is only determined by the state variablesx

and y at that moment and so the whole time series
is not required. However, this definition is still a
function of the center of rotation. If the phaseφT of
a chaotic flow with multiple centers of rotation needs
to be calculated, the center point(x0, y0) in Eq. (2)

should be changed accordingly. This requires the
exact knowledge of the centers of rotation along the
trajectory.

The basic idea of the proposed definition is that the
difference between the nearby pointsx(t) − x0 and
x(t + δt)−x0, rather than the single pointx(t)−x0, is
taken into consideration. Hereδt is an infinitely small
time interval. The purpose of this change is to remove
the center of rotation from Eq. (2). In the(x, y)-plane,
the phase is then measured as

φD = lim
δt→0

arctan

(
x(t + δt) − x(t)

y(t + δt) − y(t)

)

(3)= arctan

(
ẋ(t)

ẏ(t)

)
.

Obviously, for a constant-speed rotation with ampli-
tudeA and angular velocityω, x(t) = Acos(ωt) and
y(t) = Asin(ωt). As a result, the phases under the two
different definitions areφT = ωt andφD = ωt + π/2,
respectively. This shows that the novel definition is
consistent with the phase found by Eq. (2).

The phase value measured using Eq. (3) does not
require the knowledge of the rotation center, but the
curvature of the trajectory with a single direction of
rotation. Comparing Eqs. (2) and (3), it is evident that
if the funnel attractor is analyzed in the(ẋ, ẏ)-plane
instead of the(x, y)-plane, the new plane should con-
tain an attractor with a center of rotation at(0,0). This
is plotted in Fig. 1(d). On the other hand, we can also
use Eq. (3) to measure the instantaneous phase of the
attractor with strong phase coherence. The attractor in
Fig. 1(a) is re-drawn in the(ẋ, ẏ)-plane, as shown in
Fig. 1(c). In this plane, both the strong PCA and the
funnel attractors have the origin as the center of rota-
tion. The only difference is the variation of amplitudes.
In Fig. 1(c), the relatively slow variation of amplitude
corresponds to strong PCA. However, Fig. 1(d) shows
that the variation of amplitude is much faster in the
funnel attractor. Evidently, the measurement given by
Eq. (3) can be used for trajectories with a single di-
rection of rotation, no matter whether the attractor is
strong phase-coherent or funnel. However, this mea-
surement has its limits. For trajectories with multiple
directions of rotation like Lorenz attractor [20], a sin-
gle rotation center cannot be found in the(ẋ, ẏ)-plane.
In specific conditions such as oscillation quenching
caused by very large coupling strength [21], the attrac-
tor converges to one point and evidently Eq. (3) could
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Fig. 2. The time evolution of the phase and phase difference for the
strong phase-coherent Rössler oscillator. (a) The solid and the dotted
lines represent the phasesφD andφT , respectively. They have the
same initial value. (b) The difference of the two phases in (a) versus
time.

not be used. In this Letter, all coupling strength used
in simulations is far from the transition for oscillation
quenching to occur. Therefore, the measurement is al-
ways effective in our numerical simulations.

As both phase measurements (Eqs. (2) and (3)) can
give the phase value for strong PCA, the phase of the
trajectory shown in Fig. 1(a) is calculated using these
two equations respectively. The results are plotted in
Fig. 2(a), with both phases having the same initial
value. In this figure, the dotted and the solid lines
represent the simulation results using Eqs. (2) and (3),
respectively. Their values are so close to each other
that virtually only one straight line appears in the
figure. In order to view their little difference clearly,
the value ofφT − φD is plotted in Fig. 2(b). The
difference keeps a small value within the duration
of simulation. Moreover, the fluctuation has similar
small periods at a large time scale. This implies that
although the two phasesφT andφD do not coincide
microscopically, they have equal average growth rates.

2.2. Properties of phase locking with various
diffusion constant

We now consider two coupledRössler oscillators
[6,19]:

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + αy1,2,

(4)ż1,2 = 0.1+ z1,2(x1,2 − 8.5),

where the natural frequenciesω1,2 = ω0 ± �ω and
ω0 = 1. In particular,�ω is the frequency mismatch
and ε is the coupling strength of the interaction be-
tween the two oscillators.

The phenomenon of PL between coupled oscillators
is considered as|n1φ1 − n2φ2| < const, wheren1, n2
are integers andφ1, φ2 are phases of the two oscilla-
tors. In this Letter, our study is restricted to the case
n1 = n2 = 1 with φ1,2 obtained by Eq. (3).

