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We study the effects of global noise on waves in heterogeneous, spatially clustered, reaction-diffusion
systems with possible applications to calcium signaling. We first discuss how clustering of the excitability
determines the dynamics by shifting bifurcation points and creating new oscillatory solutions. We then consider
the specific situation, where intrinsic noise, due to the smallness of the excitable patches, destroys the global
oscillatory state. We show that additional small global fluctuations, however, can partially restore temporal and
spatial coherence of the oscillatory signal.
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I. INTRODUCTION

Recently, considerable attention has been paid to the con-
structive effects of noise in nonlinear systems �1�. One of the
widely studied phenomena is stochastic resonance and coher-
ence resonance, where additional noise can improve a sys-
tem’s response to a weak periodic signal �2�, or even in the
absence of a periodic driving �3,4�. In complex biological
systems, different sources of fluctuations are present, often
characterized as extrinsic and intrinsic noises. It has been
shown that intrinsic fluctuations can improve the encoding of
small signals �5�, or enhance the periodicity of spiking in a
chain of coupled neurons �6�. Furthermore, multiple noise
sources can generate novel and unexpected phenomena, such
as effective noise cancellation �7�, noise suppression by
noise �8�, or modulation of coherence resonance �9�.

In this paper we discuss the synergistic effects of spatially
independent and global fluctuations on a spatially clustered
oscillating system. We show that a small optimal intensity of
extrinsic, global noise can restore temporally and spatially
coherent oscillations destroyed by intrinsic noise due to the
smallness of the excitable clusters. In contrast to the standard
stochastic-resonance scenario, where a deterministically
stable �nonperiodic� state is turned into a periodic state, the
coherence of a deterministically periodic state is enhanced by
the interaction of various noises.

As a working model, we consider a model for intracellular
calcium dynamics. This model used here does not contain
biophysical details of the calcium signaling machinery, but is
rather focused on the important consequences of clustering
of excitability, an important source of intrinsic noise. Cal-
cium ions are an important second messenger in living cells
�10�, and calcium signals have been subject of experimental
�10–17� and theoretical investigations �18–29� in recent de-
cades. Intracellular calcium is released from internal Ca2+

stores, most notably the endoplasmic reticulum �ER�,
through inositol 1,4,5-trisphosphate receptor channels
�IP3Rs�. Recent experiments revealed that the IP3Rs are dis-

tributed in clusters, spaced a few micrometers apart and with
a few tens of channels per cluster �14�. Hence, Ca2+ libera-
tion occurs at discrete release sites as puffs or sparks �11,13�.
Each local release event is stochastic due to intrinsic stochas-
ticity of channel opening and closing �11,13,14�. Local re-
lease events can merge to form global release events in the
form of oscillations and waves.

It has been shown that rich and complex behaviors can be
found in calcium dynamics, such as the shifts of bifurcations
�30,31� and multiple stable states with hysteresis �32�. By
investigating the global spike trains of four cell types, it has
been suggested that Ca2+ spikes are caused by random wave
nucleation with a regular regime arising from the array en-
hanced coherence resonance with IP3R clusters �17�. Hence,
the stochastic effects in such a system are not only curious
from a physics perspective but are also relevant for open
problems in cell biology. In Sec. IV of this paper, we show
that the clustered organization of the release channels in-
duces rich and complex dynamics of Ca2+ waves with a cor-
responding bifurcation diagram. We report in Secs. V and VI
on a mechanism for generating spatially and temporally os-
cillations through the interaction of stochastic channel dy-
namics and global fluctuations of the concentration of the
second messenger IP3.

II. A SIMPLE MODEL FOR INTRACELLULAR
CALCIUM DYNAMICS

We model the cytosolic space as a two-dimensional sheet,
in which the calcium concentration, i.e., C�x ,y , t�, is de-
scribed by the following reaction-diffusion equation:

�C

�t
= D�2C + f�x,y�JC − JP + JL, �1�

where D denotes an effective diffusion constant, JC channel
flux from ER to the cytosol through clusters of IP3Rs, JP
pump flux from the cytosol to ER through SERCA pumps,
and JL leakage flux from ER to the cytosol. The proteins that
constitute pumps and leakage are assumed homogeneously
distributed over the ER membrane. The IP3Rs are distributed
in clusters positioned on a regular lattice, described by the
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form-function f�x ,y� which is unity at the location of the
clusters and zero elsewhere.

