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Intermittent phase synchronization of coupled spatiotemporal chaotic systems
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Phase synchronization is studied with a discrete system formed by two coupled map lattices, in which phases
are measured in two-dimensional vectors. Simulation results show that by imposing external coupling between
the two lattices, phase synchronization can be found in all two-dimensional phase planes between them. When
the system is approaching the phase synchronizing state, unstable phase synchronization is observed. This is
referred to as intermittent phase synchronization that appears when the trajectories on two interacting phase
planes have opposite directions of rotation but with only a small phase difference. The intermittent phase
synchronization could also be observed in coupled autonomous systems with diffusive attractors although their
phase concepts are inconsistent. Our results show that the intermittent phase synchronization of both discrete
and autonomous systems relates to the diffusion or the complexity of the attractors.
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I. INTRODUCTION

An interesting and practically significant phenomenon
large ensembles of chaotic maps is the synchronization
connected oscillators@1#. Chaotic synchronization is a fun
damental problem in theoretical physics with applications
many areas of science and technology. Various types of
chronization including complete synchronization~CS! @2#,
lag synchronization@3#, and phase synchronization~PS! @4#
have been observed.

PS has been studied not only for coupled continuous c
otic systems, but also for the discrete ones. Kaneko@5# con-
sidered the phase of discrete systems as ‘‘up’’ and ‘‘dow
of data in time series. This phase concept has then attra
recent research interest@6–8#. If two chaotic time series have
the same trend of ‘‘up’’ and ‘‘down’’ movement in the
course of iteration, PS is considered to have been achie
@7#. In other papers, the phase is also defined as the l
‘‘maximum’’ and ‘‘minimum’’ of the time series@8#. A defi-
nition of weak PS requires that two series have the sa
number of local ‘‘maxima’’ and ‘‘minima’’ over a long pe-
riod of time, but these turning points are not necessary
occur simultaneously. In order to investigate PS in discr
systems quantitatively, the phase of a discrete system is
fined in two-dimensional~2D! phase plane and is distin
guished by the rotation direction in the course of iterat
@9#. It is shown that the discrete PS phenomena can be
plied to symbolic encoding as well as other engineer
fields @7,8#. Therefore, it is important to study PS in discre
systems.

From the investigation of coupled map lattices~CMLs!, it
has been found that phase synchronizing states can emer
the collective behavior of an ensemble of CMLs as a re
of nearest-neighbor@7# or mean field interaction@8#. How-
ever, the characteristics of phase difference between two
teracting CMLs have not been investigated in detail. In t
paper, we will investigate the PS phenomenon in coup
spatiotemporal chaotic systems. Our simulation results s
that by imposing a certain external coupling, PS can
1063-651X/2001/64~1!/016212~7!/$20.00 64 0162
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found for various pairs of variables between two lattice
Within some coupling regions, unstable PS that exhibits
characteristics during long intermittent time windows occu
Therefore it can be considered asintermittent phase synchro
nization ~IPS!. The mechanism of this phenomenon will b
discussed in detail. Furthermore, we use two coupled cha
oscillators to show that IPS phenomenon could also be fo
in autonomous chaotic systems with diffusive attractors
though the phase concept is inconsistent with that in disc
systems.

This paper is organized as follows. In Sec. II, the ba
model of two interacting CMLs is introduced. Moreover, th
phase definition for discrete chaotic systems, the criterion
weak PS and the method for calculating the maximum a
tation will be stated. With an increase of coupling streng
the phenomena of non-PS, PS, and IPS could be found.
III is devoted to the discussion of IPS. The dynamical ana
sis of IPS is presented in detail in Sec. IV. Section V brie
describes the IPS in autonomous chaotic systems. Fin
conclusions, are drawn in the last section.

II. BASIC MODEL AND PHASE OF CMLs

In this paper, we will use two CMLs@10#, each with
length N, to construct a discrete chaotic system for inves
gating PS. The first lattice is defined as follows:

xi~ t11!5~12« i2c! f 1„xi~ t !…1« i f 1„xi 11~ t !…

1c@xi~ t !2yi~ t !# ~ i 51, . . . ,N!,

xN11~ t !5x1~ t !, ~1!

while the second one is

yi~ t11!5~12« i2c! f 2„yi~ t !…1« i f 2„yi 11~ t !…

1c@yi~ t !2xi~ t !# ~ i 51, . . . ,N!,

yN11~ t !5y1~ t !. ~2!
©2001 The American Physical Society12-1
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Each lattice is called an one-way coupled ring lattice@11#.
The parameterc is the interaction between the two CML
and so it is named the external coupling. The parameter« i is
the coupling among lattice sites within each CML and
referred to as internal coupling. Moreover, the functio
f 1(x) and f 2(y) in the two CMLs can be general one
dimensional discrete chaotic maps.

