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Phase synchronization in discrete chaotic systems
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A simple and instantaneous phase definition is proposed for the study of discrete maps by taking the change
of chaotic signal at each iteration time as a vector. With such a definition, an exact phase can be calculated at
any iteration time for any scalar signal or two-dimensional vector of interest. As examples, the phase synchro-
nization behavior is discussed for a two-dimensional globally coupled map lattice and a one-way coupled map
lattice.

PACS numbd(s): 05.45—a, 47.54+r

Recently, the concept of phase, as well as phase synchrese can simply les;(t) =t. The definition of the phase vari-
nization (P9, has been generalized to the study of chaoticable ¢(t) in Eq. (1) indicates that the chaotic signal at time
systemg1,2]. In particular, PS has been studied in nonlineart is taken as the center of that at tim& 1. In order to make
neural[3,4], cardiac[5], and ecological systen{$,7]. It is  the phase continue to increase in a specific direction, the
also observed in oscillations between respiratory and cardigategerm(t) is chosen as
rhythms[5] or between brain activity and the signals from
the flexor musclg3]. The subthreshold chaotic oscillation of .
electrically coupled inferior olivary neurons vitro has also m)+1 if s(t+1)<e(1) t=123
been examined from the view of B8]. The results of these m(t) otherwise ' =~ T
studies suggest that PS plays an important role in the behav- (€)]
ior of chaotic systems.

The PS of autonomous continuous-time systems is usually .
defined as the appearance of a certain relation between t th m(1)=0. . _ o -
phases of the interacting systems while the amplitudes re- 1 N€ mechanism caused by this definition is shown in Figs.
main chaotic and are, in general, noncorrelated. As many(® and(b). In Fig. 1(a), s(t) is a vector on the, —s, plane
systems under study are discrete-time systems, it is importaifile I is a measure of the length of this vector. The phase is
if the concept of phase can be extended to discrete-time majjadependent of. This is further illustrated in Fig. (b) in
so that their PS behavior can be investigated. In F8f.PS which the starting points of all the vectors are at the origin.
has been discussed for discrete maps by checking if the syshus our phase definition only concerns the angle between
tem scalar signals simultaneously show local maxima ofn€ current vector and tf axis and does not depend on the

minima. With this process, the phase is only defined at th&fngth of the vector. With this process, the PS of discrete

local extremes of scalar signals and does not apply to muliMaps is defined as the appearance of a certain relation be-
dimensional vectors. tween the phases of the coupled maps while the distances

In this paper, a simple and instantaneous phase definitio€tween them remain chaotic. . .
is proposed for the study of discrete maps. With such a defi- [N the rest of this paper, the PS phenomenon in two typi-
nition, an exact phase can be calculated at any iteration timg?! Systems is investigated. In the first example, we recon-
for any scalar signal or two-dimensional vector of interestSider the PS states of the global coupled map lattices studied

As a result, PS can be discussed in a more flexible and quatf? Ref.[8], where the signal of interest is a scalar. Simulation
titative manner. results show that our definition of phase is consistent with

We first consider a discrete magt +1)= If(i(t)) where that in Ref[8]. In the second example, we examine the PS in

(1) = [X1(1) Xa(1), .. xn(1)] IS the state vector ank is the two one-way <_:oup|e_d map lattices, where the signal of inter-
dimension of the map. The phase of a two-dimensional vec(-aSt IS a two-dimensional vector.
P P Example 1.We first consider an ensemble Nfcoupled

tor in thes, —s; plane is defined as one-dimensional map lattices, each formed Ibylogistic

m(t+1)=

S,(t+1)—s,(t) maps[8]. In this system, the state, of the kth map &
P(t+ 1):arcta76 m) (1) =1,..L) intheith lattice §=1,...N) evolves through itera-
1 1 tions according to the following formula:
()= (1) +2mm(t); 2 A o o
K(t+1)=(1—2e1—2e,) fl (X (1)) + e fl (x4 (t

i is the lattice sitef is the iteration time, andV(t) is the X1+ 1) =(1=281—2¢) fi(xi(1) + 81 fi (X1 (1))
phase value. The signatg , can be any linear combination +efi (X, 1 (1) +eofl(MIT(1))
of the elements if(t), i.e.,s;, ,= =N ;al%; with al?e R. If S
we want to discuss the phase of a scalar signal, s;t), +eofi(MITA(1)). 4
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FIG. 1. The mechanism caused by the proposed phase defini- 3.8
tion. (@) ¢(t), w(t+1), ¥(t+2), andy(t+3) are the phase states g:gz
of the pointss(t), s(t+1), s(t+2), ands(t+3) on thes;—s, Q327
plane whiler is the distance between two pointb) All the phase %g:
states are considered at a specific direct@munterclockwisgwith 2.6 ]
respect to the origin. %3 >
T T T T T T T T
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In Eq. (4), &1 ande, are the coupling parameterf, is the £,
logistic map defined byf | (x)=ux(1—x) with 0<pu,<4
. L ) i . FIG. 2. Phase phenomenon among the global sigrialse,

