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Phase synchronization in coupled chaotic oscillators with time delay
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The phase synchronizatidRS of two Rassler oscillators with time-delayed signal coupling is studied. We
find that time delay can always lead to PS even when the delay is very long. Moreover, with the increase of
time delay, the coupling strength at the transition to PS undergoes a nearly periodic wave distribution. At some
fixed time-delayed signal coupling, a PS region is followed by a non-PS region when the coupling strength
increases. However, an increase of the coupling leads to the PS state again. This phenomenon occurs in
systems with a relatively large PS transition point.
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I. INTRODUCTION slow. Similar to other kinds of physical phenomena with time
delay, PS with time delay is also important in engineering
Systems with time-delayed feedback signals are quit@nd physiological systems, where signal transmission and
ubiquitous in nature. The delay is usually caused by finitedelayed feedback dynamics play a crucial rfdé]. For ex-
signal transmission speed and memory effect. There havample, in arrays of semiconductor lasers, synchronizing the
been extensive investigations on the influence of timelasing elements in phase is of importance in order to obtain a
delayed feedbackincluding synchronization and amplitude 'arge output power concentrated in a single-lobed far field
death in the context of coupled limit cycle oscillator systems Pattern[17]. The synchronization of arrays of semiconductor
[1]. It has been found that time delay has a significant effectasers by global coupling with time delay has been demon-
on the characteristics of all the major cooperative phenomstrated by experimentsi8]. In particular, the phase-locked
ena such as frequency locking and phase @ftAs many Oscillator is found important in the understanding of neural
chaotic models developed in physics, chemistry, and bi0|ogy1format|on proqessmdle]. The investigation of motwated
are formulated in terms of coupled nonlinear oscillaj@  Ume delay may improve such models. However, in spite of a
time delay also plays an important role in the control andl2rge body of evidence of PS with time delay in nature, the
synchronization of these chaotic oscillators. It has been restudy of PS phenomenon in a system coupling with time-
ported that a delayed feedback on one of the system variablé§lay signals is not yet available. _ .
can control the stabilization of the unstable periodic orbits of In this paper we show that PS can be obtained with cou-
chaotic dynamicg4]. In a coupled time-delayed system, Pling sets at various time delays. With the increase of time
complete synchronization can be obtained and applied tgelay, a nearly periodic wave distribution of PS transition
communication{5]. The observation of lag synchronization points is found. At small PS transitions that correspond to the
also characterizes constant time delay between two signa¥lley of the wave, the PS phenomena are the same as those
[6]. of .tradltlonal coqphng_ with no time delay, where only_t_he
Recently, the notion of synchronization has been extendetiNidue PS transition is found. However, at large transitions
to phase synchronizatiof®9 in a system composed of two that are near the peak of the wave, there can be two types of
mutually coupled nonidentical self-sustained chaotic oscillaPS transitions. One of them islacal PS (LPS) transition
tors [7]. PS in coupled chaotic system is analogous to thévhile the other is alobal PS(GPS transition. We charac-
phase locking of periodic oscillators, where the locking itselft€rize the final PS transition as a GPS transition where phase
is the only concern. For a certain coupling strength, phastocking is always maintained even at an increase of coupling
locking can be observed for two chaotic oscillators whileStrength. In contrast to this, the LPS transition refers to the
their amplitudes remain chaotic and weakly correldigd ~ €arly transition to PS but then non-PS is observed again at an
This phenomenon has found applications in laboratory exincreased coupling strength. Our simulation results show that
periments such as las€i@), circuits[10], and plasmag11], ~ time-delayed signal coupling may lead to some special prop-
as well as natural systems such as the extended ecologicgiities of PS that are in contrast to the situation without time
system[12], magnetoencephalographic activity of Parkinso-delay.
nian patients[13], electrosensitive cells of the paddlefish,
Canad?an Iynx-ha}re populatioh$4], and solgr activit;[lS]. . II. GLOBAL PHASE SYNCHRONIZATION
As time delay is generally encountered in signal transmis-
sion, it is important to study the characteristics of PS with We start with two coupled nonidentical Bsler systems
time delay. A major advantage of delay coupling is that sys{20], describing the evolution of three-dimensional vectors:
tems separated by a variety of distances can still be synchro-
nized using the phase, even when the signal transmission is X12= = w1 Y12~ Z1 o €[ Xp4(t— 7) =Xy 2],
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T T T T T, It is necessary to investigate the relationship between
o9} Tii A I iantiiin . andion e.(7) and 7 as they appear quite regularly. In Eq$), the
008l | delay signals betweer(t) and x;(t—7) contain the delay
’ phase difference
0.07
§ oo it yi(t—1)
v 97 =tan 12— —tan 1o
0.05 Xi(t) Xi(t—17)
0.04r — ()= pi(t—7)  with i=1,2 3
0.03 /.
0.00 3.14 628 942 1.5 1570 13.84 from the attractors on thex(,y;) plane. Although the two
(ox) (Ix) 2%) (3m) (4=) (5x) (6x) systems in Eqs(1) are nonidentical, they have the same
T &9 mean frequency)~ w, after PS[7]. As a result, the mean