As the dimension of each CML isN, the number of pos-
sible 2D phase planes in each lattice isN(N21)/2. A given
plane xi2xj ~or yi2yj ! can be represented by~i,j! or a
unique numberpi , j calculated by

Pi , j5
~ j 21!~ j 22!

2
1 i ~ i , j !. ~3!

Let si ( i 51,2) be the two variables on a given phase pla
The instantaneous phase on this plane could be defined a@9#

f~ t11!5arctanS s1~ t11!2s1~ t !

s2~ t11!2s2~ t ! D ,

c~ t !5f~ t !12pm~ t !. ~4!

In order to make the phase increase monotonically in a s
cific direction, the integerm(t) is chosen as

m~ t11!5H m~ t11! if f~ t11!,f~ t !

m~ t ! otherwise,
~5!

t51,2,3, . . . , with m(1)50. Herei is the lattice site,t is the
iteration time, andc(t) is the phase value.

As the phase of a chaotic system is well defined, one
easily calculate the phase differencec i , j @x#(t)2c i , j @y#(t) be-
tween the corresponding oscillators in 2D phase planexi
2xj and yi2yj in the two CMLs. If the phase differenc
does not grow with time and remains bounded, we have a
phase locking and generally

uc i , j @x#~ t !2c i , j @y#~ t !u,~const! i , j . ~6!

We observe that small values of (const)i , j indicate strong PS
states. In order to facilitate the investigation of the stren
of PS, d i , j is set as the maximum value ofuc i , j @x#(t)
2c i , j @y#(t)u at any iteration from 1 toT ~whereT→`!. By
this means, the phase locking states can be characterize
d i , j directly. The phase states can also be reflected by
mean frequency defined as@12#

v i , j5^ḟ i , j&5 lim
t→`

c i , j~T!2c i , j~0!

T
. ~7!

PS is achieved when the frequency differenceuv i , j (x)
2v i , j (y)u5Dv i , j→0.

The two CMLs may achieve complete synchronizati
with a certain external coupling, even when the start po
are different. Complete synchronization means thatxi(t)
5yi(t). Therefore, the mean absolute amplitude differen
of the two CMLs is given by
01621
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N (
i 51

N

uxi2yi u D ~8!

This parameter can be used to detect whether the p
planes in concern exhibit complete synchronization or no

Let the two functions in Eqs.~1! and~2! be logistic maps
with different initial conditions, i.e.,f 1(x)5m1x(12x) and
f 2(y)5m2y(12y). If not specified, the parameters chos
are m15m254 and « i50.11(0.1/N)( i 21), where i
51, . . . ,N andN550. This implies that Eqs.~1! and~2! are
two identical CMLs and the internal coupling« i ranges from
0.1 to 0.2 at equal intervals. The different values of« i facili-
tate the identification of the lattice sitei from others. All the
simulation results reported here are obtained from a tota
T553104 iterations, with the first 13104 transient itera-
tions omitted.

The simulation results correspond to 0.05<c<0.18 are
shown in Figs. 1~a! and 1~b!. With an increase of externa
coupling, Dv i , j as well asd i , j are found to have obvious
jumps referred to as IPS that may help in developing n
features of phase synchronization in discrete chaotic syste
When c.0.107, IPS vanishes and PS is obtained. Furth
more, whenc.0.125, PS on some of the phase planes

FIG. 1. A plot of ~a! the frequency differenceDv i , j , ~b! the
maximum agitation of phase differenced i , j , and ~c! the mean ab-
solute amplitude differenceA vs the external couplingc in the range
0.05,c,0.18. In ~a! and ~b!, one dot represents each~i,j! plane.
2-2
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destroyed by a jumping feature and the system enters
again. Asc approaches 0.178,A50 and the two lattices are
in complete synchronization.

