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Positive Lyapunov exponents calculated from time series of strange nonchaotic attractors
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Time-series methods for estimating Lyapunov exponents may give a positive exponent when they are
applied to the time series of strange nonchaotic systems. Strange nonchaotic systems are characterized by
expanding and contracting regions in phase space that result in repeatedly expanding or contracting trajectories.
Using time-series methods, the maximum time-series Lyapunov exponent is calculated as an average of the
locally most expanding exponents that characterize the divergence of nearby trajectories following a recon-
structed attractor over time. A positive exponent is reported by time-series methods for trajectories in an
expanding region. While in a converging region, the most expanding dynamics are related to the quasiperiodic
driving force. Statistically, a zero exponent related to the quasiperiodic force is obtained through time-series
methods within converging regions. As a result, the calculated maximum Lyapunov exponent is positive.

DOI: 10.1103/PhysRevE.64.026220 PACS number~s!: 05.45.2a
th
e
ia
it
p
o

b
e

ac

ina

na

no
-

E
at
a
n

an

ra
ffe

o

t
a

m

for
lied
nge
-
lly
ex-
oti-
en
ther

this
ing

sys-
x-
by

in

of
o

the

m
ity
ss
I. INTRODUCTION

The Lyapunov exponent is an important parameter for
analysis of nonlinear systems. It provides a quantitative m
sure of the sensitivity of a system to perturbations of init
conditions. Calculation of the Lyapunov spectrum perm
estimation of the fractal dimension and Kolmogorov entro
of an attractor. In most practical situations where details
the dynamics of a system are not known, the only availa
information is the time series of a scalar quantity. Tim
series data may be used to obtain a reconstructed attr
that retains information on the dynamics of the system@1–5#.
Different algorithms have been proposed for the determ
tion of Lyapunov exponents from a time series alone@6–13#.
For clarity, in this paper the measure is termed origi
Lyapunov exponent~OLE! LO when it is calculated from the
equations of the original system and time-series Lyapu
exponent~TSLE! LTS when it is calculated from a time se
ries using time-series methods.

Many factors are involved in obtaining an accurate TSL
First, the reconstructed attractor in time-delay coordin
space should be topologically equivalent to the original
tractor of the system@1,3,5#. There are many discussions o
how to determine the correct embedding, dimension
time-delay parameters@6,10,11,14#. Spurious TSLEs can be
obtained with an inappropriate embedding dimension@15#
Recording precision, the overall length of data used, the f
tal character of the data, and noise characteristics also a
the accuracy of the TSLE value obtained@6,10–13,16#. As a
special example, consider that a positive TSLE can be
tained for a random time series@17#. For each TSLE method
there are also some adjustable parameters that affec
TSLE. These include factors such as how the neighbors
selected and how often the nearby trajectories are renor
ized @6–13#.
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Clippinger Research Laboratories, Room 252A, Ohio Univers
Athens, OH 45701. FAX: 740 593 0433. Email addre
shuai@helios.phy.ohiou.edu
1063-651X/2001/64~2!/026220~5!/$20.00 64 0262
e
a-
l
s
y
f

le
-
tor

-

l

v

.
e
t-

d

c-
ct

b-

the
re
al-

Currently, time-series methods are proposed mainly
autonomous systems. But in practice, they are widely app
to complex systems that may be nonautonomous. Stra
nonchaotic attractors~SNA! represent one type of nonauto
nomous system. It is known that SNAs are geometrica
complicated, but typical trajectories on these attractors
hibit no sensitive dependence on initial conditions asympt
cally @18–24#. Because the properties of SNAs lie betwe
order and chaos, an interesting question concerns whe
time-series methods can distinguish SNA from chaos. In
paper we show that a positive TSLE can be obtained us
time-series methods for data from strange nonchaotic
tems. This observation, a positive TSLE for SNA, is e
plained by the mixing of eigendirections in tangent space
the time-series methods.