delay phase differencé€d”) after the PS transition can be

FIG. 1. The GPS transitiog,(7) at various delays of coupled approximately characterized as

signalsr. In this example, the delay phase differente~ r as w,
=1. The dashed line shows the position whéfe= /2, while the (9T ~(93)~wqr. (4)
dotted line figures out two types of regions that are in-correlated

and anticorrelated, respectively. They appear between one anothgy the following, we simply denot

é}T: woT.
regularly.

To develop an approximate theory of PS with different
time delays in Eqs(1), we rewrite it in terms of A, ¢; ,z)
Y1,2= @1 X15FaY1 2, (1) variables, where\;= \x?>+y? is the amplitude,

Ay 2= A, 5Sir? ¢y =2 ,C0SPy o+ e[ Ago(t—17)

X COS ¢y 1~ V5,1)COSh1 ;— Ax 5 co¢ b1.2],

2, 7= f+23 o (X1, 0),

where dots denote temporal derivativesis time delay, e . ] )
represents the coupling strength, ang,=wo*A (A being ~ $12= @121 @SiING1 ,C0SP1 5121 5/ A1 5SIN by o~ €[ Apq(t
the frequency mismatch between the two chaotic oscillators -~ 9T Ve _ -

We seta=0.165,f =0.2, andc= 10 so as to make the system 7)/ A1 2COL by 1~ 97 1)SIN 1 ;— COShy rSIN D1 5],
generate chaotic dynamics. In what follows we focus our
study on the casey=1 andA=0.015. When the attractor is
oriented so that its projection on the plang,f;) exhibits a
phase flow circulating the origin, this is the phase coheren
attractor. Its phase can be conveniently introduced as

2y =f—c2zy 3+ A1 521 ,COSh 5. (5

§ubstituting¢i=w0t+ 0, into the equations foéz&lvz, aver-
aging the equations over the period/2v, to eliminate some
terms, and then subtracting two slow phases with phase dif-
ferencef=6,— 6,, we have
a1 TR
¢i=tan [y;(t)/x;(t)] with i=1,2. (2 » Kt s |