The IPS phenomenon at various parameter values is
erated and shown in Fig. 2~a!. When the parameterm (m1
5m25m) varies from 3.5 to 4.0, some regions correspond
to IPS are found to have a long band shape. This shows
IPS can be found at various parameter values. The nar
region between the IPS and CS regions is the transition b
Details of Fig. 2~b! as well as the dynamics that cause IP
will be discussed in Sec. IV.

III. INTERMITTENT PHASE SYNCHRONIZATION „IPS…

The jumping phenomenon occurred in the frequency
ferenceDv i , j and the maximum agitationd i , j is a character-
istic of discrete interconnected chaotic systems. In orde
analyze this feature in detail, some further simulations
performed and their results are shown in Figs. 3~a! and 3~b!.
From these figures, there are several layers of points foun
IPS. For convenience, we label the layers asL(k)(k
51,2,3, . . . ) from bottom to top. Only the four bottom lay
ers are shown in Fig. 3~b!. The dashed lines mark thekp
levels. The jumping phenomenon found in Fig. 3~a! is
mainly caused by the jumping agitation shown in Fig. 3~b!.
The maximum agitation is directly related to the strength
PS or non-PS. Basically, whenDv i , j→0 ~corresponding to
PS!, the correspondingd i , j may distribute in all layers. In
particular, phase locking~maximum agitation under PS! in

FIG. 2. Phase diagram of Eqs.~1! and ~2!: The parameterm
changes from 3.5 to 4.0 in steps of 0.01. The regions correspon
non-phase synchronization~non-PS!, intermittent phase synchroni
zation ~IPS!, phase synchronization~PS!, and complete synchroni
zation~CS! are marked accordingly. The area between the IPS
CS regions is the transition band.~a! Identical CMLs with param-
etersm15m25m. ~b! Nonidentical CMLs with parametersm15m
andm25m20.01.
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the same layer shows approximately the same strength o
Moreover, lower layers correspond to a stronger PS t
upper ones. For the nonsynchronization region whereDv i , j
.0, the correspondingd i , j has a distribution of values from
L(2) to upper layers. For example, inL(2), thelargest value
of the frequency difference allowed isDv i , j,3p/T'1.8
31023 within our time scale of simulations. The nonsy
chronization planes whosed i , j locate inL(2) correspond to
the state closest to PS. However, the correspondingDv i , j
.0 and so it can only be considered as non-PS accordin
Eq. ~7!. The jumping phenomenon in the non-PS region cl
est to weak PS is interesting. Its strength needs to be m
sured. As a result, it is termed the IPS state.

IPS can be described as

v i , j8 5^ḟ i , j&DT5
f i , j~T2!2f i , j~T1!

DT

and

uv i , j8 ~x!2v i , j8 ~y!u5Dv i , j8 →0, ~9!

whereDT5T22T1 is the long time window named lamina
length. This term replacesT→` in Eq. ~7!. Here, the lami-
nar length is the time elapsed between two successivep
jumps@13#. If the two phase planes are in a nonsynchroniz
state (Dv i , j.0) whenT→`, but occasionally showDv i , j8
→0 during different intervalsDT, their relation can be con
sidered as IPS whenDT is very large. This kind of 2p jump
is more likely to be the result of unstable PS. The pha
difference can be considered as locked during most of
long iteration, but bursts 2p intermittently.

The difference between non-PS and IPS is illustrated
Figs. 4~a!–4~c!, which show the phase difference in th
course of iteration on three phase planes~30, 42!, ~23, 49!,

to

d

FIG. 3. A plot of ~a! the frequency differenceDv i , j , ~b! the
maximum agitation of phase differenced i , j on each phase plan
pi , j , ~only the four bottom layers are shown!. The external coupling
is c50.13 while the parameters arem15m254.
2-3
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and ~18, 42!, respectively. Figure 4~a! corresponds to the
external couplingc50.05. There are nonp jumps as in Figs.
1~a! and 1~b!. The phase difference increases irregular
While Figs. 4~b! and 4~c! are the simulation results of IP
for c50.13, theird i , j are respectively in theL(2) andL(4)
bands marked in Fig. 3~b!. We find that the laminar length
can be very large. For example, the two PS windows in F
4~c! have durations of 28 966 and 21 034, respectively.

IV. DYNAMICAL ANALYSIS

In this section, we first develop a simple method to m
sure the IPS. According to Fig. 3~b!, suppose thatp(L( i )) is
the number of phase planes distributed in the regionL( i ).
We now define the IPS ratioa as

a5
2

N~N21! (i 51

`

p„L~ i !…. ~10!

