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Effects of extracellular potassium diffusion on electrically coupled neuron networks
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Potassium accumulation and diffusion during neuronal epileptiform activity have been observed experimen-
tally, and potassium lateral diffusion has been suggested to play an important role in nonsynaptic neuron networks.
We adopt a hippocampal CA1 pyramidal neuron network in a zero-calcium condition to better understand the
influence of extracellular potassium dynamics on the stimulus-induced activity. The potassium concentration in
the interstitial space for each neuron is regulated by potassium currents, Na+-K+ pumps, glial buffering, and
ion diffusion. In addition to potassium diffusion, nearby neurons are also coupled through gap junctions. Our
results reveal that the latency of the first spike responding to stimulus monotonically decreases with increasing
gap-junction conductance but is insensitive to potassium diffusive coupling. The duration of network oscillations
shows a bell-like shape with increasing potassium diffusive coupling at weak gap-junction coupling. For modest
electrical coupling, there is an optimal K+ diffusion strength, at which the flow of potassium ions among the
network neurons appropriately modulates interstitial potassium concentrations in a degree that provides the most
favorable environment for the generation and continuance of the action potential waves in the network.
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I. INTRODUCTION

Neurons are excitable cells. During neural activity, potas-
sium ions are released, and the increased extracellular potas-
sium concentration in turn alters neuronal excitability. It has
been proposed that the extracellular potassium concentration
plays an important role in some abnormal functions, such
as hypoxia-induced spreading depression [1], diabetes, and
arrhythmias [2–4].

The extracellular potassium accumulation during neuronal
firing was observed by Frankenhaeuser and Hodgkin in
1956 [5]. It has been suggested that a direct application
of a high potassium solution could induce hippocampal
epileptic activity [6], and epileptiform burst discharges could
exhibit different patterns due to the variation of background
extracellular potassium concentrations [7,8]. Epilepsy has also
been shown to be connected with a reduction of the Na+-K+
pump [9] and impairment of the glial K+ uptake [10]. It
has been shown that low-calcium epileptiform activity was
associated with the diffusion of potassium ions [11,12] and
that the elevation of extracellular potassium modulated cortical
oscillatory activities [13]. However, it was argued that the
potassium accumulation was only an influential factor in
the course of neuronal firing but could not initiate seizure
activity [14,15].

Modeling studies pointed out the critical roles of extra-
cellular potassium in modulating neuron dynamics [16]. It
has also been shown that changes in the interstitial potassium
concentration ([K+]o) modulated the frequency of bursting in
a single-neuron model [17,18]. A two-compartment cortical
neuron model with extracellular potassium concentration
exhibited bi-stability with hysteresis between tonic firing
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and bursting [19]. Moreover, the potassium homeostasis
appeared to be a necessary mechanism for neurons to function
properly [20–22].

In many computational studies, communication among
neurons involves chemical and electrical synapses [23–26]
and other nonsynaptic mechanisms. Lateral diffusion of K+
has been suggested as one nonsynaptic interaction between
neurons and has gained increasing attention [17,27–30]. In
the CA1 region of the mammalian hippocampus, neurons
are densely packed, thereby creating favorable conditions for
potassium lateral diffusion coupling. It has been suggested
that, in a network of zero-Ca2+ CA1 pyramidal neurons,
potassium lateral diffusion coupling is involved in inducing
and sustaining neuronal activity [31,32] and synchronizing
neuronal firing [33], for which it has been assumed that nearby
neurons have only one type of interaction, which is provided
by potassium lateral diffusion.

In addition, in the CA1 region of the hippocampus,
electrical coupling by gap junctions has been shown to play
an important role in oscillatory network activity [34–37].
But this type of coupling is usually absent in the studies
of potassium coupling. In this paper we present a neuron
network model where hippocampal CA1 pyramidal neurons
are coupled through gap junctions and potassium diffusion.
Electrical coupling is included and expressed as somatic
contacts between nearby neurons. The chemical synaptic
transmission and calcium and Ca2+-activated currents are
omitted in the condition of zero extracellular calcium. Be-
cause chemical synapses are not incorporated in the system,
whether the neurons are excitatory or inhibitory is not
important.

The contents of this paper are given as follows. In Sec. II we
present the equations describing each neuron of the network
and the couplings between neighboring cells. Then in Sec. III
we make comparisons of the response of the electrically
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coupled network to external stimulation with and without
potassium lateral diffusion. Later, by varying the values of
potassium coupling strength and gap-junction conductance, an
interesting result observed is that the relation of the duration
of network oscillations to potassium coupling strength is
nonmonotonic at medium gap-junction conductance. Finally,
conclusions are made in Sec. IV.