The three fluxes in Eq. �1� are given by

JC = vCg
Nopen

N
�CER − C� �2�

JP = vP
C2

k2 + C2 �3�

JL = vL�CER − C� , �4�

where CER describes the high concentration of Ca2+ in ER.
For this study, which does not focus on physiologic detail,
we assume that the concentration of Ca2+ in ER remains
unchanged everywhere and is thus chosen to be a constant.
The parameters vC, vP, and vL describe the maximum flux
through a cluster of IP3Rs, maximum pump flux, and leakage
rate, respectively. The flux JC through a cluster �i� with N
channels is determined by the fraction of open IP3Rs in this
cluster, i.e., Nopen

�i� /N. For the gating of IP3R, we use the
Li-Rinzel model �19�. The Li-Rinzel model is a simplifica-
tion of the DeYoung-Keizer model �18�, in which each chan-
nel has three subunits with each a binding site for IP3 �i.e.,
m-gate�, and two binding sites for Ca2+, one for activation
�i.e., n-gate� and one for inactivation �i.e., h-gate�. The chan-
nel is open if all three subunits are activated, i.e., IP3 and
activating Ca2+ are both bound. In the Li-Rinzel simplifica-
tion, binding probabilities of IP3 and activating Ca2+ are in-
stantaneous and represented by their quasisteady states,

m� =
p

p + dm
,

n� =
C

C + dn
, �5�

where p represents the IP3 concentration, giving rise to the
factor g=m�

3 n�
3 in Eq. �2�.

Ca2+-inactivation �h-gate� is slow and described by the
binding and dissociation rates � and �, given by

� = ad2
p + d1

p + d3
,

� = aC . �6�

In case that the number of channels per cluster is large and
the fluctuations are small, Nopen /N can be replaced by the
continuous fraction h, obeying the linear rate equations �19�,

dh

dt
= ��1 − h� − �h . �7�

The parameters k, dm, dn, d1, d2, d3, and a in Eqs. �2�–�7� are
specified in Table I.

Due to its large diffusion coefficient, IP3 spreads out
quickly through the cell after generated locally, acting as a
global signal in the intracellular space �12� and is thus often

treated as a common variable �20,21,24�. The dynamics of
the IP3 concentration p around its steady-state concentration
p0 are determined by �18�,

dp

dt
=

p0 − p

�
, �8�

with the degradation rate of 1 /�. According to �33�, we chose
�=10.0 s here.

In this paper we will go one step further by taking into
account stochasticity in the local production of IP3 �e.g.,
through variable amounts of agonist binding to receptors on
the plasma membrane�, which through the rapid spread
through the entire cell becomes a global, stochastic signal.

In our model, the IP3Rs are distributed in equally sized
clusters with N=36 channels each, positioned on a regular
array at a distance of L=3 �m. The small size of the clusters
facilitates rapid equilibration of calcium within the cluster
and one can therefore assume that all channels in one cluster
experience the same calcium concentration �20�. We further
approximate the clusters as point sources where the actual
size of the cluster appears as a prefactor of vC �25�, i.e., the
form function f�x ,y� becomes a sum of � functions located at
the clusters. In the simulation, an area of 60	60 �m2 mem-
brane ER is discretized and represented by a grid with dis-
tance �x=0.5 �m. Nonflux boundary conditions are applied
in the model. The parameter values given in Ref. �24� are
used in the present study �Table I�.

III. UNIFORM CALCIUM CONCENTRATION

In this section we discuss the behavior of the model in the
limit of a large diffusion coefficient of Ca2+, resulting in a
rapid formation of a uniform Ca2+ concentration. All IP3Rs
of all clusters are clamped to the same, but variable, Ca2+

concentration. Thus, the Laplacian in Eq. �1� vanishes, the
number N becomes the total number of channels 10 000, and
the fraction Nopen /N becomes continuous �h�, leaving us with
a set of ordinary differential equations for cytosolic Ca2+

concentration, i.e.,

TABLE I. Model parameters.

L 3 �m

N 36

D 15 �m2 /s

vC 21.6 /s

vP 0.5/s

vL 0.001 �M /s

CER 15 �M

k 0.1 �M

dm 0.13 �M

dn 0.08 �M

a 0.2 /�M /s

d1 0.13 �M

d2 1.05 �M

d3 0.94 �M

� 10 s

LIAO, JUNG, AND SHUAI PHYSICAL REVIEW E 79, 041923 �2009�

041923-2



dC

dt
= JC − JP + JL,

dh

dt
= ��1 − h� − �h , �9�

where the channel flux becomes JC=
Cm�
3 n�

3 h3�CER−C�
with the modified maximum flux 
C=�C /36 �24�. The other
terms are the same as given in Eqs. �3�–�7�. Stochastic ef-
fects of gating can be ignored here for the large number N
�fluctuations are of the 1 /�NTotal� �22�.

