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Resonance induced by a spatially periodic force in the reaction-diffusion system

Chenggui Yao,1,2 Zhiwei He,1,3 JinMing Luo,4 and Jianwei Shuai2,*

1Department of Mathematics, Shaoxing University, Shaoxing 312000, China
2Department of Physics, Xiamen University, Xiamen 361005, People’s Republic of China

3Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
4College of Science, China University of Mining and Technology, Xuzhou 221000, China

(Received 2 March 2015; revised manuscript received 11 April 2015; published 6 May 2015)

The stimulus-dynamic response is an important topic in physics. In this work, we study the dynamics in the
reaction-diffusion system subjected to a weak signal and a spatially periodic force. We find that the response
of the system to the weak signal is enhanced largely by the spatially periodic force, which is termed spatially
periodic-force-induced resonance. In particular, the response becomes stronger when the spatial frequency
is chosen such that the system synchronizes with spatially periodic force. This combinative behavior, i.e.,
the spatially periodic-force-induced resonance and the spatial-synchronization-enhanced resonance, is of great
interest and may shed light on our understanding of the dynamics of nonlinear systems subjected to spatially
periodic force in responding to a weak signal.
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I. INTRODUCTION

Stochastic resonance, the phenomenon of the response of
nonlinear systems to a weak periodic signal enhanced by
an appropriate strength of noise, has drawn much attention
in nonlinear science for more than 30 years [1–5]. This
unusual, constructive role of noise on nonlinear systems has
been studied extensively in physical, chemical, and biological
systems [6–11]. Analogous to noise in stochastic resonance,
the other driving sources have also been shown to be able
to play a similar role. For example, the system’s response
to a weak low-frequency signal can become maximal with
an optimal intensity of high-frequency periodic force. This
phenomenon, called vibrational resonance, was first reported
by Landa and Blekhman [12]. Tessone et al. found that the
appropriate quenched noise could lead to a resonant effect in
the globally coupled bistable and excitable systems responding
to a weak periodic signal [13–15]. This phenomenon has
been named diversity-induced resonance. Since then, many
studies have been devoted to the unusual effect of quenched
noise and high-frequency force in the framework of the
resonance. Gassel et al. studied the interplay of additive
and multiplicative diversity (the so-called doubly diversity-
induced resonance [16]) and the diversity-sustained pattern
formation in subexcitable media [17]. Chen et al. reported
the structural-diversity-enhanced cellular ability to detect
subthreshold extracellular signals in biological systems [18].
The study of vibrational resonance has also been widely
investigated in various systems, including excitable [19–22],
bistable [23–26], and spatially extended systems [27–31].

Recently, the effect of spatially periodic force on dynamic
behaviors has been investigated in reaction-diffusion systems.
Page et al. explored the effects of spatial force on pattern
formation in the Gierer-Meinhardt reaction-diffusion model,
and they found that the spatial force can both increase the
range and complexity of possible patterns and enhance the
robustness of pattern selection [32]. Dolnik et al. investigated
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the role of spatially periodic force on the hexagonal pattern
of Turing structures in the chlorine dioxide-iodine-malonic
acid reaction-diffusion system, and they showed many defects
that break the symmetry of the pattern [33]. Manor et al.
reported wave-number locking and pattern formation in a
two-dimensional system driven by a one-dimensional periodic
weak force [34].

We are curious about how the spatially periodic force
influences the response of the reaction-diffusion system to the
weak signal in this paper. In such a reaction-diffusion system
subjected to a weak signal and spatially periodic force, we
find the effect of optimal amplification of the weak signal. In
other words, the spatially periodic force can induce resonant
behavior with the increase of amplitude of the spatial force.
More interestingly, the resonance can be largely enhanced
when the system synchronizes with the spatially periodic force
at some special frequencies.

II. MODEL

We focus on the following bistable reaction-diffusion
system:

∂tX = X − X3 + D∂2
xX + A cos(ωt) + c sin

(
2πf

x

L

)
,

(1)

where X(x,t) (0 � x � L) is the potential height at position x

for time t . D is the strength of diffusion. The undiffused model
describes the overdamped motion in the bistable potential
U (X) = X4

4 − X2

2 subjected to the weak periodic signal with
the angular frequency ω and amplitude A. c sin(2πf x

L
) is a

spatial force with the spatial frequency f . All our numerical
results are obtained through the standard Euler approach of the
reaction-diffusion equation [Eq. (1)] with periodic boundary
conditions for the fixed time step �t = 0.01 and grid distance
�x = 0.1.

