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Abstract. In many cell types, intracellular calcium is released from internal stores through calcium release
channels. Because these channels are distributed in clusters with a few tens of channels, the clusters show
a strongly stochastic open and close dynamics, resulting in noisy localized Ca2+ signals called puffs. Using
the Li-Rinzel model we compare the stochastic channel simulations for the Markov method and three
different Langevin approaches. We suggest that a modified Langevin approach should be considered in
order to more accurately simulate Markov channel noise for puff dynamics.

1 Introduction

Calcium signaling is one of the most important and ver-
satile signaling mechanisms in cell biology [1]. Ca2+ trig-
gers life at fertilization and controls the development and
differentiation of cells into specialized types. It mediates
the subsequent activity of cells and is also involved in cell
death. Calcium ions can be released from the endoplasmic
reticulum (ER), an internal store in cells with high cal-
cium concentration, through inositol 1,4,5-trisphosphate
receptors (IP3R) [2] or Ryanodine receptors (RyR) [3].

Recently, high-resolution fluorescence experiments
suggested that the Ca2+ releasing IP3R channels are spa-
tially organized in clusters with only 20−50 channels and
a size of about 400 nm [4,5]. The cluster distance is about
2 μm. Upon the binding of inositol 1,4,5-trisphosphate
(IP3) messengers and calcium ions, the IP3R channels be-
come open to release calcium from the ER into cytosolic
space. Such localized Ca2+ releases are called puffs [4–6]
or sparks [7] for release from a cluster of IP3Rs or RyRs,
respectively. Ca2+ blips arising from the opening of single
release channels have been observed as well [4,8]. It has
been shown that the clustered channels show a strongly
stochastic open/close dynamics, resulting in noisy puffs
with broad distributions of amplitude, lifetime and inter-
puff interval [9].

Different stochastic methods have been employed to
simulate the stochastic channel dynamics. A simple com-
puter implementation of the stochastic process is based on
a fixed small time step and from here on called Markov
method [9,10]. A statistically exact method was proposed
by Gillespie [11,12]. The drawback of these methods is
that they become computationally very demanding as one
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wishes to describe an entire cell with thousands of re-
lease clusters or even networks of cells. Stochastic dif-
ferential equations in the Langevin approach have been
suggested where the gate variables are modulated by
Gaussian noise [9,13]. Such a gate-kinetic Langevin ap-
proach (gate-LA) is easy to implement and computation-
ally efficient. This line of Langevin approach was first
discussed by Fox and Lu in the Hodgkin-Huxley neuron
model [14,15], which is widely used as an approximation
for stochastic channel dynamics [16–19].

With the Hodgkin-Huxley neuron model at small chan-
nel number it has been suggested that the gate-LA does
not accurately replicate the stochastic response properties
of the Markov models and should be modified to correctly
reflect the channel noise [16,17,20]. For the calcium system
with Li-Rinzel model [21], the comparison between the
exact Markov method and the Langevin approach in the
calcium system has also shown that the gate-LA does not
accurately replicate the stochastic response properties of
the Markov models at small channel number [9,22]. More-
over, there has been proposed another Langevin approach
for stochastic Hodgkin-Huxley model based on the chan-
nel kinetic dynamics [14,17], which has seldom been dis-
cussed for neuronal models and never been applied to the
calcium system. In the paper we introduce this channel-
kinetic Langevin approach (channel-LA) for the Li-Rinzel
model [21], and compare the moments of the noisy calcium
signals obtained with the gate-LA, the channel-LA and the
Markov method. We show that the Langevin approaches
agree with the Markov model at large channel number.

In fact, Langevin approaches are obtained by expand-
ing the master equation of the Markov model in terms
of the inverse of the channel number and truncating
the resulting infinite orders after the second term. Thus,
the Langevin approaches cannot accurately replicate
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the properties of Markov model at small channel num-
ber, because the truncated noise terms are not negligi-
ble. These Langevin approaches then provide less accu-
rate properties for puff dynamics where there are only a
few tens of channels in the cluster [5,8]. Our goal here is
to present an improved Langevin approach, which is valid
for puff dynamics. We suggest a modified Langevin ap-
proach which can represent channel noise much better in
the Li-Rinzel model for puff simulation. Such a modified
Langevin approach will be helpful for the simulations of
global calcium waves with puffs from many clusters by
generating reasonable noise amplitudes with a fast com-
putation method.

