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The random opening and closing of ion channels establishes channel noise, which can be approximated
and included into stochastic differential equations (Langevin approach). The Langevin approach is often
incorporated to model stochastic ion channel dynamics for systems with a large number of channels.
Here, we introduce a discretization procedure of a channel-based Langevin approach to simulate the
stochastic channel dynamics with small and intermediate numbers of channels. We show that our
Langevin approach with discrete channel open fractions can give a good approximation of the original
Markov dynamics even for only 10 K+ channels. We suggest that the better approximation by the
discretized Langevin approach originates from the improved representation of events that trigger action
potentials.

© 2013 Elsevier B.V. All rights reserved.
1. Introductions

Stochastic opening and closing of ion channels, known as chan-
nel noise, has become a central issue in computational neuro-
science. Channel noise is thought to be functionally critical in dif-
ferent types of cells, such as in retinal ganglion cell [1], pancreatic
β cells [2], hippocampal neurons [3,4], and cardiac myocytes [5,6].
In particular, at small membrane patch area the physiological ef-
fects of channel noise are quite noticeable.

In recent years, there has been much interest in the theoret-
ical modeling of the probabilistic nature of ion-channel gating.
Considering the small size of axonal membrane patches [7] and
the stochastic channel dynamics, the Hodgkin–Huxley (HH) neu-
ronal model can be accurately simulated with the Markov method
[8–13]. However, the computational cost of a Markov-based model
may be prohibitive, making approximate algorithms, such as a
Langevin-like approach, advantageous.

Different Langevin approaches (LA) have been suggested so far
according to how to incorporate the channel noise into the deter-
ministic differential equations of the HH neuron model [14]. As
an example, the K+ channel has 4 identical n-gates to control
the channel opening and closing dynamics. The total K+ chan-
nel current is linearly related to the open channel fraction n4,
which can be calculated through discussing the dynamics of the
single gate open fraction n or the transition dynamics of five chan-
nel state variables. By considering the Gaussian noise directly on
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the gate open fraction, Fox and Lu suggested a simple gate-based
LA [15,16]. Due to its simplicity, such type of gate-based LA has
been applied extensively to stochastic channel dynamics [17,10,
11]. However, the past few years have seen increasing evidences
pointing out apparent inaccuracies of gate-based LAs [18–24].

Alternatively, one may incorporate the Gaussian noise into the
channel state fractions [16,25,26]. Fox and Lu proposed an ap-
proach by adding the channel noise on all the channel state vari-
ables [16], which will be termed as channel-based LA in the Letter.
In this method, the master equations of the channel state frac-
tions are perturbed by a Gaussian noise vector. A problem with
this method is that the Gaussian noise may drive the channel state
fractions out of the region of [0,1]. Same problem occurs for the
gate-based LA, but one can simply truncate the single gate variable
into [0,1]. While for channel-based LA, the challenge is how to
keep the sum of the channel state fractions to be 1 after truncat-
ing channel state fraction into [0,1]. The original channel-based LA
ignores such problem, which is applicable for large channel num-
ber with less probability to go out of [0,1] in the simulation.

A reflection method was applied to the original channel-based
LA to constrain the state fractions in the meaningful region of
[0,1] [27]. However, this approach fails at K+ channel number
smaller than 500, because the method changes the mean val-
ues of the fractions of channel states produced by the original
channel-based LA. Recently, another efficient channel-based LA was
proposed to limit the state fractions in the region of [0, 1] by trun-
cating and then restoring the extra state fractions [28]. However,
we still found that the method is inaccurate when the K+ channel
number is smaller than 50.
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Originally, of course, the Langevin approach was developed for
large channel numbers. An interesting but less often discussed
question is if the Langevin method is still valid for small channel
numbers. In this Letter, we suggest a Langevin approach, which is
applicable at membrane patches with a small number of channels.
At small channel number, the discretization effect of open fractions
of the system could not be ignored. In order to be consistent with
the integer values of open channel number, Mino and colleagues
[29] implemented Fox and Lu’s gate-based LA [16] with the cal-
culated values of channel number rounded down to the nearest
integer. Whereas Bruce [19] suggested that it would be more accu-
rate to round to the nearest integer for the same LA. In the current
work, we discuss the discretization of the channel open fractions
for a channel-based LA [28]. A special rounding is chosen and ap-
plied to the open fractions. We show that, with the discretization
treatment of the open fractions, the statistics of the membrane
voltage and action potentials are improved for the channel num-
ber in the interval of [10,100].

