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Positive Lyapunov exponents calculated from time series of strange nonchaotic attractors
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Time-series methods for estimating Lyapunov exponents may give a positive exponent when they are
applied to the time series of strange nonchaotic systems. Strange nonchaotic systems are characterized by
expanding and contracting regions in phase space that result in repeatedly expanding or contracting trajectories.
Using time-series methods, the maximum time-series Lyapunov exponent is calculated as an average of the
locally most expanding exponents that characterize the divergence of nearby trajectories following a recon-
structed attractor over time. A positive exponent is reported by time-series methods for trajectories in an
expanding region. While in a converging region, the most expanding dynamics are related to the quasiperiodic
driving force. Statistically, a zero exponent related to the quasiperiodic force is obtained through time-series
methods within converging regions. As a result, the calculated maximum Lyapunov exponent is positive.
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[. INTRODUCTION Currently, time-series methods are proposed mainly for
autonomous systems. But in practice, they are widely applied
The Lyapunov exponent is an important parameter for théo complex systems that may be nonautonomous. Strange
analysis of nonlinear systems. It provides a quantitative meaionchaotic attractor§SNA) represent one type of nonauto-
sure of the sensitivity of a system to perturbations of initialnomous system. It is known that SNAs are geometrically
conditions. Calculation of the Lyapunov spectrum permitscomplicated, but typical trajectories on these attractors ex-
estimation of the fractal dimension and Kolmogorov entropyhibit no sensitive dependence on initial conditions asymptoti-
of an attractor. In most practical situations where details ofally [18—24. Because the properties of SNAs lie between
the dynamics of a system are not known, the only availabl@rder and chaos, an interesting question concerns whether
information is the time series of a scalar quantity. Time-time-series methods can distinguish SNA from chaos. In this
series data may be used to obtain a reconstructed attracto@per we show that a positive TSLE can be obtained using
that retains information on the dynamics of the sysfgér].  time-series methods for data from strange nonchaotic sys-
Different algorithms have been proposed for the determinatems. This observation, a positive TSLE for SNA, is ex-
tion of Lyapunov exponents from a time series alphie13.  plained by the mixing of eigendirections in tangent space by
For clarity, in this paper the measure is termed originalthe time-series methods.
Lyapunov exponentOLE) A° when it is calculated from the
equations of the original system and time-series Lyapunov |l. QUASIPERIODICALLY DRIVEN LOGISTIC MAP
exponentTSLE) ATS when it is calculated from a time se- o _ . _ _
ries using time-series methods. -Qua5|-per|od.|callly driven logistic maps are discussed in
Many factors are involved in obtaining an accurate TSLE [his section ( irrational):
First, the reconstructed attractor in time-delay coordinate
space should be topologically equivalent to the original at- Xn+1=f(Xn ., #n), @)
tractor of the systermil,3,5. There are many discussions on
how to determine the correct embedding, dimension and
time-delay parametef$,10,11,14. Spurious TSLEs can be
obtained with an inappropriate embedding dimendib8] Herex.n.and ¢n are t_he state of the map and phase angle of
the driving force at timen, respectively. These maps are two

Recording precision, the overall length of data used, the frac-. .
tal character of the data, and noise characteristics also aﬁe{c#men_smnal an(_j Fherefore _have two OLEs. Related to(Bqg.
ere is a nontrivial OLE given by

the accuracy of the TSLE value obtaindgg10-13,16. As a

ni1=@¢nt 27w mod 2. 2

special example, consider that a positive TSLE can be ob- 1 N pr
tained for a random time seri¢$7]. For each TSLE method A%=lim = > In|—. 3
there are also some adjustable parameters that affect the N N AZ1 | X

TSLE. These include factors such as how the neighbors are

selected and how often the nearby trajectories are renormai trivial OLE is related to Eq(2).

