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Time delayed coupling plays a crucial role in determining the system’s dynamics. We here report that

the time delay induces transition from the asynchronous state to the complete synchronization (CS)

state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or

time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase

synchronization (ANS), and phase synchronization, can be generated. In the transition regions between

different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show

that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All

these findings may light on our understanding of neuronal synchronization and information processing

in the brain. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4821942]

Synchronization, an important topic in nonlinear science,

has attracted attention of researchers in different research

fields due to its potential application to physics, chemistry,

biology, and secure communications. We here report that

time delay can induce different synchronization patterns

in repulsively coupled chaotic oscillators. In particular, the

complete synchronization (CS) state can be observed in

the repulsively coupled chaotic oscillators. We hope our

result can provide insights into the dynamics of complex

system.

I. INTRODUCTION

Recent years, the synchronization has attracted much

attention in the field of nonlinear dynamics due to its key

role in physics, biology, and sociology.1 A variety of inter-

esting problems on synchronization have been discussed,

such as the analysis method for synchronization,2,3 the appli-

cations of synchronization,4,5 the stability conditions for syn-

chronization,6,7 and so on. In studies of synchronization of

coupled nonlinear oscillators, different conditions have been

considered, such as the periodic or chaotic unit, instantane-

ous or time-delayed coupling, and local or global coupling.

A rich variety of synchronous phenomena have been found,

including CS,8–10 phase synchronization (PS),11,12 general-

ized synchronization,13 and lag synchronization.14

Most of these researches are focused on attractive cou-

pling that the sign of coupling strength is positive since the

entrainment between oscillators is one of the main con-

cerns. However, it is known that the synchronization in

neuronal oscillators can be improved by combination of

excitatory, inhibitory synapse interactions and even repul-

sive coupling.15–17 The oscillators with repulsive coupling

of which the sign is negative usually repel each other result-

ing in out-phase behavior. This phenomenon has been veri-

fied experimentally in the electrically coupled biological

neurons, and anti-phase synchronization was observed for

the strong repulsive coupling.18

The unusual effect of repulsive coupling has been stud-

ied and many innovative phenomena have been found. For

example, Yanagita et al. showed that a pair of excitable

FitzHugh-Nagumo neurons can exhibit various firing

patterns including multistability and chaotic firing when ele-

ments interact repulsively.19 Toledano et al. reported that

two-dimensional colloidal aggregation can be mediated by

repulsive interactions.20 Ito et al. studied intermittent switch-

ing behaviors in a system with three identical oscillators

coupled diffusively and repulsively.21 Martins et al. showed

that the response of the systems to an external signal is

optimal at a particular proportion of repulsive links.22 The

phase oscillators with both attractive and repulsive couplings

have been investigated, and various synchronous patterns

were found.23,24 Interestingly, the synchronization can be

enhanced by repulsive coupling.17,25

Time delay, arising from finite propagation speeds of

signal transmission over a distance, has also been widely

studied, and various phenomena have been uncovered in

time-delayed coupling oscillators. Time delay can induce os-

cillation death and mutistable in limit cycle oscillators.26–31

Kori et al. showed that the slow switching can be observed

in globally delay-coupled phase oscillators.32 Furthermore,

time delay can also be as a method of controlling cluster and

synchronization in the excitable Boolean networks and the

large laser networks.33,34 The appropriate time delays can

induce the stable CS in a network of neuronal oscillators

with attractive coupling.35

Recently, it has been shown that the synchronization

degree can be improved periodically with increasing delay

length for repulsive coupling in a neuronal network with

periodically spiking neurons.36 So far, to the best of our
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knowledge, in all existing works on the repulsive coupling

systems, the effects of interplays between repulsive coupling

and time delay on the synchronization of chaotic oscillators

were less considered.

In this paper, we study two pairs of repulsively coupled

chaotic oscillators with time delay in the coupling interac-

tion. We show that different synchronous patterns can occur

with the different values of coupling strength and time

delay. For the chaotic oscillators, the repulsive coupling

can typically induce the antiphase synchronization (ANS)

state. Surprisingly, we find that the time delay can drive the

chaotic oscillators, which repel each other by repulsive

interaction, to the stable CS state or PS state. We also find

that the CS and ANS states occur alternatively with increas-

ing delay length at suitable repulsive coupling strength.

Furthermore, the phase-flip transition between in-phase and

anti-phase which has been discussed in attractive coupling

system37–39 is also observed in our system with repulsive

coupling. The paper will be arranged as follows: in Secs. II

and III, two different types of classical oscillator models

(Hindmarsh-Rose neuronal model and Lorenz oscillator)

are studied and checked. Finally, we give a summary in

Sec. IV.