II. QUASIPERIODICALLY DRIVEN LOGISTIC MAP

Quasiperiodically driven logistic maps are discussed
this section (v irrational!:

xn115 f ~xn ,fn!, ~1!

fn115fn12pv mod 2p. ~2!

Herexn andfn are the state of the map and phase angle
the driving force at timen, respectively. These maps are tw
dimensional and therefore have two OLEs. Related to Eq.~1!
there is a nontrivial OLE given by

LO5 lim
N→`

1

N (
n51

N

lnU ] f

]xn
U. ~3!

A trivial OLE is related to Eq.~2!.
Two SNA examples are considered. First we examine

following map:

f ~xn ,fn!5a~11« cosfn!xn~12xn!, ~4!

wherev5(A521)/2 and«50.1. Using this map, SNA is
found in the range 3.2714,a,3.274@19#. Time series from
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the SNA obtained witha53.273 are used as a first examp
Its nontrivial OLE isLO520.008.

Four well known methods are used in this paper to e
mate the maximum TSLE of the time series. Two of the
discussed by Wolfet al. @6# and Kantz@7# work in the phase
space of the reconstructed attractor by estimating diverge
of nearby states directly. The other two, discussed by S
and Sawada@9# and Brownet al. @12#, work in the tangent
space of the reconstructed attractor by estimating local J
bian matrices. In all simulations, data are recorded wit
precision of 1026 after ignoring the first 2000 data point
For Brown’s method 8192 points are used. For the ot
three methods 10 000 points are used. With Brown’s meth
the order of the fitted polynomial function is three and t
local and global dimensions are both equal to the embed
dimension.

The first step in the reconstruction of an attractor from
time series is to determine an appropriate time delay
embedding dimension. Strictly speaking, the embedd
theories of Takens and Suaeret al. @1,3# are not valid for
nonautonomous systems. Hence, one could argue tha
quasiperiodically driven map@Eq. ~4!# cannot be embedded
However, the special harmonic nature of the driving for
allows the phase dynamics to be written in an autonom
manner@Eqs.~1! and Eq.~2!#, involving an additional degree
of freedom~a discrete time harmonic oscillator!. The particu-
lar structure of lacking feedback fromx to f is sometimes
denoted as a skew system. For discrete maps, the time d
T51 is typically used@5,12#. The embedding dimensio
may be approximated by selecting various values and c
paring TSLEs calculated to the OLE. Table I shows the
sults for Eq. ~4! using four time series methods. Fora
53.3, the attractor is chaotic withLO50.06 and 0.0; fora

TABLE I. Time-series Lyapunov exponent estimated with fo
methods for time series of chaotic attractor and torus attractor. H
time delayT51.

Chaotic attractor Torus attractor
Embedding dimension Embedding dimension

Method 2 3 4 5 2 3 4 5

Wolf 0.088 0.071 0.071 0.071 0.000 0.000 0.000 0.0
Kantz 0.057;0.073 0.000
Sona 0.480 0.074 0.066 0.112 0.060 0.000 0.000 0.
Brown 1.063 0.061 0.061 0.061 0.027 0.000 0.000 0.0
02622
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53.2, the attractor is a torus withLO50.0 and20.15. It can
be seen that all four time-series methods can give a g
estimation of maximum OLE for these two attractors w
embedding dimension three or four. As we show later, de
mination of the exact value of the embedding dimension
not critical. Here we stress that, for the torus, the time-se
methods report a zero TSLE, that is related to the quasip
odic driving force, rather than the nontrivial movement
the logistic map.

Next we apply these four methods to the SNA time seri
The resulting TSLEs are given in Table II, all of which a
positive. A discussion on how to get an exact TSLE for
time series is not intended, rather we simply demonstrate
a positive TSLE can be obtained for time series of stran
nonchaotic systems. By varying the embedding dimens
from two to six and the time delay from one to four, w
found that the sign of maximum TSLE is not sensitive
parameter selection. Disregarding the quantitative diff
ences among the methods tested, we stress here that a
sistent result, a positive value for maximum TSLE, is yield
by these four different time-series algorithms.