II. FORMALISM

A schematic of our model is shown in Fig. 1. The
neuron network in our simulations has 50 × 50 identical
cells [Fig. 1(d)]. For each cell, we adopt a 16-compartment
hippocampal CA1 pyramidal neuron model with one soma
compartment and other compartments for apical dendrites and
basal dendrites [Fig. 1(a)] [38]. For potassium accumulation,
the variable [K+]o represents potassium concentration of the
interstitial space around soma. Potassium accumulates more
intensively in somatic layers than in dendritic layers [12,15],

and the transient changes in extracellular potassium
concentrations have a greater effect over neuronal behavior
than the changes in the intracellular sodium concentra-
tions [21]. Therefore, only somatic potassium accumulation
is incorporated in this neuron model.

These cells are connected through gap junctions and potas-
sium diffusion [Fig. 1(b)]. The electrical coupling connects
nearest neighboring cells with gap-junction conductance ggap,
while K+ diffuses between nearest neighboring cells and
between second nearest neighboring cells [Fig. 1(c)].

The values and meaning of model parameters are given
in Table I. All conductance measurements are corrected for
the specific area of each compartment and are expressed
in the unit of mS/cm2. Each dendrite compartment has a
diameter of 5.2 μm and length of 81.7 μm, giving an area
of 1334.67 μm2. The soma has an approximate area of
1000 μm2 [38]. Hence, the value of soma axial conductance
(g5,4, g5,6) is larger than the value of dendrite axial conductance
between soma and dendrite (g4,5, g6,5).

FIG. 1. (Color online) (a) Structure of a CA1 pyramidal neuron. Sixteen compartments represent for dendrites and one compartment for
soma. The soma (blue circle) is surrounded by an interstitial space (gray area) where K+ may accumulate. (b) A network of 3 × 3 neurons is
used to illustrate mechanisms for regulating interstitial potassium and how neurons are coupled. When one neuron is stimulated, potassium
ions are released into the interstitial space through potassium channels. The Na+-K+ pump and glia remove excessive K+. The concentration
gradient of K+ tends to move them into the bath and interstitial spaces of other neighboring cells. The lateral diffusion occurs between nearest
neighbors (pink lines with arrowheads) and second nearest neighbors (green lines with arrowheads). Besides potassium coupling, electrical
coupling is through gap junctions (red lines with triangles). (c) This network is further simplified by replacing each neuron with a square to
indicate values of gap-junction conductance and lateral diffusion time constant between neighboring cells. (d) Structure of 50 × 50 neurons for
the following simulations unless otherwise specified. Electrical stimuli are applied to cell 1 (red square).
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TABLE I. Parameter values. Sources: (a) Ref. [38]; (b) definition; (c) estimated and/or modified values; (d) Ref. [31]; (e) Ref. [33].

Symbol Parameter Value Source

R Radius of soma 8.9 × 10−4 cm (a)
A Area of soma 4πR2 (b)
Volumecell Volume of soma 4πR3/3 (b)
Volumeshell Volume of the interstitial space around soma 4πR3rV/3 (b)
rV rV = Volumeshell

Volumecell
0.15 (d)

F Faraday’s constant 96485 C/mol (b)
τbs Diffusion time constant 412 ms (c)
κ Potassium coupling strength 0–1.7 (c)
τss Lateral diffusion time constant 1000 ms

10κ−1 ms (b)
between nearest cells

τ
′
ss Lateral diffusion time constant 3.3τss (c)

between second nearest cells
Cs Soma capacitance 1.0 μF/cm2 (d)
gNaF Fast Na+ conductance 20.5 mS/cm2 (e)
gNaP Persistent Na+ conductance 0.24 mS/cm2 (d)
gKDR Delayed-rectifier K+ conductance 19.7 mS/cm2 (e)
gKA A-type transient K+ conductance 3.0 mS/cm2 (d)
gKM Muscarinic K+ conductance 3.0 mS/cm2 (d)
gsLeak Soma leakage conductance 1.8 mS/cm2 (d)
g5,4,g5,6 Soma axial conductance 7.35 mS/cm2 (a, c)
ggap Gap junction conductance 0.275–0.7 mS/cm2 (c)
ENa Sodium reversal potential 67.0 mV (d)
EsLeak Soma leakage reversal potential −54.4 mV (c)
Imax Pump maximal current 24.0 μA/cm2 (c)
[K+]bath Potassium concentration in the bath 7.6 mM (e)
[K+]eq Equilibrium potassium concentration [K+]bath (e)
[B]max Maximal buffer capacity 265 mM (d)
rb Backward rate of buffer mechanism 0.0008 ms−1 (d)
rf0 Equilibrium forward rate of buffer 0.0008 mM−1/ms (d)