For this deterministic model �Eq. �9��, the bifurcation dia-
gram of stable attractors of Ca2+ signal is shown in Fig. 1 as
a function of p. For IP3 concentrations p, between 0.24 �M
and 1.1 �M, Ca2+ oscillations are observed, while for lower
and higher IP3 concentrations, stationary concentrations are
found. This bifurcation diagram sets the stage for further
studies of the behavior of the system without the constraints
to large diffusion coefficients of Ca2+ and large numbers of
channels.

IV. CHANNEL-CLUSTERING AND DYNAMIC
BIFURCATIONS IN THE ABSENCE

OF STOCHASTIC EFFECTS

We now lift the constraint of a large diffusion coefficient
and allow for gradients in the overall Ca2+ concentration. We
do, however, at this point neglect stochasticity in the cluster
conductance due to spontaneous opening and closing of
IP3Rs. Hence, we consider the deterministic dynamics and
pattern formation in a spatially clustered excitable system.

To quantify the effects of spatial gradients for the dynam-
ics and stable attractors, we consider the dynamics of cell-
averaged Ca2+ concentrations, i.e., we solve Eqs. �1�–�5� and
then perform a spatial average. In Figs. 2�A� and 2�B� we
show the bifurcation diagrams of cell-averaged calcium CCell
as a function of p at D=30 and 15 �m2 /s, respectively.
These diffusion coefficients are biologically meaningful as
they incorporate the effect of buffers �12�.

At D=30 �m2 /s the dynamic behavior resembles very
much the system with uniform Ca2+ concentrations, i.e., the

oscillations of Ca2+ signal are found for the range of
0.18 �M� p�0.84 �M. The minimum and the maximum
amplitudes in Fig. 2 depict oscillations. The onset and termi-
nation of oscillations are shifted to smaller values of p.

At D=15 �m2 /s, however, we find a bifurcation diagram
which is qualitatively very different �Fig. 2�B��. The range of
IP3 concentrations for which we find stable oscillations is
even smaller, and the bistable range �a fixed point and an
oscillatory attractor� just before the bifurcation back to
steady state �i.e., close to p
0.69 �M� has shrunk �Fig.
2�B��. Most interestingly, however, a new steady-state
branch F in the interval 0.15 �M� p�0.23 �M and a new
oscillatory branch P2 in the interval 0.23 �M� p
�0.29 �M emerged. The new branch of fixed point F coex-
ists with the oscillatory state P1. Closer inspection of the
spatiotemporal patterns represented by P1 and P2 shows that
these are two phase shifted, propagating intracellular Ca2+

waves �data not shown�.
In the following, we focus our attention to the region of

0.23 �M� p�0.29 �M, where a propagating Ca2+ wave
�P1� coexists with a steady-state concentration. We will next
take into account intrinsic channel noise and global fluctua-
tions in the IP3 concentration p, and study the fate of the
spatiotemporal dynamics of calcium signal. We will show
that the channel noise alone will destroy the wave and the
associated spatial and temporal coherence. Small global fluc-
tuations of IP3, however can partially restore temporal and
spatial coherence of the intracellular calcium oscillation.

V. Ca2+ SIGNALING MODEL WITH INTRINSIC
CHANNEL NOISE

For a small number of channels in each cluster, the frac-
tion of open channels in a cluster is stochastic due to the

FIG. 1. Bifurcation diagram of the model as a function of IP3

messenger p for intracellular calcium dynamics �Eqs. �1�–�7�� with
uniform cytosolic Ca2+ concentration, i.e., for D=�. Oscillatory
branches are depicted by the minimum and the maximum of the
amplitude.

FIG. 2. Bifurcation diagrams of the model for intracellular cal-
cium dynamics �Eqs. �1�–�7�� for nonuniform cytosolic Ca2+ con-
centration and clustered arrangement of the IP3Rs with a cluster
distance of 3 �m for D=30 �m2 /s �a�, and D=15 �m2 /s �b�.
Channel dynamics are deterministic. Stable oscillatory branches are
depicted by the minimum and the maximum of the amplitude. P1
and P2 denote oscillatory branches while F denotes the fix point.
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thermal opening and closing �22� of the individual channels.
In this case, the channel fluxes at the various cluster sites �i�
can be expressed as

JC
�i� = vCg

Nh-Open
�i�

N
�CER − C�i�� , �10�

where Nh-Open
�i� denotes the number of noninhibited IP3Rs of

cluster �i�, and C�i� the cytosolic calcium concentration at
cluster site �i�. In order to determine the number Nh-Open

�i� , we
perform a Markov-simulation of the gating scheme of IP3Rs
as described in �22� with the binding and dissociation rates
given in Eq. �6�.

