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Phase synchronization in coupled chaotic oscillators with time delay
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The phase synchronization~PS! of two Rössler oscillators with time-delayed signal coupling is studied. We
find that time delay can always lead to PS even when the delay is very long. Moreover, with the increase of
time delay, the coupling strength at the transition to PS undergoes a nearly periodic wave distribution. At some
fixed time-delayed signal coupling, a PS region is followed by a non-PS region when the coupling strength
increases. However, an increase of the coupling leads to the PS state again. This phenomenon occurs in
systems with a relatively large PS transition point.
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I. INTRODUCTION

Systems with time-delayed feedback signals are q
ubiquitous in nature. The delay is usually caused by fin
signal transmission speed and memory effect. There h
been extensive investigations on the influence of tim
delayed feedback~including synchronization and amplitud
death! in the context of coupled limit cycle oscillator system
@1#. It has been found that time delay has a significant eff
on the characteristics of all the major cooperative pheno
ena such as frequency locking and phase drift@2#. As many
chaotic models developed in physics, chemistry, and biol
are formulated in terms of coupled nonlinear oscillators@3#,
time delay also plays an important role in the control a
synchronization of these chaotic oscillators. It has been
ported that a delayed feedback on one of the system varia
can control the stabilization of the unstable periodic orbits
chaotic dynamics@4#. In a coupled time-delayed system
complete synchronization can be obtained and applied
communication@5#. The observation of lag synchronizatio
also characterizes constant time delay between two sig
@6#.

Recently, the notion of synchronization has been exten
to phase synchronization~PS! in a system composed of tw
mutually coupled nonidentical self-sustained chaotic osci
tors @7#. PS in coupled chaotic system is analogous to
phase locking of periodic oscillators, where the locking its
is the only concern. For a certain coupling strength, ph
locking can be observed for two chaotic oscillators wh
their amplitudes remain chaotic and weakly correlated@8#.
This phenomenon has found applications in laboratory
periments such as lasers@9#, circuits @10#, and plasmas@11#,
as well as natural systems such as the extended ecolo
system@12#, magnetoencephalographic activity of Parkins
nian patients@13#, electrosensitive cells of the paddlefis
Canadian lynx-hare populations@14#, and solar activity@15#.

As time delay is generally encountered in signal transm
sion, it is important to study the characteristics of PS w
time delay. A major advantage of delay coupling is that s
tems separated by a variety of distances can still be sync
nized using the phase, even when the signal transmissio
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slow. Similar to other kinds of physical phenomena with tim
delay, PS with time delay is also important in engineeri
and physiological systems, where signal transmission
delayed feedback dynamics play a crucial role@16#. For ex-
ample, in arrays of semiconductor lasers, synchronizing
lasing elements in phase is of importance in order to obta
large output power concentrated in a single-lobed far fi
pattern@17#. The synchronization of arrays of semiconduct
lasers by global coupling with time delay has been dem
strated by experiments@18#. In particular, the phase-locke
oscillator is found important in the understanding of neu
information processing@19#. The investigation of motivated
time delay may improve such models. However, in spite o
large body of evidence of PS with time delay in nature, t
study of PS phenomenon in a system coupling with tim
delay signals is not yet available.

In this paper we show that PS can be obtained with c
pling sets at various time delays. With the increase of ti
delay, a nearly periodic wave distribution of PS transiti
points is found. At small PS transitions that correspond to
valley of the wave, the PS phenomena are the same as t
of traditional coupling with no time delay, where only th
unique PS transition is found. However, at large transitio
that are near the peak of the wave, there can be two type
PS transitions. One of them is alocal PS ~LPS! transition
while the other is aglobal PS ~GPS! transition. We charac-
terize the final PS transition as a GPS transition where ph
locking is always maintained even at an increase of coup
strength. In contrast to this, the LPS transition refers to
early transition to PS but then non-PS is observed again a
increased coupling strength. Our simulation results show
time-delayed signal coupling may lead to some special pr
erties of PS that are in contrast to the situation without ti
delay.