ized[6-13). Two SNA examples are considered. First we examine the
following map:
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TABLE |. Time-series Lyapunov exponent estimated with four =3 2 the attractor is a torus with®= 0.0 and—0.15. It can
methods for time series of chaotic attractor and torus attractor. HerBa seen that all four time-series methods can give a good

time delayT=1. estimation of maximum OLE for these two attractors with
. embedding dimension three or four. As we show later, deter-
Chaotic attractor Torus attractor L : . o
. . . : ; . mination of the exact value of the embedding dimension is
Embedding dimension Embedding dimension

not critical. Here we stress that, for the torus, the time-series
methods report a zero TSLE, that is related to the quasiperi-
Wolf  0.088 0.071 0.071 0.071 0.000 0.000 0.000 0.00o0dic driving force, rather than the nontrivial movement of

Kantz 0.0570.073 0.000 the logistic map. _ .
Sona 0.480 0.074 0.066 0.112 0.060 0.000 0.000 0.000 Next we apply these four methods to the SNA time series.

Brown 1.063 0.061 0.061 0.061 0.027 0.000 0.000 o.oooThe_ _resulting_ TSLEs are given in Table I, all of which are
positive. A discussion on how to get an exact TSLE for a

time series is not intended, rather we simply demonstrate that
. o ' a positive TSLE can be obtained for time series of strange
the SNA'o'btalned ywthé: 3.273 are used as a first example. | ) -haotic systems. By varying the embedding dimension
Its nontrivial OLE isA~=—0.008. from two to six and the time delay from one to four, we

FOUL well known methodsf ahre used in this paperftohestiTound that the sign of maximum TSLE is not sensitive to
mate the maximum TSLE of the time series. Two of them,, 53 meter selection. Disregarding the quantitative differ-

discussed by Wolet al.[6] and Kantz 7] work in the phase  gces among the methods tested, we stress here that a con-
space of the reconstructed attractor by estimating divergencgqiant result, a positive value for maximum TSLE, is yielded

of nearby states directly. The other two, discussed by SanBy these four different time-series algorithms.

and Sawad49] and Brownet al. [12], work in the tangent The practical importance of this finding is mainly related

space of the reconstructed attractor by estimating local Jacs e nropability of finding a strange nonchaotic attractor in

bian matrices. In all simulations, data are recorded with &, gjca| systems. Originally, it was suggested that SNAs oc-
precision of 10> after ignoring the first 2000 data points. - only in a small region in the parameter space of quasip-
For Brown’s method 8192 points are used. For the othegiogically driven system§l8—22. It is rare to find such

three methods 10 000 points are used. With Brown's method,actors  experimentally. However, recent studies have
the order of the fitted polynomial function is three and theg, o that SNAS can occur in a large region in the param-

local and global dimensions are both equal to the embedding;, space of low-frequency quasiperiodically driven systems

dimension. _ _ [23,24). Therefore, as a second SNA example, we examine
The first step in the reconstruction of an attractor from ay,, following map:

time series is to determine an appropriate time delay and

embedding dimension. Strictly speaking, the embedding f(Xp,dn) = ax,(1—X,)+ & cose,, (5)
theories of Takens and Suaetal. [1,3] are not valid for

nonautonomous systems. Hence, one could argue that thgherew=0.01+10°-+/5 ands=0.12. SNAs can be found
quasiperiodically driven mafEq. (4)] cannot be embedded. in a large region of parameter space for this f2®. As an
However, the special harmonic nature of the driving forceexample, for «=3.6, an SNA is obtained withA°
allows the phase dynamics to be written in an autonomous- —0.033. We applied the four time-series methods to this
mannerEgs.(1) and Eq.(2)], involving an additional degree  SNA example. The results are given in Table III. It can be
of freedom(a discrete time harmonic oscillajoihe particu-  seen that the positive sign of the maximum TSLE obtained in
lar structure of lacking feedback fromto ¢ is sometimes each case is robust to variation of the embedding dimension
denoted as a skew system. For discrete maps, the time delgythe range from two to six and time delay from one to four.
T=1 is typically used[5,12]. The embedding dimension
may be approximated by selecting various values and com-
paring TSLEs calculated to the OLE. Table | shows the re-
sults for Eq.(4) using four time series methods. Far The calculation of positive TSLES using time-series meth-
=3.3, the attractor is chaotic with®=0.06 and 0.0; forx ods on strange nonchaotic systems can be explained by the