We combine the Markov simulations of the clusters with
36 IP3Rs per cluster with the solution of Eq. �1� to find the
stochastic spatiotemporal Ca2+ dynamics. Averaging the
noisy Ca2+ concentrations over the entire system we can
compare the resulting bifurcation diagram �Fig. 3�A�� with
that obtained in the absence of channel noise at D
=15 �m2 /s �Fig. 2�B��. Some of the detail of the nonsto-
chastic bifurcation diagram �Fig. 2�B�� vanishes in the pres-
ence of channel noise. The two branches P1 and P2 in Fig.
2�B� describing propagating calcium waves merge into a
single state. The steady-state branch F in Fig. 2�A� merges
with P1 to yield stochastic calcium fluctuation around the
steady state �see Fig. 3�B��. The power spectrum of calcium
fluctuation at p0=0.25 �M indicates little periodicity, as
shown in Fig. 4 ��=0�. The coherence and periodicity of the
intracellular Ca2+ wave signal are destroyed by the spatially

independent fluctuations of channel conductance. In Sec. VI,
we show that an optimal amount of extrinsic fluctuations in
the global IP3 concentration can restore the temporally and
spatially coherent Ca2+ waves, which were destroyed by the
channel noise at p0=0.25 �M.

VI. INTERACTION BETWEEN INTRINSIC CHANNEL
NOISE AND EXTRINSIC IP3 FLUCTUATION

We now take into account global stochasticity of the IP3
concentration p. Global IP3 fluctuations are likely to occur
whenever IP3 is generated as a response to extracellular ago-
nist binding to metabotropic receptors distributed locally on
the plasma membrane or through local release of caged IP3
through application of light in experiment �11,14�.

Assuming a narrow Gaussian distribution of the IP3 con-
centration around the average value of p0=0.25 �M, the
dynamics of p is described by the stochastic differential
equation,

dp

dt
=

p0 − p

�
+ ���t� , �11�

where � denotes the noise strength, and ��t� white Gaussian
noise with zero mean, i.e.,

���t�� = 0

���t1���t2�� = 2��t1 − t2� . �12�

Artifacts such as negative values for p do not typically
occur since we only use small values of �. The variance of
the Gaussian distribution of p is given by ��2. Hence for �
=0.03, i.e., the largest value of � we are using, one has
��2=0.009 �M2. Thus, the standard deviation ���2

=0.095 �M, which is much smaller than the average p0
=0.25 �M, and so the chance of negative values of p is very
small.

In Figs. 3�C�–3�E�, we show the effect of global fluctua-
tions of IP3 on the calcium dynamics at the center cluster of
the cell model for various fluctuation strengths �. Visible

FIG. 3. �a� Bifurcation diagrams of the model for intracellular
calcium dynamics �Eqs. �1�–�7�� for nonuniform cytosolic Ca2+

concentration and clustered arrangement of the IP3Rs with 36 chan-
nels per cluster and a cluster distance of 3 �m at D=15 �m2 /s. In
contrast to Fig. 2, stochastic channel open/closing dynamics have
been taken into account. Oscillatory branches are depicted by the
minimum and the maximum of the amplitude. In ��B�–�E�� we show
traces of Ca2+ concentrations at the center cluster for increasing
noise intensities of the second messenger IP3 at �=0.0, 0.001,
0.006 and 0.03, respectively. Here p0=0.25 �M.

FIG. 4. The normalized power spectra of Ca2+ concentrations
Ccent�t� at central cluster in the two-dimensional �2D� cell model are
calculated with different IP3 noise intensities, i.e., �=0 �thin solid
line�, 0.001 �dotted line�, 0.006 �thick solid line�, and 0.03 �M /s1/2

�dashed line�. Here p0=0.25 �M and N=36.
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inspection of the data suggests that an increase in global IP3
fluctuation results in a more periodic Ca2+ signal with an
optimal value of about �=0.006 �M /s1/2 �Fig. 3�D��. Hence
periodicity and signal encoding are restored at an optimal
value of IP3 fluctuation. Comparing the normalized power
spectra of the calcium trajectories of the center cluster we
further assess this effect. The corresponding power spectra
are shown in Fig. 4 for trajectories at �=0.0, 0.001, 0.006,
and 0.03 �M /s1/2. The spectrum at �=0.006 �M /s1/2

clearly demonstrates the restored periodicity at a frequency
of 0.075 Hz.