II. GLOBAL PHASE SYNCHRONIZATION

We start with two coupled nonidentical Ro¨ssler systems
@20#, describing the evolution of three-dimensional vector

ẋ1,252v1,2y1,22z1,21e@x2,1~ t2t!2x1,2#,
©2002 The American Physical Society03-1
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ẏ1,25v1,2x1,21ay1,2, ~1!

ż1,25 f 1z1,2~x1,22c!,

where dots denote temporal derivatives,t is time delay,e
represents the coupling strength, andv1,25v06D ~D being
the frequency mismatch between the two chaotic oscillato!.
We seta50.165,f 50.2, andc510 so as to make the syste
generate chaotic dynamics. In what follows we focus o
study on the casev051 andD50.015. When the attractor i
oriented so that its projection on the plane (xi ,yi) exhibits a
phase flow circulating the origin, this is the phase coher
attractor. Its phase can be conveniently introduced as

f i5tan21@yi~ t !/xi~ t !# with i 51,2. ~2!

Here the value of tan21 is taken to be such thatf1 andf2
are continuous in time, i.e., they have no 2p jumps ast
varies. With this convention,f i increases continuously with
t for orbits at the chaotic attractors. The mean frequency
f i can be obtained using the formulaV i5^ḟ i&. If t50, the
case becomes directional coupling which has been inve
gated extensively@7,8,21,22#. As e increases under this situ
ation, the system identifies subsequent transitions from n
synchronization to GPS. The GPS transition is a function
t, denoted asec(t). With the increase oft, ec(t) is regular
and nearly periodic, as observed in Fig. 1. We find that
50 is just one of the positions whereec(t) is a local mini-
mum. In our simulation, Eq.~1! is numerically solved using
a fourth-order Runge-Kutta method with time step50.002,
the time length of calculation is 4000 after omitting the in
tial time length of 4000. These simulation settings are u
throughout this paper. After simulations with smaller tim
steps, longer lengths of calculation and initial time, we fou
that the above conditions are accurate enough to make
simulation results free from computational accuracy.

FIG. 1. The GPS transitionec(t) at various delays of coupled
signalst. In this example, the delay phase differenceqt't asv0

51. The dashed line shows the position whereqt5p/2, while the
dotted line figures out two types of regions that are in-correla
and anticorrelated, respectively. They appear between one an
regularly.
05620
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It is necessary to investigate the relationship betwe
ec(t) and t as they appear quite regularly. In Eqs.~1!, the
delay signals betweenxi(t) and xi(t2t) contain the delay
phase difference

q i
t5tan21

yi~ t !

xi~ t !
2tan21

yi~ t2t!

xi~ t2t!

5f i~ t !2f i~ t2t! with i 51,2 ~3!

from the attractors on the (xi ,yi) plane. Although the two
systems in Eqs.~1! are nonidentical, they have the sam
mean frequencyV'v0 after PS@7#. As a result, the mean
delay phase differencêqt& after the PS transition can b
approximately characterized as

^q1
t&'^q2

t&'v0t. ~4!

In the following, we simply denoteqt5v0t.
To develop an approximate theory of PS with differe

time delays in Eqs.~1!, we rewrite it in terms of (Ai ,f i ,zi)
variables, whereAi5Axi

21yi
2 is the amplitude,

Ȧ1,25aA1,2sin2 f1,22z1,2cosf1,21e@A2,1~ t2t!

3cos~f2,12q2,1
t !cosf1,22A1,2cos2 f1,2#,

ḟ1,25v1,21a sinf1,2cosf1,21z1,2/A1,2sinf1,22e@A2,1~ t

2t!/A1,2cos~f2,12q2,1
t !sinf1,22cosf1,2sinf1,2#,

ż1,25 f 2cz1,21A1,2z1,2cosf1,2. ~5!

Substitutingf i5v0t1u i into the equations forḟ1,2, aver-
aging the equations over the period 2p/v0 to eliminate some
terms, and then subtracting two slow phases with phase
ferenceu5u12u2 , we have

du

dt
52D2

eK1

2
sinu cosqt2

eK2

2
cosu sinqt, ~6!

where

K15S A2~ t2t!