ai 2A— —sin 0 cosd™— Tcosa sind’, (6)
Here the value of tan' is taken to be such that; and ¢,
are continuous in time, i.e., they have near umps ast  \here
varies. With this conventiong; increases continuously with
t for orbits at the chaotic attractors. The mean frequency of L (At=7)  Ag(t—7)
¢; can be obtained using the formulg=(¢;). If 7=0, the K :( A, + A, ) @)
case becomes directional coupling which has been investi-
gated extensively7,8,21,22. As € increases under this situ- and
ation, the system identifies subsequent transitions from non-
synchronization to GPS. The GPS transition is a function of _ [At=T7) Ay(t—7)
7, denoted a% (7). With the increase of, e;(7) is regular K™= A, B A, :
and nearly periodic, as observed in Fig. 1. We find that
=0 is just one of the positions wheeg(7) is a local mini-  The process of getting E¢6) from Egs.(5) at 7=0 has been
mum. In our simulation, Eq(1) is numerically solved using discussed by other researchers in order to obtain a qualitative
a fourth-order Runge-Kutta method with time ste@p.002, estimate ofe.(0) [6]. We extend the process to a variety of
the time length of calculation is 4000 after omitting the ini- time delay. It is difficult to estimate the exact valueeg( )
tial time length of 4000. These simulation settings are useat differentr. However, we can find the approximate values
throughout this paper. After simulations with smaller timefor some special cases. In the following, we analyze two
steps, longer lengths of calculation and initial time, we foundspecial cases in detail.
that the above conditions are accurate enough to make the If 9"=n#x (n=0,1,2,3,...), Eq.6) can be transformed
simulation results free from computational accuracy. into

()
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_4A (@ 6
f=arcsin_ . ) i h ﬁ nh |
5 |
In another special case wheté=(2n+1)#/2, Eq.(6) can ®) !‘ ‘NU
be written as 3 ’ \
[("’2 Jlin FEHEEER ”u’f’,u:;f u”l§ HEEEL
o "‘»\‘.>y’~vt . -.”“g“gw v,rv“‘]uqr H”
0= a4 10 |
—arccosEK—_. (10

Comparing Eqs(9) and(10), it is evident that the PS tran-
sition in Eq.(10) is much larger than that in E¢9) because
K~ <K*. Furthermore, whend” transforms fromnz to
(2n+1)m/2, the factors that mainly determine the value of
e.(7) change continuously from E¢9) to Eq.(10). By this
means, when we neglect the nonlinear dynamics ofdsin
(cos®) and amplitude fluctuations, we can make a coarse
approximation between the two special cases and the local ] ) .
extreme points shown in Fig. 1. This figure shows that the PS FIG- 2. (—(d) Time evolution ofK™ with 7=9.42 at(a) €
transition in Eq.(9) corresponds to the local minimum tran- =0.0, () €=0.03. The evolution oK™ with 7=17.55 at(c) ¢
sition i'e'le?lnzfc(7)|ﬁ7':nﬂ'y and that of Eq(10) corresponds =0.0, (d) €=0.09. The horizontal lines indicate their mean values.
to the value near the local maximum transition, i€
= €7 9r—@n+1)ym2- Here, 7=9"w,, as obtained from Eq.
(4). In our example, the values of bottandJ" are identical We now study the evolution of the mean frequency dif-
becauseavy=1. If we selectwy# 1, the local minimum and  ference at various values efand 7. The results of numerical
maximum points still locate nea#"=nm and (2+1)w/2,  simulations are plotted in Figs(@—3(d). As observed from
respectively. Howevery# 97 in this case. In Fig. 1, it is Figs. 3a) and 3b), the difference of mean frequencias)
found that the values ofc"" are approximately constant at around e™™" shows similar characteristics at different time
various time delays. Moreover, they are around the positiongelay. Here AQ) reduces withe and at last approaches zero
whered"~n as estimated from E@9). On the other hand, after e.(7). The values of the GPS transition as well as the
the values ok also have similar maximum values at vari- difference of mean frequencies are the same as those in the
ous time delays. Their positions are na&r=(2n+1)w/2,  special case withr=0 [21,23. However, ife,(7) is selected
as found from Eq(10). The dotted line marked in Fig. 1 aroundel™®, the corresponding phenomena are much differ-
indicates a clear mismatch between the time det® and  ent, as observed in Figs(c3 and 3d). In Fig. 3c) whereris
€. ™. This is mainly because the value Kf is sensitive to  relatively small, with the increase ef AQ reduces at first,
the amplitude fluctuations, while we neglect the factor in thebut then begins to increase. There is a local minimuna at
above analysis. ~0.068, whereA(} is far away from zero. Near the phase
We try to figure out the PS transition at local minimum transitione,~0.09, A() approaches zero rapidly. At large
(maximum points from both Eqs(6)—(10) and the simula- the local minimum ofA(Q is not fixed and may drop to zero,
tion results. We take a local minimum point, i.87=37 as  as observed in Fig.(8). As a result, there is a small LPS
an example. The evolution ok at e=0.0 and 0.03 is region found before(7). In this example, it is in the range
shown in Figs. 2a) and 2b), respectively. In Fig. @), the  €<[0.077,0.082 and e,~0.09.
average value is 2.45, as marked by a horizontal line. In Fig.