mechanism
[K+]th Threshold [K+]o for glia buffer 15 mM (d)
Cd Dendrite capacitance 1.88 μF/cm2 (d)
g4,5,g6,5 Dendrite axial conductance between 5.51 mS/cm2 (a, c)

soma and dendrite
gn±1,n Dendrite axial conductance between 3.67 mS/cm2 (d)

dendritic compartments (n, n ± 1 �= 5)
gdLeak Dendrite leakage conductance 0.0292 mS/cm2 (d)
EdLeak Dendrite leakage reversal potential −54.4 mV (c)

A. Membrane potential dynamics

The ordinary differential equations governing the
membrane potential are as follows:

Cs
dVs

dt
= −(INa + IK + IsLeak + Ipump + Isd) + Istim, (1)

Cd
dVd,n

dt
= −(IdLeak,n + Idd,n), (2)

where 0 � n � 15 and n �= 5. Vs is the membrane potential
for the somatic compartment and Vd,n for other dendritic
compartments. The stimulus current Istim is applied to the
soma.

The relevant somatic currents include two active Na+

currents (INa = INaF + INaP), three active K+ currents (IK =
IKDR + IKA + IKM), the passive current IsLeak, the current
caused by the Na+-K+ pump Ipump and the axial current Isd,

which are given by

INaF = gNaFm
3h(Vs − ENa),

INaP = gNaPw(Vs − ENa),

IKDR = gKDRn4(Vs − EK),

IKA = gKAab(Vs − EK),
(3)

IKM = gKMu2(Vs − EK),

IsLeak = gsLeak(Vs − EsLeak),

Ipump = Imax/[1 + ([K+]eq/[K+]o)]2,

Isd = g5,4(Vs − V4) + g5,6(Vs − V6),

where EK = 26.71 × ln( [K+]o
140 ) mV. The reason that the

Na+-K+ pump is electrogenic is that more sodium is extruded
than potassium absorbed.
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TABLE II. Kinetics for gating variables [31].

Ordinary differential equation for gating variable

dm

dt
= 11.7×(11.5−Vs)

exp
(

11.5−Vs
13.7

)
−1.0

(1.0 − m) − 0.4×(Vs−10.5)

exp
(

Vs−10.5
4.2

)
−1.0

m

dh

dt
= 0.67

exp
(

Vs+50.0
5.5

) (1.0 − h) − 2.24

exp
(

72.0−Vs
29.0

)
+1.0

h

dw

dt
=

0.07

exp

(
−Vs−50.0

2.0

)
+1.0

−w

0.2

dn

dt
= 0.00049×Vs

1.0−exp
(

−Vs
25.0

) (1.0 − n) − 0.00008×(Vs−10.0)

exp
(

Vs−10.0
10.0

)
−1.0

n

da

dt
= 0.0224×(Vs+30.0)

1.0−exp
(

−Vs−30.0
15.0

) (1.0 − a) − 0.056×(Vs+9.0)

exp
(

Vs+9.0
8.0

)
−1.0

a

db

dt
= 0.0125

exp
(

Vs+8.0
14.5

) (1.0 − b) − 0.094

exp
(

−Vs−63.0
16.0

)
+1.0

b

du

dt
= 0.0084 × exp

(
Vs+26.0

40.0

)
(1.0 − u) − 0.0084

exp
(

Vs+26.0
61.0

)u

The currents through the voltage-dependent channels are
controlled by the gating variables m, h, w, n, a, b, and u. They
obey the form

dx

dt
= x∞(V ) − x

τx

= αx(V ) − x[αx(V ) + βx(V )], (4)

where x represents m, h, w, n, a, b, and u. Table II gives the
details of the equations for each gating variable.

For dendrite compartments, there are two passive currents
given by

IdLeak,n = gdLeak(Vd,n − EdLeak),
(5)

Idd,n = gn,n−1(Vd,n − Vn−1) + gn,n+1(Vd,n − Vn+1),

where Idd,n is the axial current caused by the potential differ-
ence between neighboring dendrite sections. Compartments 0
and 15 have only one neighboring compartment contributing
to the axial current.

