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Intermittent phase synchronization of coupled spatiotemporal chaotic systems
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Phase synchronization is studied with a discrete system formed by two coupled map lattices, in which phases
are measured in two-dimensional vectors. Simulation results show that by imposing external coupling between
the two lattices, phase synchronization can be found in all two-dimensional phase planes between them. When
the system is approaching the phase synchronizing state, unstable phase synchronization is observed. This is
referred to as intermittent phase synchronization that appears when the trajectories on two interacting phase
planes have opposite directions of rotation but with only a small phase difference. The intermittent phase
synchronization could also be observed in coupled autonomous systems with diffusive attractors although their
phase concepts are inconsistent. Our results show that the intermittent phase synchronization of both discrete
and autonomous systems relates to the diffusion or the complexity of the attractors.
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I. INTRODUCTION found for various pairs of variables between two lattices.
Within some coupling regions, unstable PS that exhibits PS
An interesting and practically significant phenomenon incharacteristics during long intermittent time windows occurs.
large ensembles of chaotic maps is the synchronization ofherefore it can be considerediagermittent phase synchro-
connected oscillatorgl]. Chaotic synchronization is a fun- Nization (IPS). The mechanism of this phenomenon will be
damental problem in theoretical physics with applications todiscussed in detail. Furthermore, we use two coupled chaotic
many areas of science and technology. Various types of syrscillators to show that IPS phenomenon could also be found

chronization including complete synchronizatiog@S) [2],  In autonomous chaotic systems with diffusive attractors al-
lag synchronizatiori3], and phase synchronizati¢RS [4]  though the phase concept is inconsistent with that in discrete
have been observed. systems.

PS has been studied not only for coupled continuous cha- This paper is organized as follows. In Sec. Il, the basic
otic systems, but also for the discrete ones. Kar{@@on- model of two interacting CMLs is introduced. Moreover, the
sidered the phase of discrete systems as “up” and “down”phase definition for discrete chaotic SyStemS, the criterion for
of data in time series. This phase concept has then attracté¥gak PS and the method for calculating the maximum agi-
recent research interd&—8). If two chaotic time series have tation will be stated. With an increase of coupling strength,
the same trend of “up” and “down” movement in the the phenomena of non-PS, PS, and IPS could be found. Sec.
course of iteration, PS is considered to have been achieve is devoted to the discussion of IPS. The dynamical analy-
[7]. In other papers, the phase is also defined as the loc&iS of IPS is presented in detail in Sec. IV. Section V briefly
“maximum’ and “minimum” of the time serieg8]. A defi- describes the IPS in autonomous chaotic systems. Finally,
nition of weak PS requires that two series have the sameonclusions, are drawn in the last section.
number of local “maxima” and “minima” over a long pe-
riod of time, but these turning points are not necessary to Il. BASIC MODEL AND PHASE OF CMLs
occur simultaneously. In order to investigate PS in discrete ) i )
systems quantitatively, the phase of a discrete system is dcle— In this paper, we will use two CML$10], each with
fined in two-dimensional2D) phase plane and is distin- ength N, to construct a discrete chaotic system for investi-
guished by the rotation direction in the course of iterationd@ling PS. The first lattice is defined as follows:

[9]. It is shown that the discrete PS phenomena can be ap- B
plied to symbolic encoding as well as other engineering Xi(t+1)=(1—ei=0)T1(xi(1)+eif1(Xi (1)

fields[7,8]. Therefore, it is important to study PS in discrete +e[x()-yi(] (i=1,...N),
systems.
From the investigation of coupled map lattid€MLs), it Xn s 1 (D) =%(1) 1)

has been found that phase synchronizing states can emerge in
the collective behavior of an ensemble of CMLs as a resulfyhile the second one is
of nearest-neighbdr7] or mean field interactiof8]. How-

ever, the characteristics of phase difference between two in- yi(t+1)=(1—&;—c)fo(y; (1)) +&;fo(yis (1))
teracting CMLs have not been investigated in detail. In this

paper, we will investigate the PS phenomenon in coupled +elyi(t)—x(t)] (i=1,...N),
spatiotemporal chaotic systems. Our simulation results show

that by imposing a certain external coupling, PS can be Yn+1()=Yyq(1). 2

1063-651X/2001/64.)/0162127)/$20.00 64 016212-1 ©2001 The American Physical Society