To quantify the response of the system to the weak periodic
signal, we define a temporal resonance factor Qt that is
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given by

Qt =
√

Q2
t1 + Q2

t2,

Qt1 = 1

T

∫ T0+T

T0

Y (t) cos(ωt)dt, (2)

Qt2 = 1

T

∫ T0+T

T0

Y (t) sin(ωt)dt.

The temporal resonance factor Qt characterizes the signal
output of the mean field Y (t) = 1

L

∫ L

0 X(x,t)dx at the input
frequency ω. Both sufficiently large T0 and T should be chosen;
large T0 is used for discarding the transient processing and
large T for a proper measurement of average over time. The
temporal resonance factor Qt can provide a precise measure
of the responding ability of the system to the weak periodic
signal at frequency ω. To quantify the responding ability of
the system to the spatially periodic force at spatial frequency
f , we also define a spatial resonance factor Qs ,

Qs =
√

Q2
s1 + Q2

s2,

Qs1 = 1

L

∫ L

0
Z(x) cos 2πf

x

L
dx, (3)

Qs2 = 1

L

∫ L

0
Z(x) sin 2πf

x

L
dx,

where Z(x) = 1
T

∫ T0+T

T0
X(x,t)dt .

III. SPATIALLY PERIODIC-FORCE-INDUCED
RESONANCE

Figures 1(a) and 1(b) show the spatial resonance factor
Qs as a function of f and c in a three-dimensional (3D)
and a two-dimensional (2D) contour plot, respectively. Ob-
viously, Qs increases with the amplitude of spatial force for
fixed frequency f , and nonmonotonically decreases with the
frequency of spatial force for fixed amplitude c [Figs. 1(a)
and 1(b)]. The temporal resonance factor Qt versus f and

FIG. 1. (Color online) The 3D plot and contour of the amplifica-
tion factor Qt [(a) and (b)] and Qs [(c) and (d)] as a function of f and
c, respectively. The parameters A = 0.2, ω = 2π

T
, D = 0.1, L = 10,

and T = 100 are chosen.

FIG. 2. (Color online) (a) Qt against c and (b) against f . In (a)
from left to right, f = 3.5, 5, 6.5, 8, and 9.5, respectively. In (b) from
left to right, c = 1, 2, 3, and 4, respectively.

c in a 3D and a 2D contour plot is presented in Figs. 1(c)
and 1(d), respectively. One can observe that the influence of
spatially periodic force on the response of the system to the
weak signal is remarkable. The temporal resonance factor Qt

becomes large at some region of c and f of the spatial force,
which we term spatially periodic-force-induced resonance.

As some examples, Figs. 2(a) and 2(b) illustrate the
temporal resonance factor Qt against c for f = 3.5, 5, 6.5, 8,
and 9.5, and against f for c = 1, 2, 3, and 4, respectively. From
Fig. 2, the spatially periodic-force-induced resonance can be
seen clearly in the c direction for a fixed f , and multiresonance
emerges in the f direction for a fixed c. The peaks of the tem-
poral resonance factor Qt are obtained with spatial force at
some specific amplitudes c and frequencies f , indicating that
the resonance is enhanced by those special spatial forces.

We now analyze how the system responds to different
diffusion coefficient D and modulation periods T of the weak
signal. In Fig. 3(a), the dependence of Qt on c for different D is
exhibited. One can notice that the optimal copt increases with an
increment of D, and the local maximum of temporal resonance
factor Qt depends on the diffusion coefficient D. The local
maximum of temporal resonance factor Qt against D is
shown in Fig. 3(b). The local maximum Qt nonmonotonously

FIG. 3. (Color online) (a) Dependence of Qt on c for different
diffusion coefficients D, and (b) the local maximum value of Qt as
a function of D at T = 100. (c) Qt against c for different periods of
weak signal T , and (d) the local maximum value of Qt against T at
D = 0.1.
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FIG. 4. (Color online) (a)–(c) Bifurcation diagrams of Y (t) =
1
L