2. Methods

The neuron membrane voltage for the deterministic HH model
is given by the following equation [14]:

−C
dV

dt
= INa + IK + I L − IStim (1)

where V is the membrane potential, C the membrane capac-
itance, and IStim the stimulus current. INa = gNahm3(V − ENa),
IK = gKn4(V − EK), and I L = gL(V − E L) are currents of Na+ chan-
nels, K+ channels, and leakage, respectively. The equations for the
gating variables (i.e. n for K+ channel, m and h for Na+ channel),
as well as the model parameters, can be found in Ref. [30].

Because of the thermal noise the channel subunits open and
close stochastically. One can simulate the stochastic dynamics of
each single gate (n, m and h gates) by an open/close two-state
Markov process [31]. In detail, all the gates of the channels in the
system are traced and updated for every small time step �t . If a
gate is closed at time t , then the probability that it is open at time
t + �t is α · �t . If a gate is open at time t , then the probability
that it is closed at time t + �t is β · �t . Random numbers homo-
geneously distributed in [0,1] are generated at each time step and
compared with these transition probabilities to determine the gate
state at each time step. Here, α and β are voltage-dependent tran-
sition rates of channel gates and their expressions can be found
in Eqs. (6)–(11) of Ref. [28]. This gate-based Markov process is
considered as a standard Markov method for stochastic channel
dynamics in the Letter. The corresponding Langevin approaches are
called gate-based LA [15–24].

Alternatively, each Na+ and K+ channel can also be modeled
with a five-channel-state chain and an eight-channel-state chain
as shown in Fig. 1, respectively. With the transition rates given in
Fig. 1, a Markov process can be considered based on these channel
states, which will give the same statistical results as the gate-based
Markov method. The Langevin approaches for the channel-based
Markov process are then called channel-based LA.

The channel-based LA of the HH model was introduced origi-
nally by Fox and Lu [15,16], in which the channel state fractions
are governed by the following master equations

d �X
dt

= AK �X + SK�ξK (2)

d�Y
dt

= ANa �Y + SNa�ξNa (3)

where vector �X = {xi} (i = 0,1,2,3,4 in Fig. 1(a)) and �Y = {y jk}
( j = 0,1,2,3 and k = 0, 1 in Fig. 1(b)) are the fraction vectors of
Fig. 1. The channel state diagram of (a) K+ and (b) Na+ channels. The numbers
indicate how many subunits in a channel are in open state. For instance, in (a) the
number 4 represents four open n subunits for an open K+ channel and in (b) code
3,1 represents three open m subunits and one open h subunits for an open Na+
channel. Arrows are labeled with voltage-dependent transition rates.

channel state. Matrices AK and ANa are the transition matrices;
�ξK and �ξNa are noise vectors with each element an uncorrelated
Gaussian white noise with zero mean and unit variance [32]; SK
and SNa are the matrix square root of the diffusion matrix DK and
DNa, respectively. The diffusion matrices DK and DNa and the tran-
sition matrices AK and ANa can be found in Ref. [23].

Because the noises in Eqs. (2) and (3) are Gaussian, the real-
time values of xi and y jk may be negative. In order to have all
elements positive in the matrices DK and DNa, the equilibrium
fractions of xi and y jk are used in the diffusion matrix. Instead
of directly calculating the square root of the diffusion matrix, the
matrices SK and SNa can be simply expressed by the product of
two matrices because the transitions among channel states are
reversible [27], which can significantly reduce the computational
time.

For numerical simulation, the difference Eq. of (2) is given by

�Xt+�t = �Xt + �t AK �Xt + √
�t SK�ξ t

K (4)

There is a similar difference equation for the fraction vector �Y
in Eq. (3). In the following, this original channel-based LA will be
referred as the unbounded LA (Unbound).

Since the fractions of channel states should not be out of range
[0,1] we have suggested a bounded LA to confine the state frac-
tions xi and y jk within [0,1] [28]. Take K+ channel as an example,
the numerical evolution of channel states can be expressed as fol-
lows.