The practical importance of this finding is mainly relate
to the probability of finding a strange nonchaotic attractor
physical systems. Originally, it was suggested that SNAs
cur only in a small region in the parameter space of qua
eriodically driven systems@18–22#. It is rare to find such
attractors experimentally. However, recent studies h
shown that SNAs can occur in a large region in the para
eter space of low-frequency quasiperiodically driven syste
@23,24#. Therefore, as a second SNA example, we exam
the following map:

f ~xn ,fn!5axn~12xn!1« cosfn , ~5!

wherev50.0111025
•A5 and«50.12. SNAs can be found

in a large region of parameter space for this map@23#. As an
example, for a53.6, an SNA is obtained withLO

520.033. We applied the four time-series methods to t
SNA example. The results are given in Table III. It can
seen that the positive sign of the maximum TSLE obtained
each case is robust to variation of the embedding dimen
in the range from two to six and time delay from one to fo

III. ORIGIN OF THE POSITIVE TSLE

The calculation of positive TSLEs using time-series me
ods on strange nonchaotic systems can be explained by

re

0
0

n Eq.
dding
TABLE II. Time-series Lyapunov exponent estimated with four methods for SNA time series given i
~4!. In the last column, the minimum and maximum TSLEs obtained are given for varying embe
dimension and time delay.

Embedding dimension~time delayT51) Embedding dimension range: 2 – 6
Method 2 3 4 5 Time delay range: 1 – 4

Wolf 0.021 0.012 0.013 0.014 0.01– 0.03
Kantz 0.020– 0.070 0.02– 0.07
Sona 0.420 0.020 0.021 0.052 0.01– 0.42
Brown 0.663 0.024 0.025 0.018 0.02– 0.70
0-2
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TABLE III. Time-series Lyapunov exponent estimated with four methods for SNA time series give
Eq. ~5!. In the last column, the minimum and maximum TSLEs obtained are given for varying embe
dimension and time delay.

Embedding dimension~time delayT51) Embedding dimension range: 2 – 6
Method 2 3 4 5 Time delay range: 1 – 4

Wolf 0.123 0.112 0.109 0.114 0.09– 0.13
Kantz 0.080– 0.250 0.06– 0.26
Sona 0.240 0.092 0.101 0.183 0.09– 0.25
Brown 0.236 0.278 0.279 0.274 0.13– 0.28
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mixing of eigendirections in tangent space. Consider
finite-time Lyapunov exponents~or local exponents! of the
systems. The finite-time OLE of Eq.~1! for a small fixed
observation windowt is given by

lt
O~n0!5

1

t (
n5n0

n01t21

lnU ] f

]xn
U. ~6!

The exponentlt
O(n0) quantifies the expanding or contractin

influence that the trajectory experiences from timen0 to n0
1t @23#. For a time series, the maximum TSLE is defined
an average over a long time of the locally most expand
exponents with respect to the motion of the reconstruc
trajectory of data@5,6#. The finite-time TSLElt

TS(n0) can be
calculated as the same average in the window fromn0 to
n01t. Without loss of generality, Wolf’s phase spa
method@6# is used as an example for calculating the fini
time TSLE. The same conclusion can be drawn for any ot
time series method working either in phase space or in
gent space. These methods are all based on the same or
Lyapunov exponent method of calculating the divergen
rate of nearby trajectories. The maximum OLE or TSLE
the attractor is just the average of the finite-time OLEs
TSLEs obtained from a sequence of nonoverlapping t
windows over a long time.

In Figs. 1~a! and 1~b!, the curves oflt
O(n) and lt

TS(n)
versus timen with a fixed observation windowt are given
for the two SNA examples above. Note that the main diff
ence betweenlt

O(n) and lt
TS(n) is that lt

O(n) repeatedly
undergoes deeply negative peaks, butlt

TS(n) does not. The
negative peaks withlt

O(n),lt
TS(n) can be observed occas

sionally for the case of Eq.~4!. The repeated deep negativ
values oflt

O(n), on average, are sufficient to guarantee
negative OLELO for the two nonchaotic attractors. The lac
of deep negative spikes forlt

TS(n) results in a positive TSLE
LTS.