J. Y. CHEN, K. W. WONG, H. Y. ZHENG, AND J. W. SHUAI PHYSICAL REVIEW B4 016212

Each lattice is called an one-way coupled ring lat{i¢é]. (a) 20
The parametec is the interaction between the two CMLs

and so it is named the external coupling. The paramster _31'6
the coupling among lattice sites within each CML and is x10 12
referred to as internal coupling. Moreover, the functions A

f1(x) and fo(y) in the two CMLs can be general one- 08

dimensional discrete chaotic maps. l:||!|“|I|ﬁ::=|:=:m::
As the dimension of each CML i, the number of pos- 04 | ||"|"il:=1“'::"'|:i'" -
sible 2D phase planes in each latticeNisN—1)/2. A given 00 e A ——
plane x;—x; (or y;—y;) can be represented bf,j) or a ® il
unique numbep; ; calculated by 84 ‘gi;:ig!:!ﬂ“mn“;!
b
1) [ e
(i-DG(-2 63 i
Pu=t s N o (I
42 ‘ || ” iy
| llll!lll!ll ity -
Lets; (i=1,2) be the two variables on a given phase plane. 21 ||{||Ii’}ﬂ{}{!|lI}H;{;:;::;;;..
The instantaneous phase on this plane could be defing] as L] e
0 i vl o
s1<t+1>—s1<t>) ©
t+1)=arcta) —————|,
A ’6s2<t+1>—sz<t> 02
()= (1) +2mm(t). 4 A
0.1
In order to make the phase increase monotonically in a spe-
cific direction, the integem(t) is chosen as
; 0.0
m(t+1) if o(t+1)<ep(t) T —— . —-
m(t+1)= i (5) 006 008 010 012 014 016 0.18
m(t) otherwise, c
t=1,2,3...,with m(1)=0. Herei is the lattice sitet is the FIG. 1. A plot of (3) the frequency differencdw; ;, (b) the
iteration time, and/(t) is the phase value. maximum agitation of phase differendg;, and(c) the mean ab-

As the phase of a chaotic system is well defined, one capelute amplitude differenc& vs the external couplingin the range
easily calculate the phase diﬁeren{z@j[x](t) _ lﬂi,j[y](t) be- 0.05<¢<0.18. In(a) and(b), one dot represents eagltj) plane.
tween the corresponding oscillators in 2D phase plages
—X; andy;—y; in the two CMLs. If the phase difference 1 T
does not grow with time and remains bounded, we have a 1:1 A=lim T Z
phase locking and generally e 111

B ®

| #1,i0a(D) = i jpyy (D < (consy; ;.. ®)  This parameter can be used to detect whether the phase

We observe that small values of (constindicate strong PS planes in concern exhibit complete synchronization or not.
I

. . 7 Let the two functions in Eqg1) and(2) be logistic maps
states. In order to facilitate the investigation of the strength .~ . — " . . ~
of PS, 6“1 is set as the maximum value dij; j(t) with different initial conditions, i.e.f{(x)=ux(1—x) and

— i (1] at any iteration from 1 ta (whereT—<). By fo(y)=pumoy(1—y). If not specified, the parameters chosen

this means, the phase locking states can be characterized SKF p1=pp=4 and £;=0.1t (0.IN)(i~1), where i

: =1, ... N andN=50. This implies that Eq41) and(2) are
o, directly. The phgse states can also be reflected by thf?/vo identical CMLs and the internal couplirg ranges from
mean frequency defined §%2]

0.1 to 0.2 at equal intervals. The different valueg pfacili-
. g «(T)— i 1(0) tate the identification of the lattice sitdrom others. All the
o =(¢ )= lim —2 2 LR (7)  simulation results reported here are obtained from a total of
P T T=5x10" iterations, with the first X 10* transient itera-
tions omitted.
PS is achieved when the frequency differen|(za'j(x) The simulation results correspond to 0s08<0.18 are
—wj j(y)|=Aw;;—0. shown in Figs. a8 and Xb). With an increase of external
The two CMLs may achieve complete synchronizationcoupling, Aw; ; as well asé; ; are found to have obvious
with a certain external coupling, even when the start pointumps referred to as IPS that may help in developing new
are different. Complete synchronization means thgt) features of phase synchronization in discrete chaotic systems.
=y,;(t). Therefore, the mean absolute amplitude differencéVhenc>0.107, IPS vanishes and PS is obtained. Further-
of the two CMLs is given by more, whenc>0.125, PS on some of the phase planes is
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FIG. 3. A plot of (a) the frequency differencé w; ;, (b) the
maximum agitation of phase differencg; on each phase plane