II. THE HINDMARSH-ROSE NEURONAL MODEL

In the following, we first study a pair of repulsively

coupled Hindmarsh-Rose neurons with time delay, which are

given by the following equations:41

_xi ¼ yi � ax3
i þ bx2

i � zi þ Iext þ �ðxjðt� sÞ � xiÞ; (1)

_yi ¼ c� dx2
i � yi; (2)

_zi ¼ r½sðxi � x0Þ � zi�; (3)

where the indices i ¼ 1; 2 and j ¼ 2; 1, respectively. x is the

membrane potential, y is the recovery variable, and z is

the adaptation variable. r is the ratio of fast/slow time scales.

Iext is the external current input. The parameters setting

a¼1:0; b¼3:0; c¼1:0; d¼5:0; s¼4:0; r¼0:006; x0¼�1:6,

and Iext¼3:3 are chosen and fixed at which the uncoupled

unit exhibits chaotic burst-spike behavior. � and s stand for

coupling strength and time delay, respectively. Here, we con-

sider repulsive coupling. Thus, the sign of coupling strength

is negative, which implies that the smaller the coupling

strength, the stronger the repelling interaction.

The initial conditions for xi; yi; zi are chosen randomly

from the interval [0, 1]. In order to discuss the situation of

phase synchronization of the coupled elements, the phase of

each oscillator is defined as

/ðtÞ ¼ 2kpþ 2p
t� tk�1

tk � tk�1

ðtk�1 < t < tkÞ; (4)

where tk is the time at which the kth bursting or spiking cycle

begins. Our simulation results show that the systems behave

three primary features: CS, anti-phase synchronization

(ANS) which the phase difference of two oscillators is close

to p and asynchronization (AS).

To clarify the effect of time delay on the repulsively

coupled Hindmarsh-Rose neurons, we discuss the probabil-

ities P of CS, ANS, and AS of the system at a given set of

parameters with 100 random initial conditions, which are

chosen randomly from the interval [0, 1]. Figs. 1(a) and 1(b)

show how the three probabilities P change with time delay s
for � ¼ �2:5 and � ¼ �0:5, respectively. A surprising result

given in the figure is that the sufficiently large time delay

can induce CS between two oscillators. For the strong cou-

pling, we can see that the two oscillators are mainly in ANS

states when s is small, but show CS behavior when s is mod-

erate [Fig. 1(a)]. For the weak coupling, however, time delay

can induce system jump from AS to CS [Fig. 1(b)].

To get a global view, the phase diagram on the ð�; sÞ
plane is shown in Fig. 2. The ANS, AS, and CS region are

FIG. 1. (a) and (b) The probability P
of anti-phase synchronization, com-

plete synchronization, and asynchroni-

zation versus s for � ¼ �2:5 and

� ¼ �0:5, respectively. P is deter-

mined by averaging over 100 different

sets of initial conditions.

FIG. 2. Phase diagram on the (�; s) plane for different synchronous regions

of the repulsively coupled Hindmarsh-Rose neuronal model (Eq. (1)). The

letters CS, ANS, and AS stand for the complete synchronization, anti-phase

synchronization, asynchronization, respectively. The coexistence regions of

ANS and CS (AS) are indicated by the different colors.
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determined by PANS > 0:8; PAS > 0:8, and PCS > 0:8,

respectively; otherwise, the coexistence regions are defined.

In Fig. 2, the green region corresponds to AS and here the

two oscillators exhibit phase-drift behavior; the pink region

corresponds to ANS. Interestingly, there exists a large region

for CS which is represented by the yellow region. Some spe-

cial regions, i.e., bistability regions of CS and ANS, are

marked out. In the regime indicated by dense, the system

exhibits more complex behavior.

To show the detailed dynamics, Figs. 3(a)–3(d) plot the

time series of x(t) for the system with randomly chosen

model parameters in each region. Fig. 3(a) gives the anti-

phase synchronous bursting, and Fig. 3(b) presents the com-

plete synchronous spike. Fig. 3(c) shows out-phase chaotic

solutions between two oscillators, while Fig. 3(d) is

devoted to examples of coexistence of ANS and CS with

different initial conditions in which the inset shows the CS

state.

In order to discuss the dynamical behaviors in detail,

the bifurcation of Dti which is defined as the inter-spike

interval for different time delay is given in Fig. 4. At the

small time delay, we can find clearly that the system trans-

fers from the chaotic state to the periodic bursting with the

increase of the coupling strength [Fig. 4(a)], and the period

n þ 1 ! period n bifurcation occurs in the periodic region

[the zoomed-in part of Fig. 4(a)]. For the large time delay,

however, the periodic spiking occurs at a larger range [Fig.