A1
1

A1~ t2t!

A2
D ~7!

and

K25S A2~ t2t!

A1
2

A1~ t2t!

A2
D . ~8!

The process of getting Eq.~6! from Eqs.~5! at t50 has been
discussed by other researchers in order to obtain a qualita
estimate ofec(0) @6#. We extend the process to a variety
time delay. It is difficult to estimate the exact value ofec(t)
at differentt. However, we can find the approximate valu
for some special cases. In the following, we analyze t
special cases in detail.

If qt5np (n50,1,2,3,...), Eq.~6! can be transformed
into

d
her
3-2
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u5arcsin
4D

eK1 . ~9!

In another special case whereqt5(2n11)p/2, Eq. ~6! can
be written as

u5arccos
4D

eK2 . ~10!

Comparing Eqs.~9! and ~10!, it is evident that the PS tran
sition in Eq.~10! is much larger than that in Eq.~9! because
K2,K1. Furthermore, whenqt transforms fromnp to
(2n11)p/2, the factors that mainly determine the value
ec(t) change continuously from Eq.~9! to Eq. ~10!. By this
means, when we neglect the nonlinear dynamics of sq
(cosq) and amplitude fluctuations, we can make a coa
approximation between the two special cases and the l
extreme points shown in Fig. 1. This figure shows that the
transition in Eq.~9! corresponds to the local minimum tran
sition i.e.,ec

min5ec(t)uqt5np , and that of Eq.~10! corresponds
to the value near the local maximum transition, i.e.,ec

max

5ec(t)uqt5(2n11)p/2 . Here, t5qt/v0 , as obtained from Eq
~4!. In our example, the values of botht andqt are identical
becausev051. If we selectv0Þ1, the local minimum and
maximum points still locate nearqt5np and (2n11)p/2,
respectively. However,tÞqt in this case. In Fig. 1, it is
found that the values ofec

min are approximately constant a
various time delays. Moreover, they are around the positi
whereqt'np as estimated from Eq.~9!. On the other hand
the values ofec

max also have similar maximum values at va
ous time delays. Their positions are nearqt5(2n11)p/2,
as found from Eq.~10!. The dotted line marked in Fig. 1
indicates a clear mismatch between the time delayp/2 and
ec

max. This is mainly because the value ofK2 is sensitive to
the amplitude fluctuations, while we neglect the factor in
above analysis.

We try to figure out the PS transition at local minimu
~maximum! points from both Eqs.~6!–~10! and the simula-
tion results. We take a local minimum point, i.e.,qt53p as
an example. The evolution ofK1 at e50.0 and 0.03 is
shown in Figs. 2~a! and 2~b!, respectively. In Fig. 2~a!, the
average value is 2.45, as marked by a horizontal line. In
2~b!, ^K1&52.16, which is close to the stable value 2
Therefore this case has a fixed point and the PS trans
point can be estimated asec

min(t)'2D with ^K1&52.0 @21#.
We take a maximum point in Fig. 1 withqt517.55 as

another example to show the evolution ofK2 at e50.0 and
0.09. The point is close to 11p/2 and the results are shown
Figs. 2~c! and 2~d!, respectively. Comparing with Fig. 2~c!,
the relatively large coupling term in Fig. 2~d! enlarges the
fluctuations substantially. Ate50.09, ^K2&50.45, and the
maximum fluctuation ofK2(t) can be 24 times larger tha
^K2&. Further simulation shows that in spite of the lar
fluctuations ofK2(t) for a givene and t, the mean value
^K2& always changes substantially under different coupl
strength and time delay. Thus^K2& cannot be used to ap
proximate the actual dynamics ofK2(t).
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III. LOCAL PHASE SYNCHRONIZATION