2 Li-Rinzel calcium model

One of the first kinetic models for the IP3R was pro-
posed by DeYoung and Keizer [23]. The Li-Rinzel IP3R
model [21] is a simplified DeYoung-Keizer model. Accord-
ing to the Li-Rinzel model, the IP3R channel is modeled
by three identical subunits that each have three binding
sites: one for the IP3 messenger (m-gate), one activating
site (n-gate) for Ca2+ and one inactivating site (h-gate)
for Ca2+. In order for a subunit to be open, only the IP3

and the activating Ca2+ binding sites need to be occu-
pied. The IP3R is conducting if three subunits are open.
In the Li-Rinzel model, the gating variables m and n have
been replaced by their quasi equilibrium values m∞ and
n∞ due to their fast kinetics. Then the calcium signaling
model is given by [21],

dC

dt
= JC − JP + JL

dh

dt
= α(1 − h) − βh (1)

with

JC = c1vCm3
∞n3

∞h3(CER − C)

JP = vP
C2

k2 + C2

JL = vL(CER − C). (2)

Here, C denotes the localized Ca2+ concentration released
from a cluster of channels, CER the Ca2+ concentration
in the ER, and h the slow inactivation variable. JC de-
notes Ca2+ efflux from intracellular stores through clus-
tered IP3R channels, JP the ATP-dependent Ca2+ flux
from the intracellular space back to the stores, and JL the
leakage flux.

The slow unbinding and binding rates for Ca2+ inac-
tivation are given by

α = ad2
p + d1

p + d3

β = aC (3)

in which p denotes the concentration of IP3. The quasi-
equilibrium states of m and n are

m∞ =
p

p + dm

n∞ =
C

C + dn
. (4)

According to reference [21], the model parameters are c1 =
0.185, vC = 6 s−1, vL = 0.11 s−1, vP = 0.9 μM s−1, k3 =
0.1 μM, d1 = 0.13 μM, d2 = 1.049 μM, d3 = 0.9434 μM,
d5 = 0.08234 μM, and a2 = 0.2 μM−1 s−1. The total
amount of Ca2+ is conserved via the Ca2+ concentration
in ER with C + c1CER = c0 with c0 = 2.0 μM.

3 Simulations of stochastic channel dynamics

In this paper the Li-Rinzel model is used to simulate cal-
cium release from small clusters of IP3Rs [9,13]. Assuming
the clustered channels to be close enough, the Ca2+ con-
centration can be considered homogeneous throughout the
cluster [24,25]. Thus we neglect spatial aspects of the for-
mation and collapse of localized Ca2+ concentration in the
cluster [26]. Supposing there are N channels in the cluster,
we discuss the stochastic channel dynamics which can be
simulated by the Markov method, gate-LA or channel-LA.

In a deterministic Li-Rinzel model, h3 represents the
fraction of un-inhibited IP3Rs, i.e. h3 ≡ Nuninhibition/N .
Here the un-inhibited IP3R is the channel with three in-
hibiting Ca2+-binding sites all unbound and Nuninhibition

is the number of uninhibited channels in the cluster.
Hence, the channel flux density can be written as

JC = c1vCm3
∞n3

∞

(
Nuninhibition

N

)
(CER − C). (5)

An accurate method of stochastic channel dynamics is the
two-state Markov method where the binding/unbinding
state of each h-gate is calculated in detail with sufficiently
small time step [9,13].

The gate-LA is a widely applied approach where the
h-gate dynamics is simply modulated by a Gaussian
noise [9,13]. There are two ways to consider the Gaussian
noise for the three h-gates: one either simply assumes
three identical h-gates or one assumes three independent
h-gates. For the identical gate-LA, we have

JC = c1vCm3
∞n3

∞h3(CER − C) (6)

and
dh

dt
= α(1 − h) − βh +

G√
N

ζ(t). (7)

For the independent gate-LA, we have

JC = c1vCm3
∞n3

∞h1h2h3(CER − C) (8)

and

dhi

dt
= α(1 − hi) − βhi +

G√
N

ζi(t) (i = 1, 2, 3) (9)
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Fig. 1. (Color Online) The mean fraction (a) and the standard deviation (b) of uninhibited IP3R as a function of channel
number N at the equilibrium state with C = 0.125 μM and p = 0.3 μM, obtained with the analytic result (dashed lines),
Markov method (squares), channel-LA (triangles), independent gate-LA at λ = 1 (open stars), identical gate-LA at λ = 1 (open
circles) and modified identical gate-LA at λ = 0.7 (solid circles). Note that λ is introduced in equation (20). For the standard
derviation such as in equation (7), λ = 1.