Ill. LOCAL PHASE SYNCHRONIZATION

2(b), (K*)=2.16, which is close to the stable value 2.0. 0.04
Therefore this case has a fixed point and the PS transition =315 (@ =188 (b)
point can be estimated a&§"(7)~2A with (K*)=2.0[21]. ooz} |

We take a maximum point in Fig. 1 with"=17.55 as
another example to show the evolutionkf at e=0.0 and 0.00
0.09. The point is close to 2 and the results are shown in 000 002 004000 002 004

Figs. 4¢) and 2d), respectively. Comparing with Fig.(@®,

the relatively large coupling term in Fig(® enlarges the 004L©@  7=21 T=1755 @
fluctuations substantially. Aé=0.09, (K™ )=0.45, and the 3002 i

maximum fluctuation oK~ (t) can be 24 times larger than ’

(K™). Further simulation shows that in spite of the large 0.00 : . .
fluctuations ofK ~(t) for a givene and 7, the mean value 0.00 "2" 0.08 0.00 "‘0:: 0.08

(K™ always changes substantially under different coupling
strength and time delay. Thy& ) cannot be used to ap- FIG. 3. (a)—(d) The difference of mean frequenay) versus
proximate the actual dynamics Bf (t). coupling strengtte at various time delays.
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FIG. 4. (a),(b) Distribution of non-PS, local PE.PS), and glo-
bal PS(GPS at different time delays.

The phenomenon of LPS can always be found aroun

e;™. As the region of LPS is very small, it is hard to be
observed clearly in Fig. 1. Therefore the two peake fr)
shown in Fig. 1 are enlarged and plotted in Fig&)4nd
4(b). Figure 4a) corresponds to a small time delay while
Fig. 4b) is obtained from a comparatively large delay. A

clear difference between them is the distribution of LPS. In
Fig. 4(a), the LPS regions are small and distributed in severaﬂ

areas. However, in Fig.(8), they are concentrated at the top

with a single and relatively large LPS region. With an in-

crease of time delay, our simulations show that the LPS "€ om e, (e<e.), fincreases in a nearly periodic sequence of

'S

not shown in this figure. If the coupling strength increases

gions still concentrate at the top of the peak. However, this

the synchronization may change from GPS to phase lockin
where the amplitudes of the two interactive oscillators hav

figure, we did not identify the boundary between GPS an
phase locking.
The distributions of non-PS, LPS, and GPS are strong|

related to the nonfixed variation of the amplitudes that® ’ ™
P tfase forr=0. For the region of large GPS transitions 2

phase slips only appear at certanThe phase difference at

changes continuously with the coupling strength. In order

show the variation of amplitudes, we simulate the time evo

lution of x; on the Poincaréntersectiony; =0 with different

coupling strengths, and the results are shown in Fig. 5. i

this figure, the time delay is=17.55, i.e., the same as that
chosen in Fig. &l). The distribution ofx; is largely affected
by the value ofe,. When e<0.82, there is a distinguished
region where the points of, distribute in two evident nar-

monts  —] s l-_non-rs-:icrs

I
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''''''' ;,l"

H ,u‘ !.n.. N HiHH] m!ﬂ' '
:mu!mn;unnmm!mnlmmmlu

B

i il
e

HARERTH M
il
il
0.088

L] l"';l”“;ﬂ!!.r .