B. Potassium dynamics and coupling

The outside space of the soma consists of an interstitial
space and the bath. The potassium concentration in the bath is
always constant, while the interstitial potassium concentration
can elevate from its resting value caused by the K+ release
from the cytoplasm. The interstitial potassium concentration
[K+]o depends on

d[K+]o

dt
= Jcurrents − Jpump + Jglia − Jbath (6)

with each potassium flux given by

Jcurrents = IK × A × 10−3

F × Volumeshell
,

Jpump = 2 × Ipump × A × 10−3

F × Volumeshell
,

(7)
Jglia = rb × ([B]max − [B]) − rf × [K+]o × [B],

Jbath = ([K+]o − [K+]bath)

τbs
.

A phenomenological model was used to simulate the
glial potassium uptake system that controls the potassium

accumulation in the interstitial volume [20]. We adopt this
buffering scheme, which is given by

d[B]

dt
= rb × ([B]max − [B]) − rf × [K+]o × [B], (8)

where

rf = rf0

1 + exp
( [K+]o−[K+]th

−1.15

) . (9)

There are only two types of couplings in our model, i.e.,
the electrical coupling and the potassium diffusive coupling.
Because the neurons are modeled in zero-calcium conditions,
chemical synapses are neglected. Figure 1(b) gives a schematic
diagram of the couplings between cells. As we can see, two
nearest cells are connected through both gap junctions (red
lines with triangles) and potassium diffusion (pink lines with
arrowheads). Moreover, potassium ions diffuse between two
second nearest cells (green lines with arrowheads).

To model potassium coupling between neighbor cells, a
new item is added to the right side of Eq. (6) for interstitial
potassium dynamics for a cell numbered i:

d[K+]io
dt

= J i
currents − J i

pump + J i
glia − J i

bath − J i
shell,

J i
shell =

∑

j

(
[K+]io − [K+]jo

)

τss
+

∑

k

(
[K+]io − [K+]ko

)

τ ′
ss

,

(10)

where τss and τ ′
ss is the diffusion time constant between

interstitial spaces of nearest cells and between interstitial
spaces of second nearest cells, respectively. As described by
Eq. (10), the potassium flux J i

shell is the sum of the K+ fluxes
between the given cell and its nearest cells and between the
given cell and its second nearest cells.

It is known that the movements of ions are modified by
tortuosity in the extracellular micro-environment of the brain
tissue [39,40]. Tortuosity is taken into account by introducing a
factor λ which is associated with lateral diffusion time constant
τss and τ ′

ss [17,31]:

1

τss
= DK

(λ × x)2 ;
1

τ ′
ss

= DK

(λ × x ′)2 , (11)

where DK is diffusion coefficient for K+ and x and x ′ are
described as a distance between the centers of two interstitial
volumes. Thus,

τss

τ ′
ss

= x2

x ′2 . (12)

We obtain τ ′
ss = 3.3τss by applying the method in the Appen-

dices of Ref. [31].
The potassium coupling strength κ is defined as

κ = log10(1000 ms/τss + 1). (13)

Thus,

τss = 1000 ms

10κ − 1
. (14)

The above two equations describe the relation potassium cou-
pling strength and potassium diffusion constant τss. This rela-
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tion is consistent with the fact that a faster movement of potas-
sium ions provides a stronger mutual interaction between cells.

C. Electrical coupling

Electrical coupling is modeled by adding a coupling current
to Eq. (1) for the soma of each cell. Then the dynamics of the
somatic membrane potential of cell i becomes

Cs
dV i

s

dt
= −(

I i
Na + I i

K + I i
sLeak + I i

pump + I i
sd + I i

gap

) + I i
stim,

I i
gap =

∑

j

ggap
(
V i

s − V j
s

)
, (15)

where the sum is over the nearest cells of cell i and ggap is
the electrical coupling conductance between the cells i and j .
There is little direct experimental evidence for gap junctions
on CA1 pyramidal neurons. In the CA1 region, neurons are
densely packed and it has been suggested somatic contacts can
be an option for pyramid-pyramid electrical junctions [35].
Thus, the cells are electrically coupled through somatic gap
junctions in our model.