D =

⎛
⎜⎜⎝

3αx0 + βx1 −(3αx0 + βx1) 0 0
−(3αx0 + βx1) 3αx0 + (β + 2α)x1 + 2βx2 −(2αx1 + 2βx2) 0

0 −(2αx1 + 2βx2) 2αx1 + (α + 2β)x2 + 3βx3 −(αx2 + 3βx3)
0 0 −(αx2 + 3βx3) αx2 + 3βx3

⎞
⎟⎟⎠ (16)

where ζ(t) is uncorrelated Gaussian white noise with zero
mean and unit variance. The term G is a time-dependent
noise strength with

G2(t) = α(1 − h) + βh. (10)

In the simulation, we use the simple Euler method to solve
the equations, where the h-gate is given by [15]

h(t+Δt) = h(t)+Δt (α(1 − h(t)) − βh(t))+
G√
N

Δκ (11)

with
Δκ =

√
−2Δt lg(a) cos(2πb) (12)

in which a and b are two white noises homogeneously dis-
tributed from 0 to 1.

Now we introduce the channel-LA. Consisting of three
identical and independent subunits, the channel kinetics
can be modeled as a 4-state Markov chain, where each
state indicates the number of h-uninhibited subunits:

0 �
3α

β
1 �

2α

2β
2 �

α

3β
3.

We define xi (i = 0, 1, 2, 3) to be the proportion of IP3Rs
that have i h-uninibited subunits among the total channel
number. Following Fox and Lu method [14] by applying
a system-size expansion, one can derive a channel-LA for
the master equation

dX

dt
= AX +

S√
N

ξ(t) (13)

with X being the vector of xi−s

X =

⎛
⎜⎝

x0

x1

x2

x3

⎞
⎟⎠ , (14)

and the transition matrix A

A =

⎛
⎜⎝

−3α β 0 0
3α −2α − β 2β 0
0 2α −α − 2β 3β
0 0 α −3β

⎞
⎟⎠ . (15)

The matrix S is the matrix square root of the diffusion
matrix D:

(see equation (16) above)

and ξ(t) is a noise vector with each element an uncorre-
lated Gaussian white noise with zero mean and unit vari-
ance.

The entry x3 is the probability of the uninhibited chan-
nels. In other words, we have

JC = c1vCm3
∞n3

∞x3(CER − C). (17)

In the simulation we keep the boundary limitation of 0 �
h, xi � 1 by simply putting h or xi = 0 or 1 once they
are out of the bound and calculate x0 = 1 − ∑

i>0xi to
ensure

∑
xi = 1.

4 Simulation results

First we consider the equilibrium state of the IP3R at
constant concentrations of calcium and IP3 and com-
pare the statistical results derived with different simula-
tion methods. Figure 1a shows the mean fraction of un-
inhibited IP3R as a function of channel number N at
C = 0.125 μM and p = 0.3 μM. The standard devia-
tion of the fraction is also given in Figure 1b. Assuming
that all N channels are identical and independent statis-
tically, the distribution of the total number of uninhib-
ited channels at any given time is a binomial distribution
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Fig. 2. (Color Online) The bifurcation diagrams of C as a
function of p. The solid line is for deterministic model at in-
finite N . For a cluster of N = 20, the averaged maximal and
minimal are plotted with Markov method (squares), channel-
LA (triangles), independent gate-LA at λ = 1 (stars), identical
gate-LA at λ = 1 (open circles) and modified identical gate-LA
at λ = 0.7 (solid circles).

with the h-open probability Ph = h3
∞ as the bias value

with h∞ = α/(α + β). Thus, the analytic solution of the
mean is the bias value of h3

∞ and the analytical standard

deviation is
√

Ph(1 − Ph)/N =
√

h3∞(1 − h3∞)
/
N [17],

given by dashed lines in the figure. One can see that, the
mean 〈Nuninhibition/N〉 obtained with the Markov method
(squares) represents the deterministic result of h3∞ even at
small channel number. While the identical gate-LA (

〈
h3

〉
given by open circles), the independent gate-LA (〈h1h2h3〉
given by stars) and the channel-LA (〈x3〉 given by trian-
gles) could not reproduce the result of Markov method
at small N . The independent gate-LA gives smaller mean
than the identical gate-LA at a few tens of N , suggesting
that the identical gate approach causes additional noise
beyond the Kramers-Moyal truncation for the indepen-
dent gate approach at small N .