FIG. 2. Phase dlagra}m of Eqél) and (2): The_ parametey. i j» (only the four bottom layers are showiThe external coupling
changes from 3.5 to 4.0 in steps of 0.01. The regions correspond 2= 0.13 while the parameters arg = u,=4
=0. =p,=4.

non-phase synchronizatiqgnon-P3, intermittent phase synchroni-
zation (IPS), phase synchronizatiofPS, and complete synchroni-

zation(CS) are marked accordingly. The area between the IPS an%ﬁoreover lower lavers correspond to a stronaer PS than
CS regions is the transition ban@) Identical CMLs with param- ' y P 9

etersu;=u,= . (b) Nonidentical CMLs with parameteps, =~ “PPEr ONES. For the nonsynchronization region whiese |
and u,= pu—0.01. >0, the corresponding; ; has a distribution of values from

L(2) to upper layers. For example, liff2), thelargest value

destroyed by a jumping feature and the system enters 1P%f th_es frequency difference allowed Sw;;<37/T~1.8

again. Asc approaches 0.178=0 and the two lattices are X 10~ ° within our time scale of simulations. The nonsyn-

in complete synchronization. chronization planes whosg ; locate inL(2) correspond to
The IPS phenomenon at various parameter values is geff?€ State closest to PS. However, the corresponding;

erated and shown in Fig.(@. When the parametes (u, >0 and so it can only be considered as non-PS according to

= 1,= ) varies from 3.5 to 4.0, some regions correspondindzq- (7). The jumping pheno.menon in the non-PS region clos-

to IPS are found to have a long band shape. This shows th&6t 0 weak PS is interesting. Its strength needs to be mea-

IPS can be found at various parameter values. The narrostred- As a result, it is termed the IPS state.

region between the IPS and CS regions is the transition band. PS can be described as

Details of Fig. Zb) as well as the dynamics that cause IPS

e same layer shows approximately the same strength of PS.

. : : , &i(T2)— ¢ j(Ty)
will be discussed in Sec. IV. o = (i jyar= L) AT L
lIl. INTERMITTENT PHASE SYNCHRONIZATION  (IPS) and
The jumping phenomenon occurred in the frequency dif- lof j(X)— o j(y)|=Aw{;—0, (9)

ferenceA w; ; and the maximum agitatiod; ; is a character-

istic of discrete interconnected chaotic systems. In order tovhereAT=T,— T, is the long time window named laminar
analyze this feature in detail, some further simulations ardength. This term replaceB—« in Eq. (7). Here, the lami-
performed and their results are shown in Figg) &nd 3b). nar length is the time elapsed between two successive 2
From these figures, there are several layers of points found gamps[13]. If the two phase planes are in a nonsynchronized
IPS. For convenience, we label the layers lagk)(k  state Qw;;>0) whenT—c, but occasionally shovxz\wi’J
=1,2,3...) from bottom to top. Only the four bottom lay- — 0 during different interval@ T, their relation can be con-
ers are shown in Fig.(B). The dashed lines mark tHer  sidered as IPS wheAT is very large. This kind of 2 jump
levels. The jumping phenomenon found in Fig@3is is more likely to be the result of unstable PS. The phase
mainly caused by the jumping agitation shown in Fi¢p)3  difference can be considered as locked during most of the
The maximum agitation is directly related to the strength oflong iteration, but bursts+2 intermittently.

PS or non-PS. Basically, whekw; ;—0 (corresponding to The difference between non-PS and IPS is illustrated in
P9, the corresponding; ; may distribute in all layers. In  Figs. 4a-4(c), which show the phase difference in the
particular, phase lockingmaximum agitation under BSn course of iteration on three phase plaii@8, 42, (23, 49,
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FIG. 4. A plot of the phase difference vs iterating time on dif-

ferent planes of two CMLs at various external couplmagnd w4
=u,=4. () plane (30, 42 with external couplingc=0.05; (b)
plane(23, 49 and(c) plane(18, 42 with c=0.13. In(c), 7 is the
agitation in one laminar length.

and (18, 42, respectively. Figure (4) corresponds to the
external coupling=0.05. There are no jumps as in Figs.

1(a) and Xb). The phase difference increases irregularly.
While Figs. 4b) and 4c) are the simulation results of IPS

for c=0.13, theirg, ; are respectively in the(2) andL(4)

bands marked in Fig.(B). We find that the laminar length
can be very large. For example, the two PS windows in Fig

4(c) have durations of 28966 and 21 034, respectively.