III. RESULTS

A. The presence and absence of potassium coupling

We perform simulations with and without potassium lateral
diffusion to study the role of potassium diffusion in the

FIG. 2. (Color online) Network oscillations for neurons which are coupled through gap junctions (ggap = 0.55 mS/cm2) and potassium
lateral diffusion (κ = 1.5). A current pulse (20 s, 2 nA) applied to cell 1 is used to induce action potentials. (a) Snapshots of voltage waves
in the cell network; (b) time series of Vs and [K+]o of cell 1, 10, 20, 30, 40, and 50, respectively; (c) the latency of the first spike after the
application of the stimulation T1, the duration of network oscillations T2, and the remaining activity duration after the end of stimulation T3. A
five-spike burst is depicted in the enlarged drawing in the right of (c). In the gray patterns in (a), the black dots represent Vs = −60 mV and
white dots 30 mV.
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generation of spiking activity in an electrically coupled cell
network. We start with the neuron network modeling with
both the electrical connections and potassium diffusion among
nearby neurons. Neurons are arranged as in Fig. 1(d) with
ggap = 0.55 mS/cm2 and κ = 1.5. The choice of κ here
leads to the result of τss ≈ 32 ms, which is consistent with
the values given in Ref. [31], which are considered to be
physiologically reasonable. The background state is silent
without any stimulation. Network oscillations are observed
when a DC pulse with an amplitude of 2 nA and a duration of
20 s is applied to cell 1.

Figure 2(a) shows the snapshots of action potential waves
in the network with potassium coupling at κ = 1.5, which are
symmetric due to the symmetry structure of the model. Dots
in lighter color indicate cells being more depolarized, and
black areas indicate that the cells there are at their silent states.
Figure 2(b) plots the trajectories of Vs and [K+]o in cells 1, 10,
20, 30, 40, and 50 [see Fig. 1(d) for cell positions], respectively.
As shown in Fig. 2(b), the electrical stimulation causes cell 1 to
generate a burst and then enter a state known as depolarization
block [41]. Through gap junctions and potassium diffusion,
series of action potentials are generated in all the cells of the
network following the onset of the stimulus.

During the electrical stimulation, cell 1 is depolarized to
be depolarization block, which provides a stable source of
potassium ions to its nearby cells directly and farther away
cells indirectly through potassium diffusion. The increase
in the potassium concentration in the interstitial spaces of
these cells makes them easier to get excited with action
potentials. Thus, other cells in this network have two input
signals from the stimulated cell: a depolarized electrical signal
through electrical junctions and a potassium signal through
ion diffusion. As a result, action potential waves [Fig. 2(a)]
almost start at the moment when the stimulus is applied.

Figure 2(a) depicts the spread of a burst in the network as
a wave. The burst starts from cell 1 and then affects its nearby
cells. Later these cells turn quiescent but cells further away
from cell 1 become turned on. This process repeats itself until
cell 50 is lighted. The time of the occurrence of each burst in
one cell is generally dependent on the distance of that cell from
the stimulated cell. Once started, the oscillation bursts in this
locally coupled network with gap junctions propagate with
a much larger velocity than other signals among cells (e.g.,
intracellular calcium waves in astrocytes) [42,43]. After the
stimulus, which is turned on at t = 5 s, terminates at t = 25 s,
potassium regulating mechanisms start to overpower the ionic
currents, and then finally the interstitial potassium fails to
maintain the oscillations in the network.

However, when the same simulation is repeated without
potassium lateral diffusion (κ = 0), the results are different
(Fig. 3). With DC stimulation, cell 1 is in depolarization block
after the first burst. Thus there is a large amount of potassium
ions flowing into the interstitial space. But the increase of
[K+]o of cell 1 could not create diffusion of K+ to neighboring
regions when potassium diffusion coupling is removed. Instead
the increasing potassium accumulation makes cell 1 more
positive. Meanwhile, through gap junctions, cell 1 produces
a depolarizing signal for nearby cells. When this signal is
strong enough, i.e., about 10 s after DC stimulation is on, cells
in the network start oscillating. The bursts are firstly generated

in cell 1 and then in nearby cells. They then proceed to diffuse
outward to other cells and finally to cell 50. To give an example,
we plot in Fig. 3(a) snapshots of the spreading of a burst in the
network.

After the stimulus is removed, the potassium concentrations
gradually decrease. However, the periodic oscillations of these
neurons elevate [K+]o in the network so significantly that it is
able to maintain network oscillations for several seconds even
after stimulus stops at 25 s.