Evidently, the PS ratiob corresponds to the special ca
that only the first regionL(1) is considered is given by

b5
2

N~N21!
p„L~1!…. ~11!

FIG. 4. A plot of the phase difference vs iterating time on d
ferent planes of two CMLs at various external couplingc and m1

5m254. ~a! plane ~30, 42! with external couplingc50.05; ~b!
plane~23, 49! and ~c! plane~18, 42! with c50.13. In ~c!, h is the
agitation in one laminar length.
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When a5b'1 and their corresponding amplitudes a
nearly independent, the system is in PS. On the other han
a'1 andb,1, it is in IPS. Note that this method could on
reflect the relationship between IPS and PS approximat
The reason is that from the above analysis, several dot
L( i ) ~wherei .1 andDv i , j→0! also belong to PS althoug
the synchronization is weak. As we do not care about
exact value ofa andb, and the synchronizing states are on
measured statistically, the simple approximate method is
ways effective in analysis. By this means, the phenomen
Fig. 1~b! could be described by the curves ofa andb shown
in Fig. 5~a!.

On the other hand, different properties such as PS and
could be found at different external coupling strengths. It
important to uncover the dynamical mechanism behind th
The direction of iteration may help in this. In order to cha
acterize the transitions quantitatively, we represent the di
tion of iteration in every unit of lattices~i.e., ‘‘up’’ or
‘‘down’’ ! as binary symbols~i.e., ‘‘1’’ or ‘‘0’’ !. If the binary
symbols of one unit are 10101010 . . . at t51,2,3 . . . , the
chaotic behavior is changed regularly and is considered
simple chaos. However, if the binary symbols sho
011101001, the output is complex chaos@7#. We will show
that IPS corresponds to a relatively weak complex chaos
PS always corresponds to simple chaos. Here, we only s
the analysis for Eq.~1!. The corresponding calculation usin
Eq. ~2! is the same. The quantitative characterization of
ith unit at some timet is shown as follows@7#:

g i
x~ t !5H 1, if xi~ t !/xi~ t21!.1,

0, otherwise,
~12!

whereg i
x(t) is named the phase series. An average abnor

ratio s x could measure the strength of complexity@7#:

sx5
1

T (
i 50

T
1

N (
i 51

N

s i
x~ t !,

FIG. 5. A plot of ~a! the IPS ratioa and PS ratiob; ~b! the
average abnormal ratios. The area between the IPS and CS regio
is the transition band. The external coupling strengthc varies from
0.0 to 0.2.
2-4
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where

s i
x~ t !5H 1, if g i~ t !5g i~ t21!

0, otherwise.

Then

s5~sx1sy!/2, ~13!

wheresy is the average abnormal ratio of Eq.~2! and s is
the corresponding mean value between Eqs.~1! and~2!. We
take a simple example to show the relationship betw
g i(t) and s i(t). If the binary series of thei th unit read
101011001̄ , s i(t) becomes 00001010̄ . Hence, the cha-
otic behavior in the iterated systems will be denoted
simple chaos ifs50. It is classified as complex chaos ifs
.0 @7#. Figure 5~b! shows the temporal evolution of th
average abnormal ratio with the increase of external coup
strength. Whens50, it corresponds to PS region. While th
value ofs agitates round 0.01 approximately, IPS pheno
enon is observed in the dynamics. Ifs.0.02, it is the
non-PS region. In this regard, the IPS always correspond
weak complex chaos. In CS region, although the abnor
ratio keeps strong agitation and the weak complex chaos
appears, the strong external coupling pushes the two CM
to CS. In Fig. 5, the area between regions IPS and CS sh
PS phenomenon. However, as this narrow region co
sponds to the rapid reduction of the average amplitu
shown in Fig. 1~c!, it belongs to a strong correlation of in
teracting amplitudes. Thus, it could be considered as tra
tion region from IPS to CS.

In a single unit of the lattice, the simple chaos in P
region indicates that the unit regularly changes betw
‘‘up’’ and ‘‘down.’’ No two successive ‘‘up’’ or ‘‘down’’
movements exist. This mechanism facilitates to form t
regions divided by a narrow gap in pattern of temporal e
lution of the unit’s iterations. The trajectory of each m
splits into two regions as shown in Fig. 6~a!. The field be-
tween these two regions becomes a broad gap shown
two dotted lines. The gap size is about 0.1.