IV. DYNAMICAL ANALYSIS

PHYSICAL REVIEW B4 016212
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FIG. 5. A plot of (a) the IPS ratioa and PS ratiog; (b) the
average abnormal rati@. The area between the IPS and CS regions
is the transition band. The external coupling strergtlaries from
0.0 to 0.2.

When = B~1 and their corresponding amplitudes are
nearly independent, the system is in PS. On the other hand, if
a~1 andB<1,itisin IPS. Note that this method could only
reflect the relationship between IPS and PS approximately.
The reason is that from the above analysis, several dots in
L(i) (wherei>1 andAw; ;—0) also belong to PS although
the synchronization is weak. As we do not care about the
exact value otx and B, and the synchronizing states are only
measured statistically, the simple approximate method is al-
ways effective in analysis. By this means, the phenomena of
Fig. 1(b) could be described by the curves®fnd 8 shown
in Fig. 5a).

On the other hand, different properties such as PS and IPS
could be found at different external coupling strengths. It is
important to uncover the dynamical mechanism behind them.
The direction of iteration may help in this. In order to char-
acterize the transitions quantitatively, we represent the direc-
tion of iteration in every unit of latticesi.e., “up” or
“down” ) as binary symbol§.e., “1” or “0” ). If the binary
symbols of one unit are 1010101.. att=1,2,3 ..., the
chaotic behavior is changed regularly and is considered as
simple chaos. However, if the binary symbols show
011101001, the output is complex chd@$ We will show
that IPS corresponds to a relatively weak complex chaos and

In this section, we first develop a simple method to meaPS always corresponds to simple chaos. Here, we only show

sure the IPS. According to Fig(l3, suppose thap(L(i)) is
the number of phase planes distributed in the redin).
We now define the IPS ratia as

2 < .
a=m2 p(L(i)).

=1

(10

the analysis for Eq(1). The corresponding calculation using
Eq. (2) is the same. The quantitative characterization of the
ith unit at some time: is shown as follow$7]:

X 1, if Xi(t)/Xi(t_1)>1,
nv= 0, otherwise, (12

Evidently, the PS ratig8 corresponds to the special case wherey(t) is named the phase series. An average abnormal

that only the first regioi.(1) is considered is given by

2
Bzmp(l-(l))- (11)

ratio o * could measure the strength of compleXi#&}:

>

i=0

> i),

=1

o*=

=l -
Z| -
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where (a) T
0.8' .l l ] ] 1 | ] | l !lo . *
1, |f (t)=v(t—1 RN sy g?p . Ceeapao .
O_ix(t): 7i( ) 7i( ) x 064 ||l.
0, otherwise. il _
Then "4 b
T
®)og. i
o=("+ )12, (13 06 NN HE
% L
whereo? is the average abnormal ratio of E@) and o is HTH R PRt L L A I I
oaillliltitiblivitniiitiintivninii

it
the corresponding mean value between Efjsand(2). We il
take a simple example to show the relationship between (c)08_
v;(t) and oi(t). If the binary series of theth unit read )
101011001 -, o;(t) becomes 00001010. Hence, the cha-
otic behavior in the iterated systems will be denoted as  *; 0.4
i

simple chaos ifoc=0. It is classified as complex chaosaif HHH
HRHHH

>0 [7]. Figure §b) shows the temporal evolution of the 0.0 bt et

average abnormal ratio with the increase of external coupling 0 10 20 0 40 50
strength. Whenr=0, it corresponds to PS region. While the 1

value of o agitates round 0.01 approximately, IPS phenom-

enon is observed in the dynamics. 4f>0.02, it is the
non-PS region. In this regard, the IPS always corresponds
weak complex chaos. In CS region, although the abnorm
ratio keeps strong agitation and the weak complex chaos still

appears, the strong external coupling pushes the two CML&f chaos causes a disorder of the “up” and “down”
to CS. In Fig. 5, the area between regions IPS and CS shovghanges. Thus the narrow gap disappears. This is shown in
PS phenomenon. However, as this narrow region correFig. 6(C).

sponds to the rapid reduction of the average amplitudes The above analysis is based on the identical coupling sys-
shown in Fig. 1c), it belongs to a strong correlation of in- tems represented by Eqd) and(2). However, in practical

teracting amplitudes. Thus, it could be considered as transBystems, we cannot make all the units identical. Therefore,
tion region from IPS to CS. one may ask what would the output be if E¢B. and(2) are