Method 2 3 4 5 2 3 4 5

Ill. ORIGIN OF THE POSITIVE TSLE

TABLE Il. Time-series Lyapunov exponent estimated with four methods for SNA time series given in Eq.
(4). In the last column, the minimum and maximum TSLEs obtained are given for varying embedding
dimension and time delay.

Embedding dimensioftime delayT=1) Embedding dimension range: 2—6
Method 2 3 4 5 Time delay range: 1-4
Wolf 0.021 0.012 0.013 0.014 0.01-0.03
Kantz 0.020-0.070 0.02-0.07
Sona 0.420 0.020 0.021 0.052 0.01-0.42
Brown 0.663 0.024 0.025 0.018 0.02-0.70
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TABLE Ill. Time-series Lyapunov exponent estimated with four methods for SNA time series given in
Eqg. (5). In the last column, the minimum and maximum TSLEs obtained are given for varying embedding
dimension and time delay.

Embedding dimensioftime delayT=1) Embedding dimension range: 2—6
Method 2 3 4 5 Time delay range: 1-4
Wolf 0.123 0.112 0.109 0.114 0.09-0.13
Kantz 0.080-0.250 0.06-0.26
Sona 0.240 0.092 0.101 0.183 0.09-0.25
Brown 0.236 0.278 0.279 0.274 0.13-0.28

mixing of eigendirections in tangent space. Consider thehe quasiperiodic force drives the trajectory repeatedly
finite-time Lyapunov exponent®r local exponentsof the  through the expanding and contracting regions once per driv-
systems. The finite-time OLE of Eql) for a small fixed ing period. During the long interval of contracting dynamics,
observation windowr is given by a long piece of toruslike trajectory can be observed. The
corresponding finite-time OLEs, shown with a dotted line in

ngt+7—1
\O(ng)= = 02 In (9_f ©6) Fig. 2(c), are typically negative, and result in a negative
0T n=no IXp|” OLE. In addition to this eigendirection, the system also has

an independent eigendirection with trivial eigenvalues and so
The exponeni 9(ny) quantifies the expanding or contracting a zero finite-time OLE, corresponding to the quasiperiodic
influence that the trajectory experiences from timeto n,  force. In Fig. Zc) the horizontal linex=0 represents the
+ 7[23]. For a time series, the maximum TSLE is defined asrivial finite-time OLEs. In comparison, the dotted gray line
an average over a long time of the locally most expandinghows that for our skew system, the maximum OLE is lo-
exponents with respect to the motion of the reconstructedated in the trivial eigendirection and is not always related to
trajectory of datd5,6] The finite-time TSLE\IS(no) can be the |Oca||y most expanding dynamics_
calculated as the same average in the window frgyto Now, consider a reconstructed trajectdiy,} in time-
No+ 7. Without loss of generality, Wolf's phase space ge|ay coordinates for an SNA time serig&,(is a vectoy. As
method[6] is used as an example for calculating the finite-y; the original trajectory, the reconstructed trajecto¥y}
time TSLE. The same conclusion can be drawn for any othefgneatedly experiences expanding and contracting dynamics
time series method working either in phase space or in tang fing each driving period. As shown in Fig(b2, in the

gent space. These methods are all based on the same original . . . . ; :
Lyapunov exponent method of calculating the divergenc::"](’gl lon of expanding dynamidsegion E), the trajectory is

rate of nearby trajectories. The maximum OLE or TSLE forg;a?rg'g'tl;z?e'cltgrthg {gﬂ:ggig CI::cimltJrraecgg?sgﬁnh%rwg?r?;t)?here
the attractor is just the average of the finite-time OLEs or_”’ J yist - g .
re two more transient regions: Regions TE and TC. The