�Xt+�t = �Xt + AK �Xt�t + (
SK�ξ t

K − �ηt
K

)√
�t

�ηt
K = (�Et+�t − �Et)/√�t (5)

where vector �ηt
K is the difference between two continuous trun-

cated fractions (�Et+�t and �Et ). The truncated fraction vector �E is
defined in Ref. [28]. This truncated and restored LA will be termed
as the bounded LA (Bound) in the Letter.

The open fraction x4 or y31 is continuous within [0,1] in the
above two LAs. While the Markovian method gives a set of dis-
crete values for open fraction. At large channel number the discrete
values of state fractions can be nicely approximated by the contin-
uous number, but at small channel number the continuous open
fraction may introduce large errors for stochastic dynamics. Herein,
we introduce furthermore a discretized scheme which is useful es-
pecially at small channel number.

For K+ channel we consider the following method to discretize
the channel open fraction:

x4 =
{

(bK + 1)/NK if aK > bK + σK

bK/NK otherwise
(6)

where aK = x4NK and its integer part bK = int(x4NK). Similarly, for
Na+ channel,

y31 =
{

(bNa + 1)/NNa if aNa > bNa + σNa
(7)
bNa/NNa otherwise
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Fig. 2. Mean of voltage-clamp open fractions for K+ and Na+ channels with differ-
ent values of σK (a)–(b) and σNa (c)–(d) as indicated. The left column is for N = 10
and the right column is for N = 100. Here IStim = 0 μA/cm2.

where aNa = y31NNa and bNa = int(y31NNa). Here σK and σNa are
rounding parameters. After such a process, the discretized open
fractions x4 and y31 are applied in the calculation of channel cur-
rents. However, the continuous values of state fractions are still
used in the equations for the calculations of diffusion matrices.

Setting the rounding parameters σK = 0.5 and σNa = 0.5 is a
natural way, which corresponds to the rounding of open channel
number to the nearest integer. But in this Letter, we set the round-
ing parameters σK = 0.5 and σNa = 0.4. The numerical simulation
shows that with these rounding values the statistical properties of
open fractions for dynamical action potentials can be best repli-
cated. In Fig. 2, the means of open fractions for K+ and Na+ chan-
nels are calculated at clamped voltage V with N = 10 and 100 for
different parameters σK and σNa. As shown in Figs. 2(a) and (b),
the natural choice of σK = 0.5 provides best approximation to the
mean open fractions of K+ channels with Markov method; while
the best approximation to the mean open fractions of Na+ chan-
nels with Markov method is given at σNa = 0.4 for Na+ channels,
especially at small channel number N = 10 (Fig. 2(c)). Fig. 2 also
indicates that the statistical open fraction of Na+ channels is more
sensitive to the rounding parameter than that of K+ channels.

In the following, this discretization approach to the ion-channel
open fractions will be called the discretized LA (Discrete). The
mean is calculated over one simulation. The simulation time is
160 s, which is long enough compared with the typical duration
(ms magnitude) of a generated action potential. The time step is
0.01 ms.

3. Results

In the model, we keep the density of Na+ channels three times
as big as that of K+ channel [8]. By changing the membrane area,
both the sodium and potassium channel numbers are changed. If
not specified otherwise, the number N denotes the K+ channel
counts.

3.1. The stochastic trajectories of HH model

The stochastic channel open and closing dynamics will generate
spontaneous action potentials even without any current stimulus.
Fig. 3 plots the trajectories of the open fractions x4 and y31 of
Na+ and K+ channels, and the membrane voltage V for a chan-
nel system with N = 10 at IStim = 0 μA/cm2. Here we compare
Fig. 3. Stochastic trajectories of the open fractions of K+ and Na+ channels and the
voltage with (a) the Markovian method, (b) the unbounded LA, (c) the bounded LA
and (d) the discretized LA. Here N = 10 and IStim = 0 μA/cm2.

the stochastic behavior of the channel system obtained by differ-
ent stochastic methods.