The pattern of temporal evolution includes a large g
size that can be utilized for encoding@14#. For example, we
can define a binary partitionS(n) in phase space with ele
mentsS(n)51 whenxi is located in the upper region~i.e.,
.0.75! or 21 whenxi is located in the lower region~i.e.,
,0.65!. The trajectory is encoded according to which pa
tion a point is in. Moreover, the large gap size indicates t
the model will have high noise resistance using commun
tion with chaos techniques. This advantage is importan
communication. Such a symbolic encoding may be ap
cable to dynamic systems and can be discussed using i
mation theory@15#.

The IPS state corresponds to weak complexity of cha
In most cases, the unit regularly changes with ‘‘up’’ a
‘‘down.’’ However, in some cases, two or more success
‘‘up’’ or ‘‘down’’ occurs. Therefore, the pattern of tempora
evolution always appears to have blurry gaps as is show
Fig. 6~b!. At non-PS state, the relatively strong complex
01621
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of chaos causes a disorder of the ‘‘up’’ and ‘‘down
changes. Thus the narrow gap disappears. This is show
Fig. 6~c!.

The above analysis is based on the identical coupling s
tems represented by Eqs.~1! and ~2!. However, in practical
systems, we cannot make all the units identical. Therefo
one may ask what would the output be if Eqs.~1! and~2! are
not identical? To explore this, we investigate the PS and
states with a tiny difference between the value ofm1 andm2 .
Let m15m and m25m20.01. The simulation results with
variousm andc are shown in Fig. 2~b!. When it is compared
with Fig. 2~a!, a significant difference is observed, i.e., th
IPS region is extended evidently. The little difference b
tween the two lattices may be regarded as an effective n
term that increases the degree of disorder in the itera
direction. By this means, the consideration of IPS should
be ignored in practical applications.

This kind of IPS phenomenon may be explained by
mechanism that two phases run into a region where a s
shift of phase difference leads to the opposite rotation dir
tions of the trajectory in the two interacting phase plan
This is shown graphically in Figs. 7~a! and 7~b!. The vectors
X5(xi ,xj ) andY5(yi ,yj ) are the corresponding vectors
the two interacting CMLs. The dashed vectorsX8(t11)
2X(t21) andY8(t11)2Y(t21) are in parallel with the
two solid vectorsX(t11)2X(t) andY(t11)2Y(t). More-
over, ux is the phase betweenX(t)2X(t21) andX(t11)
2X(t) while uy is that betweenY(t)2Y(t21) and Y(t
11)2Y(t). Assume that the two systems have the sa
phase at timet, but possess a nonzero phase difference
time t11. When compared toX(t)2X(t21) and Y(t)
2Y(t21), respectively,X(t11)2X(t) moves in clockwise
rotation while Y(t11)2Y(t) is in counterclockwise rota-
tion. If the agitationuux2uyu,h @where the value ofh is

FIG. 6. Pattern of temporal evolution ofxi with 400 iteration
dots. ~a! c50.12. ~b! IPS state withc50.13 and~c! non-PS state
with c50.
2-5
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shown in Fig. 4~c!#, the two trajectories appear similar
time t11. However, as the phase increases in the same
rection of rotation monotonously@9# according to Eq.~5!, it
is found that the phase in Fig. 7~a! is notux at timet11, but
2p2ux . This corresponds to a jump of approximately 2p.

It is evident that when two systems encounter the sit
tion shown in Figs. 7~a! and 7~b!, there may be a phase jum
of 2p. Under the same condition, if the trajectory of th
phase planes never faces this situation, the planes can e
maintain PS with a certain external coupling. To summar
IPS is referred to as the situation that two trajectories h
similar rotation but in some cases with phase shift in op
site directions. The phase difference is then unstable
may have 2p jumps intermittently.

V. IPS IN AUTONOMOUS CHAOTIC SYSTEMS

Although the phase concepts between autonomous
discrete systems are inconsistent, IPS phenomenon c
also be found in autonomous chaotic systems. For cohe
attractors, when the coupling strength is approaching ph
transition, 2p phase jumps could be found before phase tr
sition and the average laminar length becomes longer. W
this length is so long that no period could be found, this k
of phase slips is considered as IPS@16#. However, as the
attractors are coherent, the IPS region is very narrow. W
the attractors become diffused, such as inducing exte
noise@17# to coherent attractors or using diffusive attracto
@13# directly, IPS could occur with a relative large range
coupling strength.