∫ L

0 X(x,t)dx for the local maximal values with positive initial
conditions (green solid points) and negative initial conditions (pink
pluses) for different values of f : f = 2.0, 5.0, and 7.5, respectively,
indicating the system transitions from a bistable to a monostable state
across the peak position c∗. (d)–(f) The plots of Qt and Qs against c,
f = 2.0, 5.0, and 7.5, respectively.

depends on the diffusion coefficient D. There exists an optimal
diffusion coefficient such that the response of the system to the
weak signal become maximal. The temporal resonance factor
Qt against c for a different period T of the weak signal is shown
in Fig. 3(c), indicating that Qt increases and quickly saturates

as T increases (comparing these five curves). In Fig. 3(d), we
plot the local maximum of temporal resonance factor Qt as a
function of the period T of the weak signal. It can be seen that
for large T , the local maxima of temporal resonance reach a
constant value.

The occurrence of vibrational, diversity-induced, and
stochastic resonance indicates that the forcing sources can
change the dynamics of populations, giving rise to a system
transition from a bistable to a monostable state, and causing
the amplitude to become maximal at the transition point.
Therefore, the peak position for the resonant behavior should
correspond to the system threshold from a bistable to a
monostable state [13,31]. Our numerical result shows that
this mechanism can be generalized to spatially periodic-
force-induced resonance. Figures 4(a)–4(c) show bifurcation
diagrams of mean field Y (t) = 1

L

∫ L

0 X(x,t)dx for different
spatial frequencies f , where the transition from a bistable to
a monostable state with increasing c across point c∗ (c∗ is the
peak position) is clearly shown. Figures 4(d)–4(f) illustrate Qt

and Qs against c, which shows Qt � Qs for the moderate
amplitude c, whereas Qt � Qs if the amplitude increases
[Figs. 4(e) and 4(f)]. These results reveal that the spatial
force acts like a modulator and the oscillating frequency of the
system switches from temporal frequency to spatial frequency
with increasing amplitude. Based on these observations, Qt

monotonically increases with c for small c as the system
transfers from a bistable to a monostable state. After that, Qt

monotonically decreases with c due to the change of oscillation
mode. In the following, we show that the spatially periodic-
force-induced resonance comes from not only the transition
from a bistable to a monostable state [Figs. 4(a)–4(c)] but also
the change of the oscillation mode [Figs. 4(d)–4(f)].

To show the detailed dynamics, the continuous spatiotem-
poral evolution of X(x,t) is shown in Fig. 5 with positive

FIG. 5. (Color online) Spatiotemporal evolution of X(x,t) for different values of f and c. From the top row to the bottom row, different f

are chosen: f = 2.0, 5.0, and 7.5, respectively. From the left-hand column to the right-hand column, different c are chosen: c < c∗, c = c∗,
and c > c∗, respectively. Specifically, c = 0.15 (a), 0.3 (b), 1.0 (c), 0.15 (d), 0.8 (e), 2.0 (f), 0.15 (g), 1.3 (h), and 2.0 (i).
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initial conditions. We discard the transient at the beginning
of the evolution. For the rows, from top to bottom, f = 2, 5,
and 7.5. For the columns, from left to right, different values
of c are chosen: c < c∗,c = c∗, and c > c∗ (c∗ is the peak
position). Comparing any three subfigures in each row, we
do find the dynamical change from bistable to monostable,
and the oscillation mode jumping from temporal to spatial
oscillation. The left column in Fig. 5 gives examples of the
evolution X(x,t) with the small spatial force. The regular
spatiotemporal patterns are observed, and X(x,t) becomes
fluctuating about 1.0 with small amplitude, signifying that the
system is bistable, whereas for c � c∗ in the right column, the
system is in monostable state. For different spatial frequencies
f , we also find the strong modulation effect by spatial force
with an increase of c. X(x,t) oscillates with large amplitude in
the spatial direction and with small amplitude in the temporal
direction for sufficiently large c. However, the middle column
in Fig. 5 shows that X(x,t) oscillates with large amplitude in
the temporal direction and with small amplitude in the spatial
direction at middle c.

IV. SPATIAL-SYNCHRONIZATION-ENHANCED
RESONANCE

From Fig. 1(c), a clear resonant curve can be drawn for
the local maxima Qt on the (c, f ), plane and its peak values
depend on the values of both f and c. The local maxima
of temporal resonance factor Qt against spatial frequency f

is shown in Fig. 6. The local maxima Qt nonmonotonously
depend on the spatial frequency f . Interestingly, those large Qt

are located at f = n for n = 4, 5, 6, 7, 8, 9, and 10, indicating
that the system response gets stronger at proper values of
both f and c (usually f are integers). The maximal Qt is
located at n = 5. Clearly, Fig. 6 shows a novel behavior of the
spatially periodic-force-induced resonance largely enhanced
by the spatial frequency at f = n.