4(b)]. The dynamical phase diagram is plotted in Fig. 5 on

the ð�; sÞ plane. Comparing Fig. 5 with Fig. 2, we can get

three interesting features: (i) the two oscillators at ANS fire

with periodic bursting or spiking, (ii) the two oscillators

which behave chaotic behavior are in AS state, and (iii) CS

is usually achieved by periodic spiking. Furthermore,

period n þ 1 ! period n bifurcation is presented clearly in

Fig. 5.

The underlying mechanism for the phase transition

from ANS(AS) to CS can be understood well with Figs.

6(a)–6(d), which show the phase difference between two

oscillators and the frequencies of two oscillators as a func-

tion s for � ¼ �1:8 and � ¼ �2:0, respectively. Figs. 6(a)

and 6(c) indicate that the phase difference abruptly changes

from p to 0, indicating that the flip bifurcation occurs. This

phenomenon has been observed widely in many systems

with attractively coupled oscillators.37–39 However, the two

oscillators jump to the coexistence region of out-phase and

in-phase for the large coupling strength (Fig. 6(c)). The left

and right insets in Fig. 6(a) are representative trajectories at

s ¼ 2:9, before the bifurcation, and at s ¼ 3:1, after the

bifurcation, respectively. The oscillation frequency X
(measured from the peak-to-peak separation) is also a key

characteristic of the phase-flip bifurcation. Figs. 6(b) and

6(d) show the simultaneous jump of frequency.

III. THE LORENZ OSCILLATOR

In order to gain more insight into the role of time delay

on synchronization of the repulsively coupled chaotic

FIG. 3. (a)–(d) The time series of x1ðtÞ (black line) and x2ðtÞ (pink line) (a)

of ANS with ð�; sÞ ¼ ð�1:5; 0:3Þ, (b) of CS with ð�; sÞ ¼ ð�1:5; 3:3Þ, (c) of

AS with ð�; sÞ ¼ ð�0:74; 1:5Þ and (d) of coexistence of ANS AND CS with

ð�; sÞ ¼ ð�2:0; 3:6Þ.

FIG. 4. (a) and (b) The bifurcation of Dti (the interval time of successive

spikes) of x1ðtÞ for s ¼ 0:5 and s ¼ 4:0, respectively. The inset of (a) shows

the zoomed-in part of (a), indicating the nþ 1! n bifurcation.

FIG. 5. Schematic phase diagram for Eq. (1) in the ð�; sÞ plane for different

dynamic parameter region. The chaotic state is determined by randomicity

of Dti.
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oscillators, we investigate the repulsively coupled Lorenz

chaotic oscillators with time delay, which can be expressed

as

_xi ¼ aðyi � xiÞ; (5)

_yi ¼ bxi � yi � xizi þ �ðyjðt� sÞ � yiÞ; (6)

_zi ¼ xiyi � czi; (7)

where i ¼ 1; 2 and j ¼ 2; 1, respectively. a ¼ 10:0; b ¼ 28:0,

and c ¼ 1:0 at which the uncoupled oscillators have a stable

chaotic attractor. The parameters � and s are free.

For this case, the phase of each oscillator is defined as

/iðtÞ ¼ tan�1½y0iðtÞ=x0iðtÞ�; (8)

where x0iðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

i ðtÞ þ y2
i ðtÞ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cðb� 1Þ

p
; y0iðtÞ ¼ ziðtÞ

�ðb� 1Þ,40 and the phase difference between the oscilla-

tors is D/ ¼ h/1ðtÞ � /2ðtÞi, with hi denoting the average

over time. The initial conditions for xi; yi; zi are chosen

randomly from the interval [�1, 1]. Our simulation results

show that four different synchronization behaviors can be

observed in this system, including AS, ANS (D/ ¼ p), CS,

and PS with D/ 6¼ p. It is notable that this ANS is with

x1ðtÞ þ x2ðtÞ ¼ 0.

Figures 7(a) and 7(b) plot the probabilities of AS,

ANS, CS, and PS versus s for � ¼ �3:8 and � ¼ �2:0,

respectively. Surprisingly, we find that the CS and ANS

emerge alternately for the strong coupling when the time

delay s increases, and the PS only exists at a small interval

[Fig. 7(a)]. For the weak coupling, the AS is observed for

the arbitrary initial conditions [Fig. 7(b)].

Figure 8 shows the phase diagram on the plane (�; s)

with four types of well divided regions. The ANS, AS, PS,

and CS regions are determined by probabilities PANS > 0:8;
PAS > 0:8, PPS > 0:8, and PCS > 0:8, respectively. From this

figure, we find that most of the parameter region is filled

with AS state, which occurs at large coupling strength.

Interestingly, the CS and ANS are observed alternatively

with the increasing time delay at � around �4. The boundary

structures of ANS and CS are complex.