With the Markovian method, as plotted in Fig. 3(a), at both
x4 = 0 and y31 = 0 the membrane voltage increases slowly from its
resting potential −75 mV because of the small depolarizing leak-
age current. A fluctuation of the open fraction x4 at x4 = 0 means
a single K+ channel to become open. The single-channel repolar-
izing K+ current will rapidly drive the membrane potential back
to its resting state. As a result, the subthreshold voltage shows a
repetitive behavior of slow increase and rapid decrease.

With the unbounded LA in Fig. 3(b), before triggering an ac-
tion potential, the open fraction x4 of K+ channel shows a much
strong fluctuation around zero, sometimes positive and sometimes
negative. A positive x4 generates a small outward repolarizing K+
current, while an unrealistic negative x4 mathematically induces
a small inward depolarizing K+ current. As a result, with the un-
bounded LA the action potentials can be induced by large negative
fluctuation of x4, giving an unrealistic trigger dynamics.

With the bounded LA (Fig. 3(c)), the negative value of x4 is for-
bidden, and so there is no more the unrealistic inward depolarizing
K+ current. But the open fraction x4 of K+ channel still shows fre-
quently small fluctuations above zero at subthreshold state.

However, with the discretized LA, as shown in Fig. 3(d) the
fluctuations of both x4 and y31 are no more continuous, but are
changed in steps. With this approach, upon a little depolarized po-
tential above −75 mV, only a certain large fluctuation of y31 at
y31 = 0 can cause a single Na+ channel open to trigger an action
potential. The discretization procedure in this approach can better
mimic the trigger behavior of the Markovian channel dynamics.
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Fig. 4. Closing probabilities of ion channels. The probabilities (a) P (x4 = 0) and
(b) P (y31 = 0) that all K+ and Na+ channels are closed are plotted against N at
IStim = 0.0 μA/cm2. In all the figures, the squares, triangles, circles and stars rep-
resent the simulation results obtained by Markov method, unbounded LA, bounded
LA and discretized LA, respectively.

3.2. Closing probabilities of ion channels

To clearly show that the open fractions obtained by the dis-
cretized LA at resting potential −75 mV mimic the results given
by Markovian method, we discuss the probabilities P (x4 = 0) and
P (y31 = 0) that all the K+ channels and all the Na+ channels
are in closing state. Fig. 4 plots the probabilities P (x4 = 0) and
P (y31 = 0) against N from 10 to 500 at IStim = 0.0 μA/cm2. One
can see that two continuous approaches, especially the unbounded
LA, show incorrect P (x4 = 0) and P (y31 = 0). On the other hand,
the discretized LA gives good approximations to the results ob-
tained by the Markov method.

3.3. Statistics of membrane voltage

Now we discuss the mean, 〈V〉, and standard deviation, DV, of
voltage taken over the length of the simulation derived from dif-
ferent LAs. Two typical stimulus currents are studied, i.e., IStim =
0.0 μA/cm2 and IStim = 15.0 μA/cm2, deterministically yielding a
stable fixed point and a periodic oscillation, respectively. Note that,
because the simulation program will breakdown at small N for un-
bounded LA with frequently unrealistic open fractions, the related
simulation results only give for N > 10. As given in Fig. 5, the two
continuous simulations, i.e. the unbounded LA and bounded LA,
deviated from the standard values given by the Markov method at
small channel number. In detail, the unbounded LA underestimates
〈V〉 at N < 100 and the bounded LA underestimates 〈V〉 at N < 50.
On the other hand, the discretized LA captures the correct 〈V〉 even
at N = 5. Discretized LA improves the estimation of DV compared
with that of bounded LA at IStim = 15.0 μA/cm2, but shows no ev-
ident improvement in the case of IStim = 0.0 μA/cm2, indicating
that discretization is more significant under high stimulus current.

A maximal and a minimal voltage are detected during each
time window of 0.1 s, in which several action potentials will typ-
ically be observed. Then the averaged maximal and minimal volt-
ages can be calculated for a long time recording. As a result, the
averaged maximal and minimal voltages via constant stimulus cur-
rent are plotted in Fig. 6. As shown in Fig. 6(a) with N = 10, the
unbounded LA gives a large averaged maximal voltage at weak
stimulus, and the bounded LA produces a slightly small averaged
maximal voltage at strong stimulus. Only the discretized LA shows
a nice approximation. At N = 100 plotted in Fig. 6(b), all LA ap-
proaches provide accurate values.