In a single unit of the lattice, the simple chaos in PSnot identical? To explore this, we investigate the PS and IPS
region indicates that the unit regularly changes betweestates with a tiny difference between the valugwfandu,.
“up” and “down.” No two successive “up” or “down”  Let u;=u and u,=u—0.01. The simulation results with
movements exist. This mechanism facilitates to form twovariousu andc are shown in Fig. @). When it is compared
regions divided by a narrow gap in pattern of temporal evoWwith Fig. 2@, a significant difference is observed, i.e., the
lution of the unit's iterations. The trajectory of each mapIPS region is extended evidently. The little difference be-
splits into two regions as shown in Fig(ah. The field be- tween the two lattices may be regarded as an effective noise
tween these two regions becomes a broad gap shown witgrm that increases the degree of disorder in the iterating

FIG. 6. Pattern of temporal evolution af with 400 iteration
t%ots. (@) c=0.12.(b) IPS state withc=0.13 and(c) non-PS state
a\'f’ith c=0.

two dotted lines. The gap size is about 0.1. direction. By this means, the consideration of IPS should not
The pattern of temporal evolution includes a large gapde ignored in practical applications. .
size that can be utilized for encodifiti4d]. For example, we ~ This kind of IPS phenomenon may be explained by the

can define a binary partitioB(n) in phase space with ele- mechanism that two phases run into a region where a small
mentsS(n) =1 whenx; is located in the upper regiofie.,  shift of phase difference leads to the opposite rotation direc-
>0.75 or —1 whenyx; is located in the lower regiofi.e.,  tions of the trajectory in the two interacting phase planes.
<0.65. The trajectory is encoded according to which parti- This is shown graphically in Figs(@ and 1b). The vectors
tion a point is in. Moreover, the large gap size indicates thaX = (X;,X;) andY=(y;,y;) are the corresponding vectors in
the model will have high noise resistance using communicathe two interacting CMLs. The dashed vectofs(t+1)
tion with chaos techniques. This advantage is important in-X(t—1) andY’(t+1)—Y(t—1) are in parallel with the
communication. Such a symbolic encoding may be applitwo solid vectorsX(t+1)—X(t) andY(t+1)—Y(t). More-
cable to dynamic systems and can be discussed using infopver, 6, is the phase betweeX(t) —X(t—1) andX(t+1)
mation theory[15]. —X(t) while ¢, is that betweenY(t)—Y(t—1) and Y(t

The IPS state corresponds to weak complexity of chaost 1)—Y(t). Assume that the two systems have the same
In most cases, the unit regularly changes with “up” andphase at time, but possess a nonzero phase difference at
“down.” However, in some cases, two or more successivetime t+1. When compared toX(t)—X(t—1) and Y(t)
“up” or “down” occurs. Therefore, the pattern of temporal —Y(t—1), respectivelyX(t+1)—X(t) moves in clockwise
evolution always appears to have blurry gaps as is shown irotation while Y(t+1)—Y(t) is in counterclockwise rota-
Fig. 6(b). At non-PS state, the relatively strong complexity tion. If the agitation| 6,— 6,|<# [where the value ofy is
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Xt+1) Ya+1)
X(t+) 1y

.‘ 9
g . 7
. Y(e+]) -\ .

a0 N\C 1)
X(f-l)' j
@ ®) i
i FIQ. 7. Sche_matic diagrams showi_n_g the region with opposite ©
irection of rotation on the phase plafig) of the two CMLs.(a)

the vectorX=(x;,x;) given by Eq.(1). (b) the vectorY=(y;,y;) 2
given by Eqg.(2). The dashed vectorX’(t+1)—X(t—1) and
Y'(t+1)—-Y(t—1) are in parallel with the two solid vectod§(t
+1)—X(t) andY(t+1)—Y(t). Ay

shown in Fig. 4c)], the two trajectories appear similar at
time t+ 1. However, as the phase increases in the same di-

rection of rotation monotonoush®] according to Eq(5), it . ; X 8:.012.
is found that the phase in Fig(&f is not 6, at timet+ 1, but 0 5000 10000 15000 20000
27— 0y. This corresponds to a jump of approximatehy. 2 t

It is evident that when two systems encounter the situa- o _ _

tion shown in Figs. ®) and 7b), there may be a phase jump FIG. 8. Projections of phase portraits and phase difference of the
of 2. Under the same condition, if the trajectory of the tWo coupled Resler oscillators. (@) Funnel attractor in
phase planes never faces this situation, the planes can easjffy:Y1)-Plane ate =0. (b) Funnel attractor ofa) in (X;,y1)-plane.
maintain PS with a certain external coupling. To summarizet POSSesses a rotation centg(@a,ﬂ). The attractor '”.*2 ,yz)-plane