For Eq. ~5!, there are two eigendirections in tange
space, associated with the logistic map and periodic fo
Driven by a quasiperiodic force, the trajectory of the logis
map frequently visits expanding or contracting regions d
ing alternating time intervals. Corresponding to these
namics, the eigenvalues, as well as the finite-time OLEs
the logistic map trajectory are sometimes positive and so
times negative. For a nonchaotic attractor, contracting
namics dominate, so that deep negative peaks in the fin
time OLE frequently occur. As shown in Figs. 2~a! and 2~b!,
02622
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the quasiperiodic force drives the trajectory repeate
through the expanding and contracting regions once per d
ing period. During the long interval of contracting dynamic
a long piece of toruslike trajectory can be observed. T
corresponding finite-time OLEs, shown with a dotted line
Fig. 2~c!, are typically negative, and result in a negati
OLE. In addition to this eigendirection, the system also h
an independent eigendirection with trivial eigenvalues and
a zero finite-time OLE, corresponding to the quasiperio
force. In Fig. 2~c! the horizontal linex50 represents the
trivial finite-time OLEs. In comparison, the dotted gray lin
shows that for our skew system, the maximum OLE is
cated in the trivial eigendirection and is not always related
the locally most expanding dynamics.

Now, consider a reconstructed trajectory$Xn% in time-
delay coordinates for an SNA time series (Xn is a vector!. As
for the original trajectory, the reconstructed trajectory$Xn%
repeatedly experiences expanding and contracting dyna
during each driving period. As shown in Fig. 2~b!, in the
region of expanding dynamics~region E), the trajectory is
chaotic-like. In the region of contracting dynamics~region
C), the trajectory is torus-like. Figure 2 also shows that th
are two more transient regions: Regions TE and TC. T
transient region TE is at the onset of the region of expand
dynamics and the trajectory diverges gradually from a tor
like orbit. The transient region TC is at the onset of t
contracting dynamics and the trajectory converges gradu
and becomes less chaoticlike.

For Wolf’s method, the local TSLE is always related
the locally most expanding exponents for the convergenc
divergence of the tracing trajectory$Xn% and trajectories
starting at nearby initial conditions in phase space@6#. In
regionE, the chaoticlike orbits suggest a divergence rate
nearby trajectories. The time series methods typically
spond to the eigenvalues corresponding to the expanding
jectories of logistic map. Positive finite-time TSLEs are th
correctly obtained, as shown in Fig. 2. In region TC, t
chaoticlike orbits are driven to converge on toruslike orb
Negative finite-time TSLEs are obtained upon calculating
convergence rate of nearby trajectories. In regionsE and TC
the time series-methods typically reflect the eigenvalues
the logistic map.

Time-series methods for RegionsC and TE, however, be-
have differently. In regionC, the trajectory$Xn% looks more
like a piece of torus because of the quasiperiodic force. S
tistically, the nearby trajectories typically neither depart fro
0-3
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nor contract to the tracing trajectory$Xn%. The locally most
expanding dynamics are then related to the trivial dynam
caused by the quasiperiodic driving force, rather than
nontrivial convergent dynamics of the logistic map. As
result, the time-series methods typically respond to the tri
eigenvalues of the periodic force in regionC. On average,
zero finite-time TSLEs are calculated for the pieces of tor
like trajectories~Fig. 2!. This discussion is consistent wit
the observation that the TSLE is zero for a torus attractor
shown in Table I. While in the transient region TE, althou
the original dynamics corresponding to the logistic map
come expanding, the trajectories still remain toruslike fo
while. As a result, zero finite-time TSLEs are still reported
region TE.