TSLEs obtained from a sequence of nonoverlapping tlrm:faransient region TE is at the onset of the region of expanding

windows over a long time. dynamics and the trajectory diverges gradually from a torus
: O TS -
In Figs. Xa) and 1b), the curves ok (n) and\;(n) like orbit. The transient region TC is at the onset of the

versus timen with a fixed observation window are given : : :
2 ' . contracting dynamics and the trajectory converges gradually
for the two SNA examples above. Note that the main dn‘fer—and becomes less chaoticlike.

ence between2(n) and _)‘Is(n) is th$t>\?(n) repeatedly For Wolf's method, the local TSLE is always related to
undergoes deeply negative geaks, Biff(n) does not. The e locally most expanding exponents for the convergence or
negative peaks with 2(n)<\]%(n) can be observed occas- divergence of the tracing trajectodX,} and trajectories
sionally for the case of Eq4). The repeated deep negative starting at nearby initial conditions in phase sp&6g In
values ofA2(n), on average, are sufficient to guarantee aregionE, the chaoticlike orbits suggest a divergence rate of
negative OLEA® for the two nonchaotic attractors. The lack nearby trajectories. The time series methods typically re-
of deep negative spikes far'S(n) results in a positive TSLE  spond to the eigenvalues corresponding to the expanding tra-
ATS, jectories of logistic map. Positive finite-time TSLEs are then
For Eg. (5), there are two eigendirections in tangentcorrectly obtained, as shown in Fig. 2. In region TC, the
space, associated with the logistic map and periodic forcechaoticlike orbits are driven to converge on toruslike orbits.
Driven by a quasiperiodic force, the trajectory of the logistic Negative finite-time TSLEs are obtained upon calculating the
map frequently visits expanding or contracting regions durconvergence rate of nearby trajectories. In regiérasd TC
ing alternating time intervals. Corresponding to these dyithe time series-methods typically reflect the eigenvalues of
namics, the eigenvalues, as well as the finite-time OLEs othe logistic map.
the logistic map trajectory are sometimes positive and some- Time-series methods for Regio@sand TE, however, be-
times negative. For a nonchaotic attractor, contracting dyhave differently. In regiorC, the trajectory{X,} looks more
namics dominate, so that deep negative peaks in the finitdike a piece of torus because of the quasiperiodic force. Sta-
time OLE frequently occur. As shown in Figsia2and Zb), tistically, the nearby trajectories typically neither depart from

026220-3



SHUAI, LIAN, HAHN, AND DURAND PHYSICAL REVIEW E 64 026220

0.2
<
£ n <
€ 0.04|ff
3 P
% ‘ ‘ >< .. .' .. ~-...-....'~- . e --..........-. .'.. R "8
2 0217 '} 00 (b)
i : =
: ~ 0
0.4 3
i Gt (a)
- 100 150 200 250 300 350 400
200 400 600 800 1000 n
n FIG. 2. The detailed trajectory and finite-time Lyapunov expo-

nent for the SNA example given by E@). (a) The low-frequency
quasiperiodically driving force(b) The trajectory of the logistic
map.(c) Plots of finite-time Lyapunov exponenﬁ’(n) (given with
the dotted lingand\ "S(n) (given with the solid ling versus timen
with a fixed observation window=5. The x axis represents the
trivial finite-time OLE. Here time is from 100 to 4OQ9(n) is
drawn with a dotted gray line and'>(n) is with a solid black line.
Four regions E, TC, C, TE) are also roughly given in the figure.