R L T R I

e

0.064 0072 0.080
€

FIG. 5. (a),(b) Evolution of the variables ofa) x; and (b) x,
with the coupling strengtle at 7=17.55. Herex; (x,) is the value
on the Poincaréntersection withy, (y,)=0.
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row bands referred to as LPS. On the other hand, a further
increase of coupling strength makes the attractorxof
change to a broader distribution shown at 6:82<0.90 in

Fig. @), while the attractor ofk, remains coherent. This
region corresponds to the non-PS part in Figl) 3After e
=0.9, the attractor turns into a relatively strong coherence
again and GPS is obtained.

In Fig. 5, numerous points of; , are found near the zero
value marked by a dotted horizontal line. However, the cor-
responding trajectory still mainly encircles the origin. Thus
the instantaneous phase as well as the phase transition in this
example can still be obtained and analyzed simply from Eq.
2). We have also employed a more general method, the Hil-

ert transform methofi7,8], to calculate their instantaneous
phases, and obtain the same results.

IV. PHASE DIFFERENCE WITH JAGGED SHAPE

In an attempt to elucidate the time evolution of phase
ifference before and after the PS transition, different prop-
rties are found at various time delays. Investigators have
found that the 2r phase slip of is a distinguishing phenom-
enon before the GPS transition &t 0. Whene is far away

phase slips. However, whetis neare., 6 increases with
an intermittent sequence ofibhase slips. After the PS tran-

Lition is reached, it is basically abowt2 with a small high-

strong correlation. Notice that in the GPS regions of thigfrequency amplitude fluctuatioj1,24,23. However, forr

d>min

0, our simulation results show that only the region around
e."" possesses these properties. In the region arefifit no
istinguished scales are found. Here we do not show the
imulation results of 2 phase slips that are similar to the

certain coupling strengths is shown in Figga6and Gb),
hich correspond to the time delay of FiggcBand 3d),
respectively. Let us first investigate the phase difference at
coupling strength far away from. . From Fig. &a), there are
nearly periodic sequences ofr2phase slips at=0.087.
However, whene=0.068, which corresponds to the local
minimum point of AQ) in Fig. 3(c), # increases linearly. No
27 phase slips can be found although its mean frequency
difference is evidently smaller. Fernear the GPS transition,
an irregular jagged shape feris observed. An example is
given in Fig. §a) with e=0.0895. Ate=0.09, GPS is ob-
tained and fluctuates only slightly. However, the fluctuation
is also in jagged shape. Similarly, Fig(by shows thaté
increases with an irregular jagged shape at a value egar
e.g., €=0.088. At a value far away frona., i.e., near the
LPS transition, zZ phase slips are found. They are shown by
the curves corresponding to=0.073 and 0.085. As there is
a LPS region before the GPS transitighin this region and

in the region after the GPS transition are plotted in the lower
part of Fig. b). The solid line show® in the LPS region at
€=0.08 while the dotted line corresponds to that after the
GPS transition. We find that the fluctuation@in the former
case is similar to the phenomenon when0 [21,24]. More-
over, the jagged fluctuation @f(dotted ling is just the same
as that in Fig. 6. Evidently, in regions just before and after
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(@) 100

FIG. 6. Time evolutions of phase differenéén a system of two
coupled Rssler attractors at various values of coupling strength
and delay timer. The time delay iga) 7=2.1 and(b) 7=17.55.
They are the same as FiggcBand 3d), respectively. The inner
plots are projections of the attractor on the plame(t),x»(t)),
which show a relatively weak correlation between sigma(s) and

Xo(t).

the GPS transitions that are arousd®, the 6 sequence
always appears jagged shape. This phenomenon cannot
found in the region with the LPS transition.