The behavior of the finite time TSLE suggest that there

FIG. 1. Plots of the finite-time Lyapunov exponentlt
O(n) and

lt
TS(n) versus timen with a fixed observation window for two SNA

examples.~a! For SNA given by Eq.~4!, heret510. ~b! For SNA
given by Eq.~5!, heret55. The time is from 100 to 1100. Her
lt

O(n) is drawn with a dotted gray line andlt
TS(n) is with a solid

black line.
02622
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a mixing effect of eigen-directions during calculation by tim
series methods. As a result, on average, positive TSLEs
obtained for regionE, zero TSLEs for regionsC and TE, and
negative TSLEs for region TC. Due to its transient charac
region TC should be relatively short. On the other ha
since strong expanding dynamics occur in regionE, the at-
tractor may become strange. If zero finite-time TSLEs
typically calculated in regionC, the positive finite-time
TSLEs in regionE can then determine the fate of the ave
aged TSLE. A positive TSLE can be obtained for an SN
system by time series methods.

For the SNA example in Eq.~4!, a repellor exists that is a
continuous function of valuef in Eq. ~2! @19#. Such a repel-
lor is contained within the attractor. The attractor contacts
repellor in a countably dense set. The trajectories are
quently disturbed by the expanding dynamics. In this ca
the time intervals for deeply contracting dynamics are ty
cally short. Although the long pieces of regionC and region
T cannot be clearly observed for this attractor, the abo
discussion is still applicable. For this SNA, many sho
pieces of toruslike trajectory are created repeatedly o
time. So, deeply negative peaks for exponentslt

O(n) can
frequently occur, as shown in Fig. 1~a!. Corresponding to the
trivial eigenvalues of the periodic driving force, time-seri
methods typically report zero-approaching local TSLEs
these short toruslike pieces. As a result, the correspon
exponentlt

TS(n) does not reach the deep negative valu
Due to the dense repellor, transient trajectories occur m
frequently. For the trajectories within transient intervals b
tween contracting dynamics and expanding dynamics
small finite-time TSLE is likely to be calculated. Howeve
because the systems discussed are nonchaotic, contra

FIG. 2. The detailed trajectory and finite-time Lyapunov exp
nent for the SNA example given by Eq.~5!. ~a! The low-frequency
quasiperiodically driving force.~b! The trajectory of the logistic
map.~c! Plots of finite-time Lyapunov exponentlt

O(n) ~given with
the dotted line! andlt

TS(n) ~given with the solid line! versus timen
with a fixed observation windowt55. The x axis represents the
trivial finite-time OLE. Here time is from 100 to 400.lt

O(n) is
drawn with a dotted gray line andlt

TS(n) is with a solid black line.
Four regions (E, TC, C, TE! are also roughly given in the figure.
0-4
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dynamics are dominant. If the mixing effect of eigendire
tions that results in zero finite-time TSLEs in the contract
region is strong, the positive finite-time TSLEs in regionE
can determine the sign of the averaged TSLE. As a resu
positive TSLE is obtained for an SNA.

IV. DISCUSSION AND CONCLUSION

In summary, we have shown that because of the mix
effect of eigendirections by the time-series methods a p
tive TSLE can be obtained for time-series from SNA sy
tems. This result indicates that TSLE cannot be used a
parameter to distinguish SNA from chaos in experimen
data. However, if other methods become available to iden
time series as SNA or chaos, then a positive TSLE may
used to verify the SNA nature of the data.

The present time-series methods are mainly developed
autonomous systems, but are widely applied to complex n
a

a

a

rto

tt
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autonomous systems in practice. For an autonomous sys
the dynamics for any variable are always affected by
other variables. The maximum OLE is then always related
the locally most expanding dynamics over time. For a sk
system or a nonautonomous system, the dynamics of s
variables are independent of the others. The maximum O
may not be always related to the locally most expand
dynamics over time. On the other hand, the maximum TS
is always related to the locally most expanding dynamics
the reconstructed trajectory of the time series. So the m
mum TSLE obtained is a good estimate of the maxim
OLE for the autonomous system, but may not give a corr
estimate of OLE for skew or nonautonomous systems.
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