
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 117.28.251.187

This content was downloaded on 22/10/2016 at 10:43

Please note that terms and conditions apply.

You may also be interested in:

An allosteric model of the inositol trisphosphate receptor with nonequilibrium binding

Chen Jia, Daquan Jiang and Minping Qian

Deterministic and stochastic models of intracellular waves

M Falcke

Reactive clusters on a membrane

R Thul and M Falcke

Reduction of calcium release site models via moment fitting of phase-type distributions

M Drew LaMar, Peter Kemper and Gregory D Smith

A modular approach to Ca2+i response patterns

Minchul Kang and Hans G Othmer

Luminal Ca2+ dynamics during IP3R mediated signals

Lucia F Lopez and Silvina Ponce Dawson

Accurate Langevin approaches to simulate Markovian channel dynamics

Yandong Huang, Sten Rüdiger and Jianwei Shuai

Comparison of gating dynamics of different IP3R channels with immune algorithm searching

for channel parameter distributions

View the table of contents for this issue, or go to the journal homepage for more

2016 Phys. Biol. 13 056005

(http://iopscience.iop.org/1478-3975/13/5/056005)

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/article/10.1088/1478-3975/11/5/056001
http://iopscience.iop.org/article/10.1088/1367-2630/5/1/396
http://iopscience.iop.org/article/10.1088/1478-3967/2/1/007
http://iopscience.iop.org/article/10.1088/1478-3975/8/2/026015
http://iopscience.iop.org/article/10.1088/1478-3975/4/4/009
http://iopscience.iop.org/article/10.1088/1478-3975/13/3/036006
http://iopscience.iop.org/article/10.1088/1478-3975/12/6/061001
http://iopscience.iop.org/1478-3975/13/5
http://iopscience.iop.org/1478-3975
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Phys. Biol. 13 (2016) 056005 doi:10.1088/1478-3975/13/5/056005

PAPER
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Abstract
The gating properties of the inositol 1, 4, 5-trisphosphate (IP3) receptor (IP3R) are determinedby the
binding andunbinding capability ofCa2+ ions and IP3messengers.With the patch clamp experiments,
the stationary properties have beendiscussed forXenopusoocyte type-1 IP3R (Oo-IP3R1), type-3 IP3R
(Oo-IP3R3) and Spodoptera frugiperda IP3R (Sf-IP3R). In this paper, in order toprovide insights about the
relationbetween the observed gating characteristics and the gating parameters in different IP3Rs,we apply
the immune algorithm tofit the parameters of amodifiedDeYoung–Keizermodel. By comparing the
fitting parameter distributions of three IP3Rs,we suggest that the three types of IP3Rshave the similar
open sensitivity in responding to IP3. TheOo-IP3R3 channel is easy to open in responding to lowCa2+

concentration,while Sf-IP3R channel is easily inhibited in responding tohighCa2+ concentration.We
also show that the IP3 binding rate is not a sensitive parameter for stationary gating dynamics for three
IP3Rs, but the inhibitoryCa

2+binding/unbinding rates are sensitive parameters for gatingdynamics for
bothOo-IP3R1 andOo-IP3R3 channels. Suchdifferencesmaybe important in generating the spatially
and temporally complexCa2+oscillations in cells.Our study also demonstrates that the immune
algorithmcanbe applied formodel parameter searching in biological systems.

1. Introduction

Elevation of intracellular Ca2+ level represents a
ubiquitous signaling pathway, controlling a variety of
cellular functions including proliferation, learning
memory,metabolism, gene transcription, and apopto-
sis [1, 2]. In almost all kinds of cells, Ca2+ ions are
released from the endoplasmic reticulum (ER) into the
cytosol through inositol 1, 4, 5-trisphosphate (IP3)
receptor (IP3R) channels [3]. The IP3R is a tetrameric
Ca2+ selective channel [3, 4]. Three IP3R subtypes
(IP3R1, IP3R2, IP3R3) have been identified in mam-
mals [4]. The regulatory properties of IP3R channels
have been studied extensively with IP3R1 in experi-
ments [5]. The IP3Rs are activated by IP3 and also
controlled by cytosolic Ca2+ concentration ([Ca2+])
with both positive and negative feedbacks [6].

Experimentally, membrane patch clamp techni-
que has been mainly applied to measure the current