PL with strong PCA has been investigated exten-
sively [20–23]. However, it differs substantially from
that with weak PCA. We takeα = 0.25 as an example
to simulate some of its statistical properties and plot
the results in Fig. 3. In our simulation, the frequency
mismatch is always set to�ω = 0.02 unless otherwise
stated. The mean (observed) frequency is given by [21]

(5)Ω1,2 = 〈
φ̇1,2

〉 = lim
T →∞

φ1,2(T ) − φ1,2(0)

T
.

In Fig. 3(a),�Ω = Ω2 − Ω1 and simulations are
performed withT = 1 × 105 after neglecting the ini-
tial 1×104 time. If not specified, this condition is used
throughout this Letter. A further increase of coupling
strength makes�Ω → 0 eventually and PL is thus
obtained. At the transition, the coupling strengthε =
εc = 0.172, as found from Fig. 3(a). Note that the tran-
sition to PL is always smeared and observed only as a
tendency, or as a temporary event on some finite time
intervals because the average laminar length increases
exponentially (here, the laminar length is the time
elapsed between two successive±2π jumps) [24].
The four largest Lyapunov exponents are shown in
Fig. 3(b). The transition to PL (εc) is close to the
position where the second zero Lyapunov exponent
becomes negative and one of the two positive Lya-
punov exponents reduces to zero simultaneously. This
is denoted asελ

3. The maximum absolute difference
|�x(t)|max in the x value of the coupled oscillators
is plotted in Fig. 3(c). When the coupling strength in-
creases from zero, the value of|�x(t)|max decreases.
This shows that their trajectories are highly correlated
at the transition to PL.

In order to further uncover the relationship between
the transition to PL and the strength of phase coher-
ence, we introduce the diffusion constantD1,2 that is
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Fig. 3. Some statistical properties of the two coupled Rössler
oscillators versus the coupling strengthε with α = 0.25,ω1 = 0.98
and ω2 = 1.02. (a) The frequency difference�Ω between two
coupled oscillators. (b) The four largest Lyapunov exponents of the
coupled oscillators. (c) The maximum absolute difference|�x|max
of two trajectories with funnel attractors. Here,εc represents the
coupling strength at transition to PL;ελ

4 represents the coupling
strength at the transition where the first zero Lyapunov exponent
becomes negative;ελ

3 represents the coupling strength at the
transition where the second zero Lyapunov exponent becomes
negative and one of the positive Lyapunov exponents reduces to zero
simultaneously.

always used to measure the strength of diffusion [11].
At larget , it is defined by

(6)
〈(
φ1,2(t) − φ1,2(0) − Ω1,2t

)2〉
φ(0)

∼ D1,2t .

Here,〈·〉φ(0) denotes the average value that the simu-
lations are taken at different initial pointsφ1,2(0) but
with constant time durationt . In this Letter, we always
set t = 5 × 103 in the simulations. We calculateD1,2
of the two oscillators withε = 0 and plot the results
in Fig. 4(a). The two curves are close to each other
for they only have a small mismatch of natural fre-
quencies. Fig. 4(b) shows three curves versus the pa-
rameterα from 0.11 to 0.36, i.e., from strong to weak
PCA. From the curves of ln(D1,2), it is evident that
there are two main regions of diffusion constant. One
is ln(D1,2) ∼ −7.5 while the other is ln(D1,2) ∼ −1.5.
Thus the region to the left of the vertical dotted lineκ

corresponds to strong PCA while the right part corre-
sponds to weak attractors. In the left part,εc is close to
ελ

4 when 0.15� α � 0.20. The position ofελ
4 has been

Fig. 4. Some statistical properties of the attractors versus the
parameterα. Here,ω1 = 0.98 andω2 = 1.02. (a) The logarithm of
the diffusion constant ln(D1,2). It is simulated with zero coupling
strength, i.e.,ε = 0. (b) The value of coupling strength at various
transitions. The vertical dotted lineκ indicates the transition from
strong to weak PCA.

located in Fig. 3(b). This is the same as the results
presented in other papers discussing strong PCA [5].
When α < 0.15, the two interactive attractors are in
period whenε increases slightly from zero. Hence, all
Lyapunov exponents are negative. The transition to PL
occurs evidently for parameters larger thanελ

4. When
α > 2.0, i.e., in the right region of the dotted lineκ ,
ln(D1,2) increases rapidly. The strong PCA then be-
comes weak. The corresponding transition to PL also
jumps up to values close toελ

3. The value ofεc as well
as ελ

3 increases with ln(D1,2). This implies that for
stronger diffusion constant a larger coupling for the
transition to PL is required. Whenα > 0.15,ελ

4 main-
tains at a nearly constant value (about 0.045) in both
strong and weak PCA.