To examine the activity generated in the cell network,
we introduce the concept of the latency of the first spike
after the application of the stimulation (T1), the duration of
network oscillations (T2), and the remaining activity duration
after the end of stimulation (T3). We use the voltage time
series of cell 50 to obtain T1,2,3 according to T1 = t1 − tstart,
T2 = t3 − t2, and T3 = t3 − tend, in which tstart is the starting
time that the DC stimulus is applied to cell 1, tend the end time
of the DC stimulus, t1 the beginning time of the first spike, t2
the beginning time of the second burst, and t3 the end time of
the last spike.

With both the couplings through gap junctions and potas-
sium diffusion (ggap = 0.55 mS/cm2, κ = 1.5), the neuronal
oscillations continue for T2 = 19.38 s and almost immediately
disappear at the stimulus termination [Fig. 2(c)]. The scenario
is different as the potassium coupling is removed. As indicated
in Fig. 3(c), the periodic oscillations last for T2 = 12.246 s, and
the remaining activity duration after stimulus is T3 = 2.176 s.
As to the first spike of cell 50, it is generated in the electrically
coupled neurons at T1 = 0.187 s after the application of the
stimulus regardless of the existence of the potassium diffusion.
The reason that the presence of potassium lateral diffusion
does not affect the latency of the first spike is that the first
spike is generated before the evident potassium accumulation.
Therefore, the speed of this first burst depends only upon the
gap-junction strength, unaffected by the potassium coupling
strength.

B. Effects of potassium coupling and gap
junction on the activity

As shown in the last subsection, depolarization block
following an initial burst is elicited in the stimulated cell by a
DC current. This constantly provides its neighboring neurons
with electrical currents through gap junctions and potassium
inflow through diffusion. These two flows then cover the whole
network, along with the action potential waves. It is shown
that the involvement of potassium lateral diffusion results
in a longer duration of the action potential waves. We now
investigate how the stimulus-induced activity responds to the
variation of potassium coupling strength and gap junction
conductance. Figure 4 shows the relationship of T1,2,3 to κ

and ggap.
Compared to the well-known electrical coupling, we are

more interested in the role played by the potassium diffusion in
a neuron network, which is much less understood but suggested
to be involved in some important network activities. As
mentioned previously in Eq. (11), potassium lateral diffusion
strength depends on tortuosity and the distance between two
interstitial volumes. Modifying κ can be understood as a
change in these basic quantities. Although the value of κ
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chosen for Fig. 2 is considered physiologically reasonable,
a change in the structure of the tissue can lead to the variation
of these basic quantities. It is valuable to know what results
would be caused by such a change.

We can see from Fig. 4(a) that the latency of the first
spike T1 is almost independent of potassium coupling κ

except for small values of ggap. For ggap = 0.275 mS/cm2,
the effect of electrical coupling to the network becomes so
weak that increasing potassium coupling strength can slightly
reduce T1. On the contrary, the latency of the first spike at
cell 50 decreases exponentially with increasing gap-junction
conductance, indicating the increase of the spreading speed of
each burst in the network.

The duration of network oscillations T2 is shown in
Fig. 4(b). We notice a plateau with large ggap values where

T2 is less sensitive to κ . Considering that the depolarization
block state of the stimulated cell provides a steady DC input
to the four neighboring neurons, the strong gap junction alone
is enough not only to evolve the action potentials in these four
neighboring neurons, but also to spread the action potential
waves in the network.

For 0.3 < ggap < 0.6 mS/cm2, the correlation curves be-
tween coupling strength κ and oscillation duration T2 are
bell-like shapes, which are a surprising result at first glance.
Without potassium diffusion, such gap-junction coupling alone
can only generate a slow spreading wave of action potential
in the network, giving a small oscillation duration T2. As the
potassium diffusion coupling strength increases, extracellular
potassium ions can move easily to neighboring cells. The
elevated [K+]o of cell 1 will first diffuse to the nearby

FIG. 3. (Color online) Network oscillations for neurons which are coupled only through gap junctions (ggap = 0.55 mS/cm2, κ = 0). The
same current pulse (20 s, 2 nA) is applied to the cell 1. (a) Snapshots of voltage waves in the cell network; (b) time series of Vs and [K+]o

of cell 1, 10, 20, 30, 40, and 50, respectively; (c) the latency of the first spike T1, the duration of network oscillations T2, and the remaining
activity duration T3. In the gray patterns in (a), the black dots represent Vs = −60 mV and white dots 30 mV.
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FIG. 4. (Color online) Two-dimensional distribution of the la-
tency of the first spike T1 (a), the length of network oscillations
T2 (b), and the length of activity after the end of stimulation T3 (c) as
a function of potassium diffusive coupling strength κ and gap-junction
strength ggap. The first plot is shown in a different orientation only to
show the whole view.