changes of IP3R channels to investigate its open and
closing activities [6–9]. These patch clamp recordings
have been first performed in lipid bilayers [10, 11],
which is not in vivo situation. Later, it has been shown
that the IP3R channel activity can be measured by
using nuclear patch clamp in its native nuclear mem-
brane. Different stationary properties, including the
open probability, mean open time and mean closing
time, under different concentrations of Ca2+ and IP3
have been measured systematically with endogenous
Xenopus oocyte type-1 IP3R (Oo-IP3R1) [6], recombi-
nant rat type-3 IP3R expressed in oocytes (Oo-IP3R3)
[7] and endogenous Spodoptera frugiperda IP3R (Sf
−IP3R) [8]. With these experimental data an interest-
ing question remains: what processes of Ca2+ and IP3
binding to and unbinding from IP3Rs can be revealed
for these different IP3R channels? Understanding the
ligand binding and unbinding properties of IP3Rs is
important for studying cellular Ca2+ signal.
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In order to discuss the channel gating properties,
various models have been suggested to explain the
patch clamp recordings of IP3R channels and to inves-
tigate the oscillation kinetics of Ca2+ signal. Mak et al
proposed an allosteric four-plus-two-conformation
model, in which it was postulated that an IP3R channel
is composed of four IP3R monomers and each IP3R
monomer has one IP3 binding site and three different
Ca2+ binding sites [7]. Specific kinetic model for the
type-2 IP3R has been considered by Sneyd andDufour,
assuming the whole channel as an entirety instead of
the four-subunit construction [12]. Dupont and
Combettes developed phenomenological model
accounting for the distinct steady-state behaviors of
IP3Rs [13] to discuss their effects on Ca2+ signals, but
this model is not based on the underlying molecular
processes related to IP3 and Ca2+ binding. DeYoung
and Keizer assumed that an IP3R channel is made up
of three identical and independent subunits. For each
subunit, there are an IP3 binding site, an activating
Ca2+ binding site and an inhibitory Ca2+ binding site
[14]. Shuai et al built up a model based on the
DeYoung–Keizer model (DYK model), taking four
independent subunits into account and considering
that IP3R channel opens through configuration
change [15]. Shuai et al [16] also compared different
models and discussed their various fitting efforts with
the Oo-IP3R1 patch clamp experimental recordings.
Ullah et al established a model consists of a Markov
chain with nine close states and three open states,
which accounts for experimentally observed gating
behaviors of single native Sf-IP3R channel [17].
Among these models, DYK model [14, 18] has been
widely applied inCa2+ signaling simulation.

In thesemodeling studies, the researchers typically
considered an IP3R channel with a set of fixed model
parameters to discuss the patch clamp data of IP3R
channel or Ca2+ signaling experiments. Mathemati-
cally, various sets of model parameters can be chosen
to fit to a group of experimental data within a certain
matching error. As a result, one can obtain a prob-
ability distribution of fitting values for each model
parameter. Such distributions actually reveal the
robustness and reliability of the model parameters.
However, there has been little discussion on the
robustness and reliability of IP3Rmodel parameters.

In the present work, we fit the modified DYK IP3R
model parameters with experimental data of Oo-
IP3R1, Sf-IP3R and Oo-IP3R3, including open prob-
ability, mean open time and mean close time with the
artificial immune algorithm. The artificial immune
algorithm is an intelligent algorithm inspired by the
principles and processes of biological immune system.
For specific reactivity, an organism responds to an
antigen invasion swiftly and creates specific antibody
to eliminate the antigen. The immune algorithm is
inspired by this specific reactivity. The objective func-
tions correspond to the antigens. Once the objective
functions (antigens) are given, the algorithm

(organism) will generate the specific vector (antibody)
by a series of cloning, recombination and mutation
processes (seemethods section for detail).

Artificial immune system has been applied to solve
various application problems, including fault detec-
tion [19], pattern recognition [20], computer security
[21], etc. Especially, it has been substantially studied
for solving multi-objective optimization problems
(MOPs). The first reported approach that directly uses
artificial immune system to solveMOPswas presented
by Yoo and Hajela [22]. The immune concept of anti-
body–antigen affinity is incorporated into a standard
genetic algorithm to modify the fitness assignment.
Afterward, many multi-objective immune algorithms
(MOIAs) are presented to solve MOPs. Based on the
special features provided by artificial immune system,
they can be classified into three categories. The first
kind of MOIAs is based on clonal selection approach,
which uses the cloning principle to get the copies of
superior antibodies that are chosen to have the better
affinities [23–25]. In this category, a representative
algorithm is the hybrid immune multi-objective
optimization algorithm (HIMO) (see methods section
for detail) [24]. In the second category, the immune
network theory is applied to evolve the population and
to maintain the population diversity [26–28]. The last
category is proposed to combine an immune system
and another heuristic algorithm in order to embed
some advantageous operators of the heuristic algo-
rithm intoMOIAs [29–32].

In this work we apply the HIMO algorithm to fit
the parameters of the modified DYK IP3R model to
nuclear membrane patch clamp experimental data to
investigate the relation between the observed gating
characteristics and the gating parameters of IP3Rs. As a
result, a number of optimal fitting parameters are
found automatically for the IP3R model by applying
the immune algorithm. Based on the parameter dis-
tributions, the robustness of IP3Rmodel parameters is
studied. Furthermore, by comparing the parameter
distributions of Oo-IP3R1, Oo-IP3R3 and Sf-IP3R, we
reveal the different channel dynamics of these three
IP3Rs.

2.Method andmodel

2.1. Immune algorithm
First, we introduce the artificial immune algorithm
applied in our study. The HIMO algorithm aims to
obtain the approximate minima of multi-objective
functions promptly [24, 32], which is described as
belowwith theHIMO flowchart shown infigure 1.