From Eq.(6), we find that the time evolution ob is
influenced byd". In order to observe the evolution df”
with the increase o&(7), it is plotted at three different cou-
pling strengths 0.08, 0.088, and 0.09 in Fig&)#7(c) when
7=17.55. At LPS wheree=0.08, the distribution ofj” is
stable with noise fluctuation, while at=0.088 and 0.09, the
distribution of 47 has occasional jumps. Evidently, the
jagged shapes of in Fig. 6b) correspond to the irregular
jumps of 7. When9" appears as a stable value with noise
fluctuation, as shown in Fig.(@), the corresponding is also
stable with a small noise fluctuation, as observed in Fig). 6

V. IN-CORRELATION AND ANTICORRELATION
RELATIONSHIP OF INTERACTIVE SIGNALS

PHYSICAL REVIEW E 66, 056203 (2002

€=0.08
O I
b) 20
A
(rad
16 £=0.088
)yl
8 WW
i 113 £=0.09
) 500 1000 1500 2000
Time

FIG. 7. (8—(c) The time evolution of delay phas¥] at different
coupling strengths(a) e(7)=0.08, (b) e(7)=0.088, and(c) e(7)
=0.09. The time delay is=17.55. Notice that}; has a similar
portrait and is not shown here.

This is because the signals for interactive coupling have a
certain time delay that reduces the correlation between
X1 (t) andxy (t— 7). The inner plot of Figs. @ and @b)
are the instantaneous signals at the GPS transitign
=0.09. They show that the projections of the attractors on
the plane(x,(t),x,(t)) appear distorted, which indicates a
relatively weak correlation between the two amplitudes. An
interesting phenomenon is the unequal directions of weak
correlation betweer, andx,. In the inner plot of Fig. &),
it is in-correlation where the local maxim@r minima of
X1 » are nearly identical. However, in the inner plot of Fig.
6(b), the two corresponding signals are weakly anticorre-
lated, where the local minimum of one signal corresponds to
the local maximum of the other one. Further simulations
show that the regions of in-correlation and anticorrelation
appear in turn regularly and are divided by the local maxi-
mum of PS transitions. The regions are marked in the upper
part of Fig. 1.

The in-correlation and anticorrelation of two interactive
signals are caused by the coupling term in Eg. We take
the equation with coupling terma[x,(t—7)—Xx;] as an ex-
bmple. With the increase of, the coupling term always
forces the values ok,(t—7) and x4(t) approaching each
other. By this means, they are always in-correlation after PS
and can be denoted as

Xo(t—7)7

On the other hand, the relationship betwesg(t— 7) and
X5(t) is the same trajectory with time delayin a single
attractor. They will appear in-correlation under the following
condition:

and x;(t)7. (11

Xa(t—=7)T and xp(t)7
when (2n—1/2) #<9"<(2n+1/2) 7, (12
but appear in anticorrelation under the following condition:

Xo(t=7)7 and xp(t)|

Although the GPS transition is quite large, the amplitudes

between two interactive oscillators are still less correlatedwhen (2n+1/2)7<97<(2n+3/2) 7.

(13
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vergent points, theie. are nearly maximum. The correlating

S directions of the particulat}™ points are also determined by
A i .o the distance from the two convergent points. Whhap-
anti- ./ 9% \ "‘; proaches the left convergent point, the case results in anti-
L _("\ o lge correlation. It becomes in-correlation whér is close to the
@n+Dr ]; K ’Znu right convergent point.
Qllti- ‘\| /a m-
AR R 4 VI. CONCLUSION
P 73':""