[8], and M'(t) = (1L) = x(t) is the mean field of théth  yersys the average frequencifs with £;,=0. Regionw corre-

. . k=1 sponds to the two clusters of the PS phenomenon. The step size is
lattice at timet. . . Ae,=0.5x10"3. (b) An enlargement of regiom with Ae,=0.5

If £,=8,=0, Eq. (4) describes the dynamics &ixL X104, (c) &, versusQ with £,=0.021 andAe;=0.5X 10" %,
independent logistic maps. However, df#0 and £,=0,
this system can be considered as a collectioN @fidepen- s, (t)=t representing the iterating time argd(t)=M(t).
dent one-dimensional lattices of logistic maps. The maps argnhe average frequency is defined@s= y;(t)/t with t—o
coupled within each lattice by means of a diffusive term.[1]. |n computer simulationg,= 5000 is large enough to ob-
Furthermore, ife,# 0, each lattice is coupled to its nearestigin a precise value db. Thereforet is always set to 5000 in
two lattices with the mean field. For all of the elementsthe calculation of) unless otherwise specified. First we let
within a lattice, the values of such couplings are the same;, =0 ande, is allowed to increase from 0 to 0.22 in a fixed
e.g. I'(t)=g,[ fLl(M' (1)) +Fi (M (1))]. step size. A plot of); versuse, is given in Fig. Za). If two

Due to the coupling ofl™', the collective PS can occur or more signals have the same value(hfthey are consid-
between the mean fieldd'(t) and M/(t) (i#]) while all  ered to be in PS state. The iterations start from random initial
the mapsx,(t) and x{(t) (k=1,...L) are uncorrelated to conditions. The initial 1000 iterations are omitted and the
each othef8]. It has also been observed that there are twgphases oM in the subsequent 5000 iterations are calculated.
PS clusters of lattices. In each PS cluster, the mean fields ¢f more than 40 signals dfl have the same value 61, the
lattices simultaneously show local maxima or minima. Withpoints are shown in black. Otherwise, they are plotted in
our phase definition, this phenomenon can be clearly obgray. The phase begins in an unsynchronized state. When
served. Furthermore, the phase states can be calculated is-in the neighborhood of 0.02, there is a narrow regioim
stantaneously at any discrete time. This characteristic of owvhich all the mean field& show two clusters. It indicates
phase definition allows for a more detailed analysis of thehat there are two clusters of PS states. This phenomenon
system. will be discussed in detail in the following paragraph. A

All the results presented here correspond to the conditiofurther increase i, causes all the mean fields to be desyn-
that u=4, N=L=100. The phase statg(t) of the scalar chronized. Where,>0.04, most of the fields begin to
mean field M'(t) is calculated using Eqs(1)—(3) with converge to a cluster of synchronization, except some lattices
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indicated by the gray points. Whes, exceeds 0.13, the @ 400
average frequencies of most signals approach zero. From this 350 3
figure, we find that the PS in discrete maps is different from 300
that in autonomous systems: in discrete map, alternating in- %gg‘.
tervals of PS or non-PS phenomenon can be observed as the 150 ]
coupled strength is increased. However, in the autonomous %0 150
system, there exists a critical threshold of the coupling 50 ]
strength to switch incrementally from non-PS to PS to full 01 c=0.06
synchronizatiorj 10]. l‘gg ] =0.08
The regionw in Fig. 2(a) is a region of weak synchroni- [ S e
zation [8]. An enlargement of this region can be found in 200 400 600 800 1000
Fig. 2(b). With the increase of,, the system evolves from t
the unsynchronized state to two clusters of PS states and then 0.60
back to the unsynchronized state. Our results are consistent 1
with those reported in Reff8] but provide a clearer overview 0.55 +
of the characteristics of PS. ’, T
We further investigate the two clusters of PS states by 0.50 4
raising the value ok,. Let £,=0.021 ande; is increased 0.45_'
from 0 to 0.022. The simulation results are shown in Fig. ]
2(c). In this figure, it is clearly shown that the two-cluster PS 0.40 -
phenomenon is destroyed by the increase;0f This implies

T T T T T T
that an increase in coupled strength can destroy the PS phe- 0.39 042 045 048 051 054
nomenon among mean fields. x

Example 2.The one-way coupled map lattices have been FIG. 3. Plots of simulation results with two one-way coupled

investigated extensivelj9]. The PS behavior between two map lattices(a) The inner plot shows one of the attractors on the

two-dimensional vectors is discussed here. The map latticgs : ; ;
. —X, plane while the outer plot is phase differenéét) versus
are described by L% P P P )

time t at different values of coupled strength) The trajectories on

ther,—r, plane withc=0.06.
X (t+1)=(1=e)f1(x (1) Iy P

+e1f1 (X1 (1) +c(Xq (1) =y (1)), (5) However, as the trajectory of_the discrete map is always
formed by a large number of discrete dots without any rota-
yi(t+1)=(1—e,)fo(x(t)) tion, there is no such restriction.