In this section, we take two coupled diffusive oscillato
such as funnel attractors@12#, as an example to show the IP
between them. The model equation is written as@18#

ẋ1,252v1,2y1,22z1,21«~x2,12x1,2!,

ẏ1,25v1,2x,210.22y1,2, ~14!

ż1,250.11z1,2~x1,228.5!,

FIG. 7. Schematic diagrams showing the region with oppo
direction of rotation on the phase plane~i,j! of the two CMLs.~a!
the vectorX5(xi ,xj ) given by Eq.~1!. ~b! the vectorY5(yi ,yj )
given by Eq. ~2!. The dashed vectorsX8(t11)2X(t21) and
Y8(t11)2Y(t21) are in parallel with the two solid vectorsX(t
11)2X(t) andY(t11)2Y(t).
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where the natural frequencies arev150.98 andv250.99,«
is the coupling strength for the interaction of the two osc
lators.

As observed from Fig. 8~a!, both the attractors in Eq.~14!
are funnel. In most cases, a trajectory makes a trip around
origin in the (x1 ,y1)-plane. However, sometimes it make
only a half of this round trip. These irregular phase shifts c
be interpreted as an effective noise that breaks the ph
coherence@12#. As the trajectory has only a small number
irregular phase shifts, the attractor is considered as a d
sive but relatively weak one.

To investigate the properties of funnel attractors, a ma
difficulty is to obtain the instantaneous phase. Due to t
limit, the properties of funnel attractors were always unco
ered by indirect methods such as the statistical method@12#.
The disadvantage is that only macroscopical properties
be found. In the following, we introduce a method to obta
the instantaneous phase. Then we describe the IPS phe
enon near the PS transition. The instantaneous phasec could
be obtained by@19#

c5arctanS ẋ~ t !

ẏ~ t ! D . ~15!

Equation~15! is suitable for funnel attractors whose traje
tory has only a single rotation direction. As Eq.~14! pos-

e

FIG. 8. Projections of phase portraits and phase difference of
two coupled Ro¨ssler oscillators. ~a! Funnel attractor in
(x1 ,y1)-plane at«50. ~b! Funnel attractor of~a! in ( ẋ1 ,ẏ1)-plane.
It possesses a rotation center at~0,0!. The attractor in (x2 ,y2)-plane
has similar properties and is not shown here.~c! Time series of
phase differenceDc in two coupled oscillators at various values
«. When «50.117, it shows IPS phenomenon. PS seems to h
achieved for the observed time scale when«50.12.
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sesses the kind of funnel attractors shown in Fig. 8~a!, we
can use it to obtain the instantaneous phase. Evidently,
new (ẋ1 ,ẏ1)-plane should contain an attractor with rotatio
center at~0, 0! as shown in Fig. 8~b!. With the aid of Eq.
~15!, the IPS phenomenon could be explicitly found in F
8~c! at «50.117. While at«50.12, it is considered as P
within our time scale of simulations. The average lamin
length increases exponentially when« approaches PS trans
tion @13,16,17#. However, if the diffusion is too strong, suc
as strong funnel attractors@12# or coherent attractors with
large mismatch of parameters@20#, PS as well as IPS ma
not appear.

VI. CONCLUSION

In conclusion, the characteristics of PS between t
CMLs are studied extensively. With an external coupling,
in all 2D phase planes can be obtained. In the route fr
non-PS to PS, the maximum agitation always exhibits thenp
jump phenomenon. In some particular external coupling,
-
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.
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01621
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.

r

o
S
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e

phase difference can appear to be IPS that is caused by
situation where a small shift of phase makes the two tra
tories rotate in opposite directions. This phenomenon co
also be described by weak complex chaos. The PS phen
enon caused by simple chaos may be applied to symb
encoding with strong noise resistance in communicat
while the investigation of IPS may lead to potential applic
tions in engineering control and pattern formation. Furth
more, we demonstrate that the IPS could also be found
autonomous chaotic systems with diffusive attractors. Th
although the phase concepts between discrete and au
mous systems are inconsistent, IPS for both of them rel
to the diffusion or complexity of attractors.
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