resting neurons, making these neurons easily depolarized.
These nearby firing neurons will then release more K+ ions
into their interstitial space, which will also diffuse into their
nearby resting neurons to evolve action potentials. As a result,
the potassium lateral diffusion at an intermediate range of κ

around 0.5 can easily generate action potential waves in the
network, producing a long oscillation duration T2. When the
potassium lateral diffusion strength is high, the potassium ions
will spread rapidly into the whole network to approach the
equilibrium state. As a result, even for those resting neurons
which are near to the spiking ones, they could not accumulate
enough [K+]o to evoke an action potential. Thus, at large
κ we have T2 = 0, showing no network oscillations. This
discussion indicates that, at weak gap-junction coupling, an
optimal potassium diffusion can drive and accumulate enough
[K+]o from the spiking neurons to its nearby resting neurons,
and then easily evoke action potentials in these nearby cells,
generating activity waves in the network.

Figure 4(b) also shows that abrupt changes in the activity
duration appear under the conditions of strong potassium lat-
eral diffusion compared to relatively smooth changes for weak
potassium lateral diffusion. In particular, we see that an activity
of nearly T2 = 20 s is observed for ggap = 0.55 mS/cm2 and
κ = 1.5 but completely abolished for ggap = 0.525 mS/cm2

and the same value of κ . Hence, the neuron network responses
to the electrical stimulus in an all-or-none fashion at strong
potassium lateral diffusion.

It is notable that the remaining activity duration T3 fluctu-
ates in the order of nearly 0.5 s by a small variance in κ or ggap,
which causes obvious perturbations in the two-dimensional
surface in Fig. 4(c). This is because the interburst interval can
be as large as 0.5 s and the largest value for T3 is only about 3 s.
Despite the stochastic-like fluctuations, Fig. 4(c) shows that
the remaining activity duration after the stimulus is relatively
insensitive to ggap, while it decreases with increasing potassium
diffusion intensity. The reason is that during this period the
accumulated interstitial potassium concentration in cell 1 is
a main factor to drive the neuron network to oscillate. The
process of restoring the equilibrium state would be accelerated,
if the potassium lateral diffusion ability is increased which
thereby reduces more the interstitial potassium accumulation
in the stimulated cell.

C. Locally random topology for gap junctions

With a deterministic topology for gap-junction coupling
between nearest neighbor cells, we have revealed that potas-
sium diffusion strength has a nontrivial effect on the network
response. But in more realistic situations, gap-junction con-
nections are not regular. To verify that our conclusion can
still persist in a more realistic network, a smaller network
of 400 cells has been used with the same structure of the
network in Fig. 1(d). The neurons are placed in the same plane
with 20 rows of cells and 20 columns of cells. Potassium
diffuses in the same way between the interstitial spaces of
neighboring cells as in Fig. 1(b), but the strategy for the
electrical coupling is changed. It is biologically realistic for
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FIG. 5. (Color online) The length of activity T2 as a func-
tion of potassium diffusive coupling strength κ for ggap =
0.4, 0.5, 0.6, and 0.7 mS/cm2. The network used here is similar
to the one described in Fig. 1 except that it is a structure of 20 × 20
neurons and with a random gap-junction topology.

every cell to be connected randomly by gap junctions with
its most neighboring cells and second most neighboring cells.
We consider the situation where each cell has four random
gap-junction connections with its most neighboring cells and
second most neighboring cells, which leads to the same number
of connections per neuron with the previous regular network.

Figure 5 describes the results for a random topology for
ggap = 0.4, 0.5, 0.6, and 0.7 mS/cm2. For ggap = 0.4 mS/cm2

and ggap = 0.5 mS/cm2, the dependence of T2 on κ shows
a bell-shaped curve. For ggap = 0.6 mS/cm2 and ggap =
0.7 mS/cm2, the value of T2 seems relatively more stable
for most κ values, and the change in T2 exhibits an abrupt drop
with the increase of κ . Therefore, the conclusions that persist
for a deterministic gap-junction topology are still correct for a
locally random topology for the gap junction connections.