In order to investigate the characteristics of PS, a plot of
+eafo(Xiva(D)+clya() —xi(t)),  (6)  the trajectories on the,—r, plane is shown in Fig. 3b)

_ _Wwith ¢=0.06. Herer, , are the distances between two iterat-
wherei € (1,2,...N) andc represents the strength of coupling ing points, as shown in Fig. (a). If the two coupled map
between the two nonidentical systems. The parametgrs |attices are in full synchronization, there will be a straight
ande, represent the strength of coupling among lattices inine corresponding to,=r, in the plot. However, this is not
the two systems, respectively. Here we chod$e 10, found and so the two systems are in PS state only.
f1(X)=a1x(1-X), and f5(X)=a,x(1-X) with a;=3.7, The Lyapunov exponents are calculated and plotted for
@,=3.8, ande;=¢&,=0.6. this example because they can reflect how the PS manifests

In this example, the phasg,(t) is defined for the two- itself in a chaotic systenil]. Figure 4a) shows the two
dimensional vectors on the,—x, plane, i.e., withs;=x;  largest Lyapunov exponents; and \, of the two coupled
ands,=X, in Eq. (1); while #,(t) is on they,;—y, plane.  map lattices of Eqg5) and(6) against the coupling. Figure
Note that similar results are obtained with different choices

of s; ands,. The initial condition of the two one-way 0.20

coupled map lattices is randomly set. After the first 10 000 0.15

iterations are omitted, the phase differenéét)=,(t) 0.10

—i,(t) is calculated and plotted in the outer part of Fig. Mfh, 0.05

3(a). When ¢c=0.01, the system is in an unsynchronized 0.00 ]

state. But whenc=0.06, the two coupled map lattices 0.08 ]

achieve PS. However, this synchronization cannot be main- 0.04 ]

tained if ¢ continues to increase. For example, when A0 0'00 1

=0.08, the PS is destroyed and the phase difference in- I B

creases to negative direction. In the inner part of Fig),3 0044 1]
the trajectory of Eq(5) on thex;—x, plane withc=0 is 0.00 0.02 004 006 008 0.10

plotted. Although the PS behavior is generalized from ¢

coupled chaotic oscillators to coupled maps, there is a differ- F|G. 4. Plots of simulation results with two coupled map lat-
ence between these two kinds of systems. In order to definges.(a) The two largest Lyapunov exponents and\ , of the two
the phase, the trajectory of each coupled chaotic oscillator isoupled map lattices, an#) the average frequency differenaeQ)
normally required to have only a single rotation cerfe?]. vs the couplingc.
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4(b) is a plot of the average frequency difference of the twodiscrete time. With such a definition, we show that PS can
phases versus the couplimg Here the average frequency emerge in the collective behavior of an ensemble of chaotic
difference is defined adQ=Q;—Q,=(¢;— ,)/t with t  coupled map lattices due to the mean field interaction. One-
—o. Similar to the calculation ofQ, t=5000 is large Or two-cluster PS phenomenon is observed clearly with weak
enough to obtain a precise value. Whefd—0, it indicates ~ coupled strength. The results are consistent with those ex-
the occurrence of PS between the two vectors. From thected from an existing phase definition based on the statis-
relations between Figs(d@ and (b), it can be found that PS ticS extracted from the time series generated by the system
always corresponds to two largest Lyapunov exponents aét_erat|ons[8]. Fur'ghermor_e, the investigation on the PS phe-

ymptotically approaching zero. For example, wher0.06, nomenon.of two interacting one-way coupled systems shows
the s;zstem is in PS and thg calculation shows that5.3 }_@?pif&l)?ﬁgﬁéﬁg \Ifr\)éerhrgstee?gz'n (ﬂﬁ; ttrr:: Igga:));lselio?;-
X10™" and\,=—4.96x10 °. On the other hand, non-PS '

S enon not only corresponds to weak coupled strength of the
is indicated by the case when both of the two larges y b P g

- two interacting systems, but also relates to the weak chaotic
Lyapunov exponents are positive and large. Therefore the PSaies of the systems.

phenomenon in discrete maps is based on weak chaotic
states. In strong chaotic states such as hyperchaotic states,The authors would like to thank William C. Stacey for a
the two interacting systems cannot achieve PS. critical reading of the manuscript. This work was supported

In conclusion, a definition of phase is given for any scalarby the Strategic Research Gra@rant No. 7000778pro-
signal or two-dimensional vector of the discrete map at anwided by the City University of Hong Kong.
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