The above-mentioned phenomena are explained
briefly as follows: we can rewrite Eq. (4) in terms
of variablesA1,2, φ1,2, z1,2, where A1,2 are ampli-
tudes [5]. For strong PCA,A1,2 varies so slowly that
it can be considered as constant when compared with
the fast variation of the phaseφ1,2. Thus the transition
to PL can be obtained asεc ≈ 2�ω [5]. The simula-
tion results plotted in Fig. 4(b) show thatεc ≈ 0.045
at α � 0.20 and the difference of natural frequencies
is �ω = 0.02. However, for weak PCA, the amplitude
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Fig. 5. The relationship between the mismatch of natural frequencies
�ω vs. coupling strength at transition to PL(εc) and the transition
that the second zero Lyapunov exponent goes negative(ελ

3). The
left to the vertical dotted lineν can be considered as one of
small parameter mismatch while the right part has large parameter
mismatch.

varies far more quickly than for strong attractors, as
observed in Figs. 1(a) and (b). It can no longer be con-
sidered as constant and so the relationship betweenεc

and�ω is different from that for strong PCA. In the
following, we will investigate these relationships by
simulations and analysis.

Taking α = 0.25 as an example, the frequency
mismatch�ω varies from 0.0 to 0.09 as shown in
Fig. 5, with εc and ελ

3 plotted as solid and dashed
curves, respectively. For the region of small mismatch
at the left of the dotted lineν, the values ofεc andελ

3
are close to each other. While for the region of large
mismatch at the right of the dotted line,εc increases
almost linearly with a large slope butελ

3 increases
slowly.

From Fig. 5, it is evident that with random initial
conditions and�ω = 0, two identical Rössler oscil-
lators could not achieve PL untilε = 0.155. How-
ever, for strong PCA, a small increase of the cou-
pling strength from zero is sufficient to make the cou-
pled attractors reach PL. These phenomena are mainly
caused by the different values of their diffusion con-
stant shown in Fig. 4(a).

3. Phase locking between two coupled Lorenz
oscillators

The properties of PL with weak PCA can also be
found in a variety of oscillators. Here, two coupled
Lorenz oscillators are chosen as another example that

Fig. 6. (a) The frequency difference�Ω . (b) The four largest
Lyapunov exponentsλ of two coupled Lorenz oscillators vs. the
coupling strengthη in (u − z)-plane. The vertical dotted lineγ
indicates the transition to PL.

shows the properties of PL. The system equations are

ẋ1,2 = 10.0(y1,2 − x1,2) + η(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 − y1,2 − x1,2z1,2,

(7)ż1,2 = −3.0z1,2 + x1,2y1,2,

with ω1,2 = 37 ± �ω and �ω = 1. Here,η is the
coupling strength. In the(u, z)-plane withu = (x2 +
y2)1/2 [20], the phase can be obtained by Eq. (3).
With η = 0,D1,2 of the two Lorenz oscillators are 0.09
and 0.10, respectively. Evidently, they correspond to
weak PCA. Fig. 6(b) shows the four largest Lyapunov
exponentsλ of the coupled Lorenz oscillators versus
the coupling strengthη. The results of Figs. 6(a) and
(b) also show that the transition to PL is closedελ

3.

4. Conclusions

The properties of PL for weak PCA have been stud-
ied with mutually coupled oscillators. An efficient
method has been developed to measure the instanta-
neous phase of attractors with trajectories in a sin-
gle direction of rotation. Furthermore, we investigate
two coupled Rössler oscillators with a small parame-
ter mismatch and find that for strong PCA, the tran-
sition to PL is always close to the point where the
first zero Lyapunov exponent turns negative. While for
weak PCA, the transition is always near to the position
where the second zero Lyapunov exponent becomes
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negative and one of the positive Lyapunov exponents
becomes zero simultaneously. However, for a large pa-
rameter mismatch and weak PCA, the transition to PL
is much farther away from this position. At last, we
take two coupled Lorenz oscillators as another exam-
ple to show that the properties of PL for weak PCA
can also be found in a variety of coupled oscillators.
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