First, we set the fitting parameters of x1, x2,K , xk
as the fitting vector X=(x1, x2,K , xk), i.e., the anti-
body. For the case of multiple objective functions, the
optimization goal is to find a set of fitting vectors X to
satisfy the constraints, i.e. tomake each objective func-
tion smaller than a desired critical number
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individually. The fitting vectors that satisfy the con-
straint conditions are termed the optimal vectors.
Considering the vector of objective function F (X):

( ) ( ( ) ( ) ( )) ( )=ÎF X f X f X f X, , , 1X G m1 2

where fi(X) is the objective function (i=1, 2,K, m),
m is the number of objective functions and the setG is
the possible domain of vector X. In our example
discussed below, the objective functions are the three
relative mismatch functions between modeling and
experimental results and the constraint condition is
simply to consider that the sum of the three objective
functions should be smaller than a critical number.

At the beginning of the algorithm, one needs to
randomly initialize a set of antibodies, i.e., the popula-
tion of fitting vectors. Then according to the objective
function, one searches for the optimal antibodies that
satisfy the constraints of objective function vector by
clone, recombination andmutation operations at each
generation [24, 32], which will be described in detail
below. In our simulation, themaximal number of gen-
erations is 106, which is a large enough number rea-
sonably determined with calculation time. We always
obtain the optimal antibodies before reaching the
maximal number of generations.

3. Clone operation

In HIMO algorithm, the clone operation of antibodies
is considered first. The cloning number of an antibody

is according to its affinity which is typically related to a
set of small objective functions. The larger the affinity,
themore clones are generated for that antibody.

We suppose a population set A=(X1, X2,K, Xn),
where X i is an antibody and n is the total number of
antibodies. In our simulation, we consider 100 anti-
bodies, i.e. 100 fitting vectors. The cloning number
that wewant to clonewith the antibodyX i is defined as
q i (i=1, 2,K, n):

⁎ ( )
( )

( )
å

=
=
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Q X

Q X
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n j
1

whereQ(X i) is the affinity of antibodyX i, defined as:
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Instead of applying Qj(X
i)=∞ in the simulation, we

actually setQj(X
i) as the twofold ofmaximal affinity.

Figure 1.The flowchart ofHIMOalgorithm.
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4. Recombination operation

Next, we consider the recombination operation to
generate new antibodies from the old antibodies in
order to avoid getting into local optimal solutions for
antibodies (i.e. the fitting vectors).

HIMO applies binary crossover operator [33] to
generate two new fitting vectors (i.e. two new anti-
bodies) from two old antibodies of

( )= ¼X x x x, , , n
0

1
0

2
0 0 and ( )= ¼X x x x, , , n

1
1
1

2
1 1 :

[( ) ( ) ]

[( ) ( ) ]
( )

* * *

* * *

b b

b b

= + + -

= - + +

y x x

y x x

0.5 1 1 ,

0.5 1 1 ,
5i i i

i i i

0 0 1

1 0 1

where y
i
0 and y

i
1 are the variables of new antibodies of

Y0 and Y1, and b is the parameter defined by following
random equations:

[ ]
( )

*

*


b

a
a

a a

=

-
>

h

h

+

+

⎧
⎨
⎪⎪

⎩
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

ran , ran
1

1

2 ran
, ran

1
6

1
1

1
1

in which h is a crossover-distribution factor which is
set as 15 normally, ran is a random number, and α is
given by
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where yiu and yid are the upper boundary and the lower
boundary of the ith variable.

5.Mutation operation

Then, we introduce the mutation operation for each
antibody at each generation in order for antibodies to
jump out of local optimal solutions. For mutation,
there are two kinds of mutation operators, i.e. the
polynomial mutation and the Gaussian mutation.
HIMO combines both mutations, which is called GP-
HMoperator [32].

HIMO uses dynamic mutation possibility pm to
decide the possibility of each antibody for mutation,

which is defined by:

( )

( )

* * * *
=

+ - <

>

⎧
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8
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min max

where pm
min is default minimum mutation possibility,

p is a default parameter to control the number of
antibodies to mutate, g is the current generation, and
gmax is defaultmaximumgeneration.

For antibody X=(x1, x2, K, xn), the GP-HM
mutation operator is defined by:

( ) ( )*¢ = + D - = ¼x x y y i n, 1, 2, , , 9i i iu id

where ¢xi is the new ith variable of antibody X after
mutation.

For polynomialmutation,D is given by

where μ is the mutation-distribution factor which is
set as 20 normally. For Gaussian mutation, D is
defined as

( ) ( )*D = N0.1 0,1 . 11

HIMO uses a self-adaption parameter s to control the
transfer of these twomutations:

( ) ( )* *= -
-
-

⎛
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Q Qg
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After the clone, recombination and mutation
operations, HIMO identifies the fitting vectors, saves
and updates them. The multi-objective function
optimization aims to search the optimal vector set
satisfying the constraints to make each objective func-
tion as small as required, i.e., the approximate Pareto-
optimal set