a mixing effect of eigen-directions during calculation by time
series methods. As a result, on average, positive TSLEs are
obtained for regior, zero TSLESs for region€ and TE, and
negative TSLEs for region TC. Due to its transient character,
region TC should be relatively short. On the other hand,
L Lo 3 since strong expanding dynamics occur in regigrthe at-
204 P P tractor may become strange. If zero finite-time TSLEs are
T T T T T typically calculated in regionC, the positive finite-time
200 400 600 800 1000 TSLEs in regionE can then determine the fate of the aver-
n aged TSLE. A positive TSLE can be obtained for an SNA
system by time series methods.
For the SNA example in Ed4), a repellor exists that is a
continuous function of value in Eq. (2) [19]. Such a repel-
lor is contained within the attractor. The attractor contacts the
repellor in a countably dense set. The trajectories are fre-
quently disturbed by the expanding dynamics. In this case,
the time intervals for deeply contracting dynamics are typi-

nor contract to the tracing trajectofi,,}. The locally most ~ cally short. Although the long pieces of regi@and region
expanding dynamics are then related to the trivial dynamicd cannot be clearly observed for this attractor, the above
caused by the quasiperiodic driving force, rather than théliscussion is still applicable. For this SNA, many short
nontrivial convergent dynamics of the logistic map. As aPieces of toruslike trajectory are created repeatedly over
result, the time-series methods typically respond to the trivialime. So, deeply negative peaks for exponenf§n) can
eigenvalues of the periodic force in regi@h On average, frequently occur, as shown in Fig(d. Corresponding to the
zero finite-time TSLEs are calculated for the pieces of torustrivial eigenvalues of the periodic driving force, time-series
like trajectories(Fig. 2. This discussion is consistent with methods typically report zero-approaching local TSLEs for
the observation that the TSLE is zero for a torus attractor, athese short toruslike pieces. As a result, the corresponding
shown in Table I. While in the transient region TE, althoughexponenthls(n) does not reach the deep negative values.
the original dynamics corresponding to the logistic map beDue to the dense repellor, transient trajectories occur more
come expanding, the trajectories still remain toruslike for afrequently. For the trajectories within transient intervals be-
while. As a result, zero finite-time TSLEs are still reported intween contracting dynamics and expanding dynamics, a
region TE. small finite-time TSLE is likely to be calculated. However,
The behavior of the finite time TSLE suggest that there idecause the systems discussed are nonchaotic, contracting

finite-time Lyapunov exponent
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FIG. 1. Plots of the finite-time Lyapunov exponatft’(n) and
\TS(n) versus timen with a fixed observation window for two SNA
examples(a) For SNA given by Eq(4), herer=10. (b) For SNA
given by Eq.(5), herer=5. The time is from 100 to 1100. Here
\9(n) is drawn with a dotted gray line and>(n) is with a solid
black line.
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dynamics are dominant. If the mixing effect of eigendirec-autonomous systems in practice. For an autonomous system,
tions that results in zero finite-time TSLEs in the contractingthe dynamics for any variable are always affected by the
region is strong, the positive finite-time TSLEs in regién other variables. The maximum OLE is then always related to
can determine the sign of the averaged TSLE. As a result, the locally most expanding dynamics over time. For a skew

positive TSLE is obtained for an SNA. system or a nonautonomous system, the dynamics of some
variables are independent of the others. The maximum OLE
IV. DISCUSSION AND CONCLUSION may not be always related to the locally most expanding

~dynamics over time. On the other hand, the maximum TSLE

In summary, we have shown that because of the mixings gjways related to the locally most expanding dynamics of
effect of eigendirections by the time-series methods a posine reconstructed trajectory of the time series. So the maxi-
tive TSLE can be obtained for time-series from SNA sys-mym TSLE obtained is a good estimate of the maximum

parameter to distinguish SNA from chaos in experimentagstimate of OLE for skew or nonautonomous systems.
data. However, if other methods become available to identify

time series as SNA or chaos, then a positive TSLE may be
. ’ ACKNOWLEDGMENT
used to verify the SNA nature of the data.
The present time-series methods are mainly developed for The authors would like to thank J.Y. Chen for helpful
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