Next we would like to discuss the simulations for
a dynamical situation where the calcium concentration
changes with time. In Figure 2 we compare the bifurca-
tion diagrams obtained with different methods. The solid
line gives the values of C as a function of p with the de-
terministic Li-Rinzel model (limit of very large N). We
also consider N = 20 in a cluster with stochastic chan-
nel dynamics. We calculate the maximal and minimal C
during each time window of 10 s, and then plot the av-
eraged maximal and minimal value in Figure 2 for the
Markov method (squares), channel-LA (triangles), inde-
pendent gate-LA (stars), and identical gate-LA (open cir-
cles). It can be seen that for a N = 20 cluster, the bifur-
cation diagram with the Markov method is quite different
from the deterministic one. This is because the excitable
behavior exists to the left and the right of the oscillatory

region for the deterministic system. However, the three
different stochastic methods give similar bifurcation dia-
grams.

We compare these different stochastic methods in de-
tail. We calculate not only the mean 〈C〉 and the standard
deviation D of calcium concentration, but also the third
moment S, i.e. skewness, and the fourth moment K, i.e.
kurtosis, which are defined as

S =

〈(
C − 〈C〉

D

)3
〉

(18)

and

K =

〈(
C − 〈C〉

D

)4
〉

− 3. (19)

These parameters as a function of channel number N at
p = 0.3 and 0.5 μM are plotted in Figures 3 and 4, re-
spectively. As shown in Figure 2, the deterministic system
presents a fixed point at p = 0.3 μM and a periodic oscil-
lation at p = 0.5 μM.

One can see that the identical gate-LA cannot give a
reasonable approximation for the stochastic channel dy-
namics when N < 1000 at p = 0.3 μM, but the channel-
LA and the independent gate-LA can give a valid approx-
imation for the stochastic channel dynamics for N > 200
(Fig. 3). At p = 0.5 μM the three Langevin approaches
cannot give a good approximation for the stochastic chan-
nel dynamics when N < 100 (Fig. 4).

The independent gate-LA and channel-LA give similar
results of moments, indicating both approaches generate
a noise of similar character. The mean values of calcium
signals obtained with these two Langevin approaches are
smaller than those obtained with the Markov method for
small N (Figs. 3a and 4a). This is because these two
Langevin approaches disregards the higher order noise
terms in a 1/N expansion of the Markov master equation.
In contrast, the identical gate-LA typically gives larger
mean values of calcium signals than those obtained with
the Markov method for small N (Figs. 3a and 4a), suggest-
ing that the identical gate assumption causes additional
noise and results in a larger total noise than the Markov
channel noise.

This discussion indicates that these Langevin ap-
proaches cannot give accurate results for stochastic puff
dynamics if there are not more a few tens of channels
within the cluster, which are the reasonable number in
biological puff cluster [5,8]. Considering the simplicity of
the identical gate-LA, our goal in the paper is then to find
a modified identical gate-LA which can give a better ap-
proximation for puff dynamics with a few tens of channels
in the cluster.

Therefore we consider a modified identical gate-LA in
which the strength of the Gaussian noise is rescaled:

dh

dt
= α(1 − h) − βh + λ

G√
N

ζ(t) (20)

where λ is a rescaling parameter to modify the noise
strength. In Figure 5 we show the mean and the devi-
ation of calcium orbits as a function of parameter λ at
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Fig. 3. (Color Online) The parameters of the mean (a), the standard deviation (b), the skewness (c) and kurtosis (d) as a
function of N with Markov method (squares), channel-LA (triangles), independent gate-LA at λ = 1 (stars), identical gate-LA
at λ = 1 (open circles) and modified identical gate-LA at λ = 0.7 (solid circles) at p = 0.3 μM.

Fig. 4. (Color Online) The parameters of the mean (a), the standard deviation (b), the skewness (c) and kurtosis (d) as a
function of N with Markov method (squares), channel-LA (triangles), independent gate-LA at λ = 1 (stars), identical gate-LA
at λ = 1 (open circles) and modified identical gate-LA at λ = 0.7 (solid circles) at p = 0.5 μM.

p = 0.3 μM and N = 20, 50 and 100. For comparison, the
corresponding values obtained with the Markov method
are also plotted in the figure as dashed lines. At N = 50
and 100 the identical gate-LA with λ = 0.7 can give a sim-
ilar mean as given by the Markov method, but at N = 20
the identical gate-LA with λ = 0.6 can give a similar mean
value as given by the Markov method.