We now study the evolution of the mean frequency d
ference at various values ofe andt. The results of numerica
simulations are plotted in Figs. 3~a!–3~d!. As observed from
Figs. 3~a! and 3~b!, the difference of mean frequenciesDV
aroundec

min shows similar characteristics at different tim
delay. Here,DV reduces withe and at last approaches ze
after ec(t). The values of the GPS transition as well as t
difference of mean frequencies are the same as those in
special case witht50 @21,23#. However, ifec(t) is selected
aroundec

max, the corresponding phenomena are much diff
ent, as observed in Figs. 3~c! and 3~d!. In Fig. 3~c! wheret is
relatively small, with the increase ofe, DV reduces at first,
but then begins to increase. There is a local minimum ae
'0.068, whereDV is far away from zero. Near the phas
transitionec'0.09,DV approaches zero rapidly. At larget,
the local minimum ofDV is not fixed and may drop to zero
as observed in Fig. 3~d!. As a result, there is a small LP
region found beforeec(t). In this example, it is in the range
eP@0.077,0.082# andec'0.09.

FIG. 2. ~a!–~d! Time evolution ofK1 with t59.42 at ~a! e
50.0, ~b! e50.03. The evolution ofK2 with t517.55 at~c! e
50.0, ~d! e50.09. The horizontal lines indicate their mean value

FIG. 3. ~a!–~d! The difference of mean frequencyDV versus
coupling strengthe at various time delayst.
3-3
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The phenomenon of LPS can always be found aro
ec

max. As the region of LPS is very small, it is hard to b
observed clearly in Fig. 1. Therefore the two peaks ofec(t)
shown in Fig. 1 are enlarged and plotted in Figs. 4~a! and
4~b!. Figure 4~a! corresponds to a small time delay whi
Fig. 4~b! is obtained from a comparatively large delay.
clear difference between them is the distribution of LPS.
Fig. 4~a!, the LPS regions are small and distributed in seve
areas. However, in Fig. 4~b!, they are concentrated at the to
with a single and relatively large LPS region. With an i
crease of time delay, our simulations show that the LPS
gions still concentrate at the top of the peak. However, thi
not shown in this figure. If the coupling strength increas
the synchronization may change from GPS to phase lock
where the amplitudes of the two interactive oscillators ha
strong correlation. Notice that in the GPS regions of t
figure, we did not identify the boundary between GPS a
phase locking.

The distributions of non-PS, LPS, and GPS are stron
related to the nonfixed variation of the amplitudes th
changes continuously with the coupling strength. In orde
show the variation of amplitudes, we simulate the time e
lution of xi on the Poincare´ intersectionyi50 with different
coupling strengths, and the results are shown in Fig. 5
this figure, the time delay ist517.55, i.e., the same as th
chosen in Fig. 3~d!. The distribution ofxi is largely affected
by the value ofec . Whene,0.82, there is a distinguishe
region where the points ofx2 distribute in two evident nar-

FIG. 4. ~a!,~b! Distribution of non-PS, local PS~LPS!, and glo-
bal PS~GPS! at different time delayst.

FIG. 5. ~a!,~b! Evolution of the variables of~a! x1 and ~b! x2

with the coupling strengthe at t517.55. Here,x1 (x2) is the value
on the Poincare´ intersection withy1 (y2)50.
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row bands referred to as LPS. On the other hand, a fur
increase of coupling strength makes the attractor ofx1
change to a broader distribution shown at 0.82,e,0.90 in
Fig. 5~a!, while the attractor ofx2 remains coherent. This
region corresponds to the non-PS part in Fig. 3~d!. After e
>0.9, the attractor turns into a relatively strong coheren
again and GPS is obtained.

In Fig. 5, numerous points ofx1,2 are found near the zero
value marked by a dotted horizontal line. However, the c
responding trajectory still mainly encircles the origin. Th
the instantaneous phase as well as the phase transition in
example can still be obtained and analyzed simply from
~2!. We have also employed a more general method, the
bert transform method@7,8#, to calculate their instantaneou
phases, and obtain the same results.