' In summary, we have studied the PS properties of two

FIG. 8. The circle map transformed from Fig. 1. The two black g]eulgua”\)/w(t:k? lf[ﬁlae(ijnzsesalgre o;c;lilritgrzevl\gth {ahgagﬁg ?r;tr:g;t?on

points are the convergent points. The terms “anti” and “in” refer to Y. oo % . .
undergoes a nearly periodic sequence. Two explicit regions

anticorrelation and in-correlation, respectively, of interactive signals fthe GPS t i p 4.0 ds to the t
X; andx,, while eg"" and e]'** are local minimum and maximum of orthe I'anl;}nSI lon are found. Lne corresponds to the tran-
the PS transitions. sition arounde; "' . The properties of phase difference are the

same as those with zero time delay. The other region corre-

These regular in-correlation and anticorrelation are deterSPONds to the transition arourd™. Before the GPS transi-
mined by the trajectory of the Reler attractor, which has a tion, LPS may exist. In the LPS region, the fluctuation of the
single rotation center. By substituting Ed1) into Eqs.(12) ~ Phase difference is the same as that in the region with a local
and (13), we can determine the correlation directions be-Minimum GPS transition. However, with the increase of cou-
tweenx,(t) andx,(t) under differentd”. The result is just pling s_trength, the sequence of the phase d|ffer_ence is quite
the distribution of in-correlation and anticorrelation shown in c0mplicated. Phase slips of7Zan only be found in certain
Fig. 1. Similarly, we can also take another equation with"€9ions of the coupling strength. Near the _GPS transition, the
coupling term e[x,(t—7)—x,] to analyze their in- 27 phage slips may transform to jagged slips. After GPS', the
correlation and anticorrelation betwerg(t) andx,(t). The fluctuation may also appear in the jagged shape. The inter-
same result is obtained. action of coupled signals appears in-correlation and anticor-
If we transform Fig. 1 into a circle map, the different relation alternately in a variety of time delays. To the best of
correlating directions as well as the PS transition can be corRUr knowledge such results have not been reported before
sidered as the interactive results between two converge/@d they may benefit the investigation of PS in natural phe-
points, as shown in Fig. 8. They correspondto=2ns and  Nomena and complex systems.
(2n+1), respectively. At the convergent points, the PS
transition is a local minimum. Whe#” is far away from
either of them, their, increases accordingly. At the points  The work described in this paper was fully supported by a
with 97=(2n+1)/2, which is the farthest from the two con- Grant provided by CityUProject No. 7001077

ACKNOWLEDGMENT

[1] D. V. Ramana Reddy, A. Sen, and G. L. Johnston, Phys. Rev.[7] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
Lett. 85, 3381 (2000; 80, 5109 (1998; R. Herrero, M. Lett. 76, 1804 (1996.

Figueras, J. Rius, F. Pi, and G. Orrioisid. 84, 5312(2000. [8] A. S. Pikovsky, M. G. Rosenblum, G. V. Osipov, and J. Kurths,
[2] E. Niebur, H. G. Schuster, and D. M. Kammen, Phys. Rev. Physica D104, 219 (1997).

3] ;et; 67, 2(7153(%’?191)5 Phys. Rev. L&, 2009(1994: S [9] E. Allaria, F. T. Arechi, A. DiGarbo, and R. Meucci, Phys. Rev.
. Roy and S. Thornburg, Phys. Rev. ;' S. ] . : .
K. Han, C. Kurrer, and Y. Kuramotabid. 75, 3190(1995; H. ;Zt;.l 8§;i78E7n;228])é 4%1' 1'2388tsev’ Int. J. Bifurcation Chaos

U. Voss, ibid. 87, 014102(2001); in Waves and Patterns in i b d h
Chemical and Biological Medjeedited by H. L. Swinney and [10] U. Parlitz, L. Junge, W. Lauter an, and L. Kocarev, Phys.
V. I. Krinsky (MIT, Cambridge, MA, 1992 Rev. E54, 2115(1996; S. Taherion and Y. C. Lai, Int. J.

[4] S. Boccaletti, C. Grebogi, Y. C. Lai, H. Mancini, and D. Maza, Bifurcation Chaos Appl. Sci. End.1, 2587(2000.
Phys. Rep329, 103 (2000; W. Just, T. Bernard, M. Osthe- [11] C. M. Ticos, E. Rosa, Jr., W. B. Pardo, J. A. Walkenstein, and

imer, E. Reibold, and H. Benner, Phys. Rev. L& 203 M. Monti, Phys. Rev. Lett85, 2929(2000.
(1997; W. Just, D. Reckwerth, J. Notel, E. Reibold, and H.  [12] B. Blasius, A. Huppert, and L. Stone, Natudeondon 399,
Benner,ibid. 81, 562 (1998. 354 (1999.