Now, we turn to the detailed dynamics. The time series

of x(t) for two oscillators are shown in Figs. 9(a)–9(d) for the

parameters in four different regions. In Fig. 9(a), the two AS

oscillators perform the chaotic behavior; while in Fig. 9(b),

the two CS oscillators are in periodic state. Fig. 9(c) plots

FIG. 6. The phase difference between

the oscillators ((a) and (b)) and the

frequency of the synchronized oscilla-

tors ((c) and (d)) as function of s for

� ¼ �1:8 and � ¼ �2:0, respectively.

The trajectories before and after the

transition are shown in the inset of (a).

FIG. 7. (a) and (b) The probability P
of anti-phase synchronization, com-

plete synchronization, phase synchro-

nization, and asynchronization versus s
for � ¼ �3:8 and � ¼ �2:0, respec-

tively. P is determined by averaging

over 100 different sets of initial

conditions.
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the two periodic oscillators, which are in ANS state. It is

interesting that the time series of x(t) for the two ANS oscil-

lators are symmetrical about the x¼ 0, which means

x1ðtÞ ¼ �x2ðtÞ. Fig. 9(d) shows the periodic oscillators,

which are in PS state. Our simulation result indicates that the

PS state can be found with either periodic or chaotic attractor

at different parameter regions.

In the following, we suggest that the time-delay-induced

phase-flip bifurcation may be responsible for the occurrence

of CS. The phase difference between two oscillators as a

function of delay is shown in Fig. 10(a) at � ¼ �3:5. From

this figure, one can find the successive phase transition

behavior from in-phase to anti-phase with s increasing over

the each critical value sci, where i ¼ 1; 3 (or i ¼ 2; 4) are the

critical values of transition from ANS to CS (or from CS to

ANS), and the frequencies X of the two oscillators jump

abruptly as the oscillations switch from the in-phase to the

anti-phase [Fig. 10(b)]. Those phase transitions are shown in

Fig. 11(a) in which the bifurcations of the local maximal val-

ues for x1ðtÞ � x2ðtÞ (blue circle points) and x1ðtÞ þ x2ðtÞ
(pink solid points) are plotted. The two oscillators jump back

and forth between the anti-phase state and the in-phase state

with s increasing. If we take a closer look at the region of

ANS in Fig. 11(a), a specific antiphase synchronous state,

antiphase CS, is also found. For antiphase CS, the two oscil-

lators not only show a behavior of ANS but also have the

same oscillating amplitude. As a result, a simple symmetric

relationship x1ðtÞ ¼ x2ðtþ T=2Þ is observed between the two

oscillators with T the oscillating period. Furthermore, the

FIG. 8. Phase diagram on the (�; s) plane for different synchronous regions

of the repulsively coupled Lorenz systems (Eq. (2)). The parameter space is

separated into four regions, which correspond to phase synchronous (PS),

asynchronous (AS), complete synchronous (CS), and anti-phase synchro-

nous (ANS), respectively.

FIG. 9. (a)–(d) The time series of x1ðtÞ
(black line) and x2ðtÞ (pink line)

for ð�; sÞ ¼ ð�3:5; 0:2Þ (a), ð�; sÞ ¼
ð�3:5; 0:4Þ (b), ð�; sÞ ¼ ð�3:5; 0:8Þ
(c), and ð�; sÞ ¼ ð�3:5; 1:5Þ (d),

respectively.

FIG. 10. The phase difference D/ (a)

and the frequency X (b) of the oscilla-

tors as a function of s, some parame-

ters for chaotic state are deleted.

� ¼ �3:5.
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bistable states (coexistence of ANS and PS) marked by pink

arrow can be observed around sci [Fig. 11(d)].

IV. CONCLUSION

The effect of time delay on the synchronization of the

repulsively coupled chaotic oscillators is investigated system-

atically in the paper. Our numerical results reveal that such a

system can show rich dynamic phenomena. Various synchroni-

zation patterns, including complete synchronization, antiphase

complete synchronization, antiphase synchronization, and

phase synchronization, are observed with varying repulsively

coupling strength and time delay. Among the transition region

of different synchronization states, the bistable synchronous

states can be found. For the repulsively coupled Hindmarsh-

Rose neuronal model with time delay, the anti-phase bursting

synchronization, complete synchronous spiking, asynchronous

chaotic state are uncovered. For the repulsively coupled Lorenz

systems, time delay induce systems transition from anti-phase

with x1ðtÞ ¼ �x2ðtÞ to the in-phase with x1ðtÞ ¼ x2ðtÞ.
Furthermore, we have indicated that the underlying mechanism

of complete synchronization is time-delay-induced phase flip

bifurcation. In the physical or biological systems, time delayed

signals are unavoidable due to the finite transmission speeds.

We hope our results can extend to coupled dynamical systems

with general nonlinearities and provide further insight into in-

formation processing in biological systems.
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