IV. PHASE DIFFERENCE WITH JAGGED SHAPE

In an attempt to elucidate the time evolution of pha
difference before and after the PS transition, different pr
erties are found at various time delays. Investigators h
found that the 2p phase slip ofu is a distinguishing phenom
enon before the GPS transition att50. Whene is far away
from ec (e,ec), u increases in a nearly periodic sequence
2p phase slips. However, whene is nearec , u increases with
an intermittent sequence of 2p phase slips. After the PS tran
sition is reached, it is basically aboutp/2 with a small high-
frequency amplitude fluctuation@21,24,25#. However, fort
.0, our simulation results show that only the region arou
ec

min possesses these properties. In the region aroundec
max, no

distinguished scales are found. Here we do not show
simulation results of 2p phase slips that are similar to th
case fort50. For the region of large GPS transition, 2p
phase slips only appear at certaine. The phase difference a
certain coupling strengths is shown in Figs. 6~a! and 6~b!,
which correspond to the time delay of Figs. 3~c! and 3~d!,
respectively. Let us first investigate the phase difference
coupling strength far away fromec . From Fig. 6~a!, there are
nearly periodic sequences of 2p phase slips ate50.087.
However, whene50.068, which corresponds to the loc
minimum point ofDV in Fig. 3~c!, u increases linearly. No
2p phase slips can be found although its mean freque
difference is evidently smaller. Fore near the GPS transition
an irregular jagged shape foru is observed. An example is
given in Fig. 6~a! with e50.0895. Ate50.09, GPS is ob-
tained andu fluctuates only slightly. However, the fluctuatio
is also in jagged shape. Similarly, Fig. 6~b! shows thatu
increases with an irregular jagged shape at a value nearec ,
e.g., e50.088. At a value far away fromec , i.e., near the
LPS transition, 2p phase slips are found. They are shown
the curves corresponding toe50.073 and 0.085. As there i
a LPS region before the GPS transition,u in this region and
in the region after the GPS transition are plotted in the low
part of Fig. 6~b!. The solid line showsu in the LPS region at
e50.08 while the dotted line corresponds to that after
GPS transition. We find that the fluctuation ofu in the former
case is similar to the phenomenon whent50 @21,24#. More-
over, the jagged fluctuation ofu ~dotted line! is just the same
as that in Fig. 6~a!. Evidently, in regions just before and afte
3-4
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the GPS transitions that are aroundec
max, the u sequence

always appears jagged shape. This phenomenon cann
found in the region with the LPS transition.

From Eq. ~6!, we find that the time evolution ofu is
influenced byqt. In order to observe the evolution ofqt

with the increase ofe~t!, it is plotted at three different cou
pling strengths 0.08, 0.088, and 0.09 in Figs. 7~a!–7~c! when
t517.55. At LPS wheree50.08, the distribution ofqt is
stable with noise fluctuation, while ate50.088 and 0.09, the
distribution of qt has occasional jumps. Evidently, th
jagged shapes ofu in Fig. 6~b! correspond to the irregula
jumps ofqt. Whenqt appears as a stable value with noi
fluctuation, as shown in Fig. 7~a!, the correspondingu is also
stable with a small noise fluctuation, as observed in Fig. 6~b!.

V. IN-CORRELATION AND ANTICORRELATION
RELATIONSHIP OF INTERACTIVE SIGNALS

Although the GPS transition is quite large, the amplitud
between two interactive oscillators are still less correlat

FIG. 6. Time evolutions of phase differenceu in a system of two
coupled Ro¨ssler attractors at various values of coupling strengte
and delay timet. The time delay is~a! t52.1 and~b! t517.55.
They are the same as Figs. 3~c! and 3~d!, respectively. The inner
plots are projections of the attractor on the plane„x1(t),x2(t)…,
which show a relatively weak correlation between signalsx1(t) and
x2(t).
05620
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This is because the signals for interactive coupling hav
certain time delay that reduces the correlation betw
x1,2(t) andx1,2(t2t). The inner plot of Figs. 6~a! and 6~b!
are the instantaneous signals at the GPS transitionec
50.09. They show that the projections of the attractors
the plane„x1(t),x2(t)… appear distorted, which indicates
relatively weak correlation between the two amplitudes.
interesting phenomenon is the unequal directions of w
correlation betweenx1 andx2 . In the inner plot of Fig. 6~a!,
it is in-correlation where the local maxima~or minima! of
x1,2 are nearly identical. However, in the inner plot of Fi
6~b!, the two corresponding signals are weakly anticor
lated, where the local minimum of one signal corresponds
the local maximum of the other one. Further simulatio
show that the regions of in-correlation and anticorrelat
appear in turn regularly and are divided by the local ma
mum of PS transitions. The regions are marked in the up
part of Fig. 1.