The periodicity of the Ca2+ signal can be characterized by

� = HP
fp

�f
, �13�

where Hp represents the peak height of the spectrum P�f�, fp
the frequency at the peak, and �f the frequency width at half
peak height. A larger value of � indicates a better periodicity
�3�. Figure 5�A� shows that the periodicity first increases
with increasing global fluctuations �, reaching a maximum at
�=0.006 �M /s1/2, and then decreases with larger �.

The peak frequency is also shifted with increasing � as
shown in Fig. 5�B�. At small � the peak frequency is about
0.087 Hz, while at large � the peak frequency approaches to
0.07 Hz, which is close to the oscillation frequency of the
system in the absence of any noise �i.e., 0.067 Hz�.

VII. DISCUSSION AND CONCLUSIONS

We have found that global noise, generated through rapid
diffusion of the second messenger IP3, can restore global
periodicity of the cellular Ca2+ signal, which has been de-
stroyed by channel conductance fluctuations, and hence in-
crease cellular signaling capability. In this section we discuss
the underlying mechanism for this unexpected behavior.

To explain this effect, we consider first a single cluster of
IP3Rs in the absence of interaction with other clusters in the
presence of channel noise and IP3 fluctuation. This is real-
ized by considering one cluster and setting the diffusion con-
stant zero. More concrete, we solve Eq. �1� with D=0, the
channel flux given in Eq. �10� with a cluster size of N=36

channels, and the stochastic differential equation for IP3 con-
centration p given in Eq. �11�. In Fig. 6, we show the power
spectra of the single cluster for a range of fluctuation inten-
sities � of the IP3 concentration. All power spectra are very
similar and do not show an increase in periodicity at any
value of �. Hence, the dynamics of a single cluster is not the
origin of the increase in global periodicity in the presence of
coupling to other clusters.

To further substantiate the hypothesis that the increased
periodicity is related to the diffusive coupling between clus-
ters, we study the correlation between local Ca2+ dynamics at
the center cluster Ccent and the global cell-averaged Ca2+

dynamics Ccell, i.e.,

F��� =
��Ccell�t� − �Ccell�� · �Ccent�t� − �Ccent���

���Ccell�t� − �Ccell��2� · ��Ccent�t� − �Ccent��2�
.

�14�

A simple measure for the overall correlation is the correla-
tion time �24�,

�0 = �
0

�

F2dt , �15�

which is shown in Fig. 7 for the model discussed in Figs. 4
and 5. The correlation time increases with increasing global
IP3 fluctuations until it reaches a maximum at the same value
where the local Ca2+ dynamics are most periodic �see Fig. 4�.

Hence, periodicity is linked to large spatial correlations,
allowing a simple interpretation of the main result in this
paper. Global IP3 fluctuations, although small, slightly bias

FIG. 5. The periodicity factor � �Eq. �13�� of the Ca2+ signal
Ccent�t� at central cluster �a� and the corresponding peak frequency
of the power spectrum �b� are plotted as a function of IP3 noise
intensity �.

FIG. 6. The normalized power spectra of Ca2+ concentrations
Ccent�t� for an independent cluster �i.e., a stochastic point model
only� are calculated with different IP3 noise intensities at �=0.0,
0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, and 0.03. Here p0

=0.25 �M and N=36.

FIG. 7. The cross-correlation time �0 �Eq. �15�� between Ccent�t�
and CCell�t� are plotted as a function of IP3 noise intensity � for the
model given in Figs. 4 and 5.
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the clusters to correlated occurrence of Ca2+ release. Ca2+

released at one site diffuses to other nearby clusters and fur-
ther correlates the clusters through calcium-induced calcium
release.

In the paper we report an unexpected effect of global
fluctuations in a clustered excitable medium. We show that
spatiotemporal coherence, destroyed by the fluctuations
borne by the small size of the number of ion channels in a
cluster generating the excitability, can be partly restored by
global fluctuations acting on all excitable clusters of the sys-
tem.

This effect has been studied in a simple model for calcium
signaling which does not contain much biophysical detail.

For example, we ignore suspected large gradients in the cal-
cium concentrations in the vicinities of open channels and
their consequences for the onset of oscillations. It thus re-
mains an open problem how robust this effect is and whether
it maybe relevant for intracellular calcium signaling.
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