IPS is referred to as the situation that two trajectories havg"”lS 5|m_|lar properties and is not shqwn he®. T'”?e series of
similar rotation but in some cases with phase shift in Oppo—phasﬁ differenca ¢ in tvr\]/o coupled (r)]scnlators at various valueshof

. . . . . g, Wheneg=0.117, it shows IPS phenomenon. PS seems to have
site directions. The phase difference is then unstable angchieved for the observed time scale when0.12.

may have Zr jumps intermittently.

where the natural frequencies avg=0.98 andw,=0.99, ¢
V. IPS IN AUTONOMOUS CHAOTIC SYSTEMS is the coupling strength for the interaction of the two oscil-
lators.

_ Although the phase concepts between autonomous and As observed from Fig. @), both the attractors in Eq14)
discrete systems are inconsistent, IPS phenomenon coule funnel. In most cases, a trajectory makes a trip around the
also be found in autonomous chaotic systems. For cohere@pigin in the (x;,y;)-plane. However, sometimes it makes
attractors, when the coupling strength is approaching phasgnly a half of this round trip. These irregular phase shifts can
transition, 27 phase jumps could be found before phase tranpe interpreted as an effective noise that breaks the phase
sition and the average laminar length becomes longer. Whegoherencg12). As the trajectory has only a small number of
this length is so long that no period could be found, this kindirregular phase shifts, the attractor is considered as a diffu-
of phase slips is considered as IPB5]. However, as the sjye but relatively weak one.
attractors are coherent, the IPS region is very narrow. When Tq investigate the properties of funnel attractors, a major
the attractors become diffused, such as inducing externgfifficulty is to obtain the instantaneous phase. Due to this
[13] directly, IPS could occur with a relative large range of ered by indirect methods such as the statistical mefmaf
COUD“”Q strength. - . The disadvantage is that only macroscopical properties can

In this section, we take two coupled diffusive oscillators, e found. In the following, we introduce a method to obtain
such as funnel attractof$2], as an example to show the IPS the instantaneous phase. Then we describe the IPS phenom-
between them. The model equation is writter{ 58] enon near the PS transition. The instantaneous phaseld

be obtained by19]

X12= — w1 Y12~ 21T (X217 X12),

X(t)
Y=arcta S0 (15
Y12= 01X 2+ 0.22 5, (14 y
Equation(15) is suitable for funnel attractors whose trajec-
73 ,=0.1+ 25 (X1 ,—8.5), tory has only a single rotation direction. As E{d.4) pos-
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sesses the kind of funnel attractors shown in Fig),8we  phase difference can appear to be IPS that is caused by the
can use it to obtain the instantaneous phase. Evidently, th&tuation where a small shift of phase makes the two trajec-
new (X;,Y41)-plane should contain an attractor with rotation tories rotate in opposite directions. This phenomenon could
center at(0, 0) as shown in Fig. &). With the aid of Eq. also be described by weak complex chaos. The PS phenom-
(15), the IPS phenomenon could be explicitly found in Fig. enon caused by simple chaos may be applied to symbolic
8(c) at e=0.117. While ate=0.12, it is considered as PS encoding with strong noise resistance in communication
within our time scale of simulations. The average laminarwhile the investigation of IPS may lead to potential applica-

length increases exponentially wherapproaches PS transi-
tion [13,16,17. However, if the diffusion is too strong, such
as strong funnel attractofd2] or coherent attractors with
large mismatch of parametef20], PS as well as IPS may

tions in engineering control and pattern formation. Further-
more, we demonstrate that the IPS could also be found in
autonomous chaotic systems with diffusive attractors. Thus,
although the phase concepts between discrete and autono-

not appeatr. mous systems are inconsistent, IPS for both of them relates
to the diffusion or complexity of attractors.

VI. CONCLUSION

In conclusion, the characteristics of PS between two
CMLs are studied extensively. With an external coupling, PS
in all 2D phase planes can be obtained. In the route from We thank P. J. Hahn for a careful reading and revision of
non-PS to PS, the maximum agitation always exhibitsthe  the manuscript. The work described in this paper was fully
jump phenomenon. In some particular external coupling, theupported by a grant from City(Project No. 7001077
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