The in-correlation and anticorrelation of two interactiv
signals are caused by the coupling term in Eq.~1!. We take
the equation with coupling terme@x2(t2t)2x1# as an ex-
ample. With the increase ofe, the coupling term always
forces the values ofx2(t2t) and x1(t) approaching each
other. By this means, they are always in-correlation after
and can be denoted as

x2~ t2t!↑ and x1~ t !↑. ~11!

On the other hand, the relationship betweenx2(t2t) and
x2(t) is the same trajectory with time delayt in a single
attractor. They will appear in-correlation under the followin
condition:

x2~ t2t!↑ and x2~ t !↑
when ~2n21/2!p,qt,~2n11/2!p, ~12!

but appear in anticorrelation under the following conditio

x2~ t2t!↑ and x2~ t !↓
when ~2n11/2!p,qt,~2n13/2!p. ~13!

FIG. 7. ~a!–~c! The time evolution of delay phaseq1
t at different

coupling strengths.~a! e(t)50.08, ~b! e(t)50.088, and~c! e(t)
50.09. The time delay ist517.55. Notice thatq2

t has a similar
portrait and is not shown here.
3-5
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These regular in-correlation and anticorrelation are de
mined by the trajectory of the Ro¨ssler attractor, which has
single rotation center. By substituting Eq.~11! into Eqs.~12!
and ~13!, we can determine the correlation directions b
tweenx1(t) andx2(t) under differentqt. The result is just
the distribution of in-correlation and anticorrelation shown
Fig. 1. Similarly, we can also take another equation w
coupling term e@x1(t2t)2x2# to analyze their in-
correlation and anticorrelation betweenx1(t) andx2(t). The
same result is obtained.

If we transform Fig. 1 into a circle map, the differe
correlating directions as well as the PS transition can be c
sidered as the interactive results between two conver
points, as shown in Fig. 8. They correspond toqt52np and
(2n11)p, respectively. At the convergent points, the P
transition is a local minimum. Whenqt is far away from
either of them, theirec increases accordingly. At the poin
with qt5(2n11)/2, which is the farthest from the two con

FIG. 8. The circle map transformed from Fig. 1. The two bla
points are the convergent points. The terms ‘‘anti’’ and ‘‘in’’ refer
anticorrelation and in-correlation, respectively, of interactive sign
x1 andx2 , while ec

min andec
max are local minimum and maximum o

the PS transitions.
e

ev

a,
-

e

ev
s.
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vergent points, theirec are nearly maximum. The correlatin
directions of the particularqt points are also determined b
the distance from the two convergent points. Whenqt ap-
proaches the left convergent point, the case results in a
correlation. It becomes in-correlation whenqt is close to the
right convergent point.

VI. CONCLUSION

In summary, we have studied the PS properties of t
mutually coupled Ro¨ssler oscillators with a variety of time
delay. With the increase of time delay, the GPS transit
undergoes a nearly periodic sequence. Two explicit regi
of the GPS transition are found. One corresponds to the t
sition aroundec

min . The properties of phase difference are t
same as those with zero time delay. The other region co
sponds to the transition aroundec

max. Before the GPS transi
tion, LPS may exist. In the LPS region, the fluctuation of t
phase difference is the same as that in the region with a l
minimum GPS transition. However, with the increase of co
pling strength, the sequence of the phase difference is q
complicated. Phase slips of 2p can only be found in certain
regions of the coupling strength. Near the GPS transition,
2p phase slips may transform to jagged slips. After GPS,
fluctuation may also appear in the jagged shape. The in
action of coupled signals appears in-correlation and antic
relation alternately in a variety of time delays. To the best
our knowledge such results have not been reported be
and they may benefit the investigation of PS in natural p
nomena and complex systems.
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