IV. CONCLUSION

A stimulus can induce action potentials in a single neuron
accompanied by an increase in the interstitial potassium
concentration, which in turn further depolarizes that neuron.
When neurons are coupled electrically and with potassium
diffusion and one of them is stimulated, the firing activity can
be generated in the entire network, which is accompanied by
the diffusion of potassium ions from the stimulated cell to
other cells. In this study, we find that potassium diffusion
strength has a strong influence on the network outcomes.
In addition, our results are consistent with the popular view
that gap junctions provide a favorable condition for electrical
oscillations. However, our attention is more drawn towards
the nontrivial effects of the potassium coupling strength on
network dynamics.

As the values of potassium diffusion strength and electrical
coupling strength are varied gradually, the network oscillations
induced by electrical stimulus show different patterns. The
onset time of the first spike exponentially depends on the
electrical coupling strength. The remaining activity after
stimulation is caused by the potassium accumulation in the

stimulated cell, the reduction of which by increasing potassium
lateral diffusion strength would thus decrease the length of
this activity. In particular, we show that the relations of
the activity duration to potassium coupling strength can be
nonmonotonic. The reason is that potassium coupling exerts
its influence over the network through two pathways. An
increment of potassium lateral diffusion strength leads to
decreased interstitial potassium concentration in the stimulated
cell but increased interstitial potassium concentration in other
cells of the network. It is known that potassium accumulation
around a neuron favors the depolarization of this neuron’s
membrane. Thus, the increase in potassium diffusion strength
has two opposite impacts on the depolarization of the different
neurons.

Although whether or not the role of potassium dynamics is
a primary mechanism in the initiation of hippocampal seizures
has been debated, potassium accumulation was suggested to
account for the firing activity having an all-or-nothing man-
ner [12,44]. In our simulation, we show that when potassium
lateral diffusion and electrical coupling strength are strong, the
oscillations in the neuron network can occur during the stimu-
lus pulse or be deleted with a small increment in the potassium
diffusion strength, exhibiting an all-or-none fashion.

A relatively strong current is injected to the stimulated
neuron in the network and it exhibits depolarization block
behavior following an initial burst. It has been suggested
that the depolarization block would be typically observed
in CA1 neuronal model with a strong stimulus, which could
be physiologically reachable [41]. As indicated in Ref. [41],
considering the average peak current with an excitatory
synaptic input to be 13–25 pA [45], the background synaptic
activity in the gamma range involving less than 3% of the total
number of excitatory synaptic inputs converging on any given
CA1 pyramidal neuron could easily generate an aggregate
peak input current larger than 1 nA. As a result, in a large
active network some cells are likely to enter the state of
depolarization block at some time duration, acting as the
stimulated neuron in our model, to generate action potential
waves in the network, which puts our discussion biologically
meaningful. The chemical synapses are inactive in our model
and here we do not intend to incorporate chemical synapses
into the network but to explain that the stimulus amplitude we
adopt is similar to the current through chemical synapses and
is a biologically reasonable value.

In our simulations, the stimulated neuron provides potas-
sium ions for other neurons and intracellular spaces act
as a source of potassium. It is assumed in this modeling
that [K+]bath = 7.6 mM and [K+]i = 140 mM for the fixed
potassium concentrations of the interstitial spaces and of the
bath, respectively. The total intraneuronal volume is about
twice the size of total extracellular volume [46]. Thus, the
variation in the same amount of potassium ions leads to a larger
change in [K+]o than in [K+]i. However, possible artifact may
be introduced by fixing intracellular potassium concentrations,
especially in the situations of high potassium lateral diffusion
strength. A more biologically realistic model with variable
intracellular potassium concentrations will be considered in
our future study.

The adopted CA1 neuron model consists of 16 compart-
ments with 15 compartments for dendrites in order to simulate
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the dendritic structure of the neuron. However, the dendrite
structure plays little role in the network activities in our
simulations, because dendrite compartments only incorporate
passive channels and both potassium and electrical couplings
only occur between soma compartments. We believe that
a simplified CA1 model with only soma compartment will
produce the similar results, although it would enrich our
modeling to include active ionic channels on the dendrites and
potassium diffusion among soma and dendrite compartments.

In conclusion, we show that the potassium lateral diffusion
plays a nontrivial role on the oscillatory activity of an electri-
cally coupled neuron network induced by a DC stimulus. The
dependence of the duration of the firing activity on potassium
lateral diffusion strength displays bell-like shapes at weak
gap junction coupling. Thus, there is an optimal potassium
diffusion strength, at which potassium accumulation is ideally

distributed among the network neurons to best facilitate the
generation and continuance of the spread of the spiking
waves. An all-or-none firing activity is also found at strong
gap junction coupling and strong potassium lateral diffusion,
which may also be biologically relevant.
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