[5] V. S. Udaltsov, J. P. Goedgebuer, L. Larger, and W. T. Rhoded,13] P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J.
Phys. Rev. Lett86, 1892 (2001); L. W. Liu, G. M. Ge, H. Volmann, A. Schnitzler, and H. J. Freund, Phys. Rev. L&iti.
Zhao, Y. H. Wang, and G. Liang, Phys. Rev. @, 7898 3291(1998.

(2000. [14] A. Neiman, X. Pei, D. Russell, W. Wojtenek, L. Wilkens, F.

[6] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Moss, H. A. Braun, M. T. Huber, and K. Voigt, Phys. Rev. Lett.
Lett. 78, 4193(1997); S. Boccaletti and D. L. Valladares, Phys. 82, 660(1999.

Rev. E62, 7497(2000. [15] M. Palus, J. Kurths, U. Schwarz, D. Novotna, and I. Charva-

056203-6



PHASE SYNCHRONIZATION IN COUPLED CHAOTCT. .. PHYSICAL REVIEW E 66, 056203 (2002

tova, Int. J. Bifurcation Chaos Appl. Sci. Entp, 2519(2000. (1998; K. J. Lee, Y. Kwak, and T. K. Lim,bid. 81, 321
[16] Nonlinear Analysis of Physiological Datadited by H. Kantz, (1998.

J. Kurths, and G. Mayer-KregS$pringer, Berlin, 1998 C. W.  [22] Z. H. Liu, V. C. Lai, and F. C. Hoppensteadt, Phys. ReGE

Eurich and J. G. Milton, Phys. Rev.5, 6681(1996; P. Tass, 055201(2001); Z. G. Zheng, G. Hu, and B. B. Hu, Phys. Rev.

J. Kurths, M. G. Rosenblum, G. Guasti, and H. Hefibi. Lett. 81, 5318(1998.

54, 2224(1996. . [23] Z. G. Zheng and G. Hu, Phys. Rev.@, 7882(2000; J. Y.
[17] K. Otsuka and R. Kawai, Phys. Rev. Le#y, 3049(2000; J. Chen, K. W. Wong, and J. W. Shuai, Phys. Lett285, 312

K. Butler, D. E. Ackley, and D. Botez, Appl. Phys. Lett4, (2001.

293(1984; H. J. Yoo, J. R. Hayes, E. G. Paek, A. Scherer, and[24] V. Andrade, R. L. Davidchack, and Y. C. Lai, Phys. Rew6E
Y. S. Kwon, IEEE J. Quantum Electro@6, 1039(1990. 3230(2000

[18] G. Kozyreff, A. G. Vladimirov, and P. Mandel, Phys. Rev. Lett. [25] 1. Kim, C. M. Kim, W. H. Kye, and Y. J. Park, Phys. Rev.2,

[19] §5A353_|E‘)3195E52822§e Resetting in Medicine & Biolog$pringer 8826(2000; J. Y. Chen, K. W. Wong, H. Y. Zheng, and J. W.
A 1ass, g pringer, Shuai,ibid. 63, 036214(2001; J. Y. Chen, K. W. Wong, and J.

Berlin, 1999; J. W. Shuai and D. M. Durand, Phys. Lett. A

264, 289 (1999 Y. Shuai,ibid. 12, 100(2002; W. H. Kye and C. M. Kim,ibid.
[20] O. E Ramsler, Phys. Lett57A, 297 (1976. 62, 6304(2000; Z. G. Zheng, B. B. Hu, and G. Hibid. 62,
[21] E. Rosa, Jr., E. Ott, and M. H. Hess, Phys. Rev. 8t.1642 402 (2000.

056203-7