Figure 5b shows that the identical gate-LA with λ =
0.7 can give a similar deviation as given by the Markov
method. Thus, we suggest to use λ = 0.7 in the modi-
fied identical gate-LA model. Our simulation shows that
at values around λ = 0.7 the modified identical gate-LA
approach can give good results for the mean fraction and
the standard deviation of uninhibited IP3R at N > 30
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Fig. 5. (Color Online) The mean (a) and the standard deviation (b) of Ca2+ orbits obtained with the modified identical gate-LA
as a function of λ at p = 0.3 μM and N = 20 (circles), 50 (squares) and 100 (triangles). The corresponding values obtained
with the Markov method are given by dashed lines marked with channel numbers.

(solid circles in Fig. 1) at equilibrium state. The modified
identical gate-LA can give a bifurcation diagram similar to
that given by the Markov method (Fig. 2). Furthermore,
Figures 3 and 4 indicate that not only the mean and the
variance, but also the skewness and the kurtosis of the
calcium orbits produced by the modified identical gate-
LA are quite similar as those given with Markov method
at N > 10.

A question is if the optimal parameter λ = 0.7, which
is nearly a square root of 1/2, works for any gate-LA Li-
Rinzel model. In order to answer this question we discuss
the Li-Rinzel model with another set of model parameters
given in reference [24]. Similarly, we show the mean and
the deviation of calcium orbits as a function of parameter
λ in Figure 6 at p = 0.2 μM and N = 20, 50 and 100. For
comparison, the corresponding values obtained with the
Markov method are plotted also in the figure as dashed
lines. For this example λ = 0.6 is suggested. Thus the
result indicates that the rescale parameter for Langevin
noise is model-dependent.

5 Conclusions

In this paper we compare the stochastic Li-Rinzel model
with a discrete representation to the identical gate-LA, the
independent gate-LA and channel-LA. It is to our knowl-
edge the first time that the channel-LA has been applied
for calcium system. We show that the three Langevin ap-
proaches cannot accurately replicate the statistical prop-
erties of a discrete Li-Rinzel puff model in a cluster with a
few tens of channels. This implies that the truncated noise
terms of an 1/N expansion of the master equation in all
the Langevin approaches becomes relevant at small N .

Our simulation results show that the mean values of
calcium signals obtained with the independent gate-LA
and channel-LA are smaller than those obtained with the

Markov method for small cluster size. This is presumably
because these two Langevin approaches neglects the noise
terms represented by the higher order terms in the 1/N
expansion due to the Kramers-Moyal truncation, which
are large at small N. On the other hand, the identical
gate-LA typically gives larger Ca2+ mean values than the
independent gate-LA and channel-LA, suggesting that the
identical gate assumption causes additional noise. With
such the additional noise, the Ca2+ mean values obtained
with identical gate-LA are even larger than those with
the Markov method for small N . As a result, in order to
approximate the Markovian channel noise, a rescale pa-
rameter λ < 1 has to be considered for identical gate-LA
to reduce the Langevin noise.

With a Li-Rinzel model [21], the gating variables m
and n of the IP3R channel have been replaced by their
quasi equilibrium values m∞ and n∞ due to their assumed
fast kinetics and so the dimension of the master equation
is only 4. The original model of the IP3R was proposed
by DeYoung and Keizer [23], where each subunit has eight
states. Then for the DeYoung-Keizer channel model, the
dimension of the master equation for channel-LA is 120.
Thus it is computationally very demanding in order to
solve the square root of matrix D with elements of 120 ×
120 in equation (16).

Due to the simplicity of the identical gate-LA, we sug-
gest a modified identical gate-LA which can well repre-
sent channel noise in Li-Rinzel model for N > 10. We
show that, not only the parameters at equilibrium state
but also the parameters at dynamic state of the Markov
puff system can be reproduced better with the modified
gate Langevin approach. Our results also suggest that
the rescale parameters for Langevin noise is not universal
but depends on the parameters of the Li-Rinzel model.
Thus an empirical factor in the Langevin approach for
puff dynamics has to be determined previously by com-
paring with the exact Markov solution. Such a modified



Y.D. Huang et al.: Modified Langevin approach for a stochastic calcium puff model 407

Fig. 6. (Color Online) The mean (a) and the standard deviation (b) of Ca2+ orbits obtained with the modified identical
gate-LA as a function of λ with Li-Rinzel model given in reference [24] at p = 0.2 μM and N = 20 (circles), 50 (squares) and
100 (triangles). The corresponding values obtained with the Markov method are given by dashed lines marked with channel
numbers.

Langevin approach will be helpful for the simulations of
global calcium waves with puffs from many clusters by
generating reasonable noise amplitudes with a fast com-
putation method.
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