So far we know that the spatially periodic-force-induced
resonance can occur for large enough f , as shown in Fig. 1.
However, it remains unclear how the spatially periodic-
force-induced resonance can be enhanced by the proper
frequency of spatial force. Toward that end, we check Z(x) =
1
T

∫ T0+T

T0
X(x,t)dt , X(x,t1), and X(x,t2) [in which t1 and t2

FIG. 6. (Color online) The local maximum Qt against f , show-
ing the enhanced spatially periodic-force-induced resonance at certain
special frequencies.

FIG. 7. (Color online) (a)–(c) The spatial series of X(x,t1)
X(x,t2) and Z(x) = 1

T

∫ T0+T

T0
X(x,t)dt for f = 2.0,5.0, and 7.5,

respectively. t1 and t2 are the time of the local maximal and minimal
value of Y (t), respectively. From top to bottom, the blue, black, and
green lines correspond to X(x,t1), Z(x) = 1

T

∫ T0+T

T0
X(x,t)dt , and

X(x,t2), respectively. The pink dots stand for A(f ) sin(2πf x

L
).

are the times of the local maximal and minimal values of
Y (t), respectively] for the parameter set (f , c∗) as the same
as the middle column in Fig. 5. Comparing three subfigures
in Fig. 7, X(x,t1), X(x,t2), and Z(x) vary periodically with
spatial frequency f if f = n [Figs. 7(a) and 7(b)]. Although
the system does not oscillate periodically in the whole region
0 � x � L, the periodic oscillation can be observed in the
partial region of Lc1 � x � Lc2 when f is not an integer
[Fig. 7(c)]. To quantify the degree of the system entrained by
the spatial force, we define the ratio R for the length of interval
where X(x,t1), X(x,t2), and Z(x) oscillate periodically, which
is given by

R = Lc2 − Lc1

L
. (4)

Obviously, R = 1 if the system is entrained completely
by the spatial force, and R = 0 means that the spatially
periodic-force-induced resonance does not occur at all in the
system. We also calculate the amplitude A of the mean field,
which is defined as the difference between the maximum
and minimum of Y (t) = 1

L

∫ L

0 X(x,t)dx since the temporal
resonance factor Qt characterizes the signal output of the
mean field Y (t) = 1

L

∫ L

0 X(x,t)dx. The changes for R and A

as a function of f are shown in Fig. 8. Comparing Fig. 8(a)
with Fig. 6, we find that Qt nonmonotonously depends on
the spatial frequency f due to the change of the system’s
amplitude A. However, temporal resonance factor Qt becomes
much larger at some spatial frequencies (f = n) because the
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FIG. 8. (Color online) The amplitude A of mean field Y (t) =
1
L

∫ L

0 X(x,t)dx (a) and the ratio R (R = Lc2−Lc1
L

) (b) against fre-
quency f .

system synchronizes with spatial force, which is given by
R = 1 at f = n in Fig. 8(b). Here we call the behavior of large
Qt at R = 1 the spatial-synchronization-enhanced resonance.
Since the dynamics of the system should be influenced by

both the amplitude and frequency of the spatial force, it is easy
to understand the occurrences of the spatially periodic-force-
induced resonance and the spatial-synchronization-enhanced
resonance shown in Fig. 6.

V. CONCLUSION

In conclusion, we have studied the spatially periodic-
force-induced resonance in the reaction-diffusion system so
that the response of the system to the weak signal can be
optimized by the spatial force with intermediate amplitude
and sufficiently large spacial frequency. We also observed
that the resonance can get stronger when the reaction-
diffusion system is synchronizing with the spatial force at
a certain frequency. Thus, the maximal response of the
reaction-diffusion system to the weak signal can be achieved
when both the spatially periodic-force-induced resonance and
spatial-synchronization-enhanced resonance occur at a certain
spatially periodic force. We suggest that the spatially periodic-
force-induced resonance observed in the reaction-diffusion
system with spatial force and a weak signal may play a
significant role in engineering and natural systems.
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