3.4. Statistics of action potential

Next, we study the mean, 〈T〉, and standard deviation, DT, of
spike–spike interval. Here, the definition of the action potential
refers to the literature [28]. Fig. 7 indicates that, compared to the
bounded LA, the discretized LA shows no obvious improvement
at IStim = 0.0 μA/cm2, but at IStim = 15.0 μA/cm2 the discretized
Fig. 5. The mean, 〈V〉, (a)–(b) and standard deviation, DV, (c)–(d) of the membrane
voltage as a function of channel number N . Here, IStim = 0.0 and 15.0 μA/cm2 are
for the left and right columns, respectively.

Fig. 6. Bifurcation diagram of the membrane voltage as a function of stimulus cur-
rent. The averaged maximal (upper symbols) and minimal voltages (lower symbols)
as a function of stimulus current for stochastic neuron model at (a) N = 10 and (b)
N = 100.

Fig. 7. The mean, 〈T〉 (a)–(b) and standard deviation, DT, (c)–(d) of the spike–spike
interval as a function of channel number N . Here, IStim = 0.0 and 15.0 μA/cm2 are
for the left and right columns, respectively.

LA gives significantly enhanced results at small channel number
(Fig. 7(b) and Fig. 7(d)), which again demonstrates the importance
of discretization of open fractions for the cases with high stimulus
current.

As to another two properties of action potential, namely spike
amplitude and width, the discretized LA shows no improved statis-
tics compared to the bounded LA (data not shown).
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Fig. 8. The comparison of the computational performance. Here IStim = 0.0 μA/cm2.
The time step is 0.01 ms and the simulation time is 40 sec.

3.5. Computational performance

Finally, we compare the computational performances of the
Markov method and different LAs, as given in Fig. 8. The com-
putational time is constant for each Langevin approach, while it
linearly increases with N for the Markov method. The computa-
tional times of the bounded LA and the discretized LA are slightly
reduced compared to the unbounded LA. This happens because
the unbounded LA spends non-negligible additional time on the
calculation of mean values of channel-state fractions. From Fig. 8,
the cross point of Markov method and the discretized LA is about
N = 15. As a consequence, when combined with the comparisons
of LAs discussed above, this result indicates that for small mem-
brane patch area, especially in 15 < N < 50, the discretized LA
would be an appropriate method to discuss the stochastic chan-
nel dynamics.

4. Discussions

In this Letter, we incorporate the discretization of open frac-
tions of ion channels into a channel-based Langevin approach
that we suggested previously in Ref. [28] in order to discuss the
stochastic channel dynamics with small channel number. Mino’s
rounding down to the integer part [29] and Bruce’s rounding to the
nearest integer [19] are two special cases of the current approach.
From the estimations of the mean and standard deviation of mem-
brane voltage and spike–spike interval, we here show that the
discretization method extends the valid region of channel num-
ber to a much smaller level around 10 K+ channels. Furthermore,
the computational cost of the channel-based Langevin approach is
low, which makes it applicable for the channel system even with
small channel number.

With the discussion of the detailed channel trajectories and of
the probability for all channels to be in the closed state, we pin-
point a better estimation by the discretized approach to originate
from the better simulation of trigger events of action potentials.
For the system with small channel number, the first open Na+
channel plays an important role to trigger an action potential.
The discretization procedure in our Langevin approach can bet-
ter mimic the trigger behavior of the stochastic channel dynamics,
giving an improved stochastic description at small channel num-
ber. From the calculations of the mean and standard deviation of
open fractions of Na+ channels, we found that the open fraction of
Na+ channels is sensitive to parameter sigma, thus it’s of impor-
tance for Na+ channel to choose a proper sigma with respect to
the adopted continuous LA.

Previous research has revealed the occurrence of stochastic res-
onance and the coherence of spikes caused by ion-channel noise
for very small patch size [33]. The stochastic channel dynamics are
found not only in neuronal dynamics, but also in the intracellular
calcium signaling system [11,34,35]. It was found that the inosi-
tol 1,4,5-trisphosphate receptor channels are distributed in clusters
with about several or several tens of channels on endoplasmic
reticulum. We suggest that this discretization process can be ap-
plied to other theories with Langevin approaches and for other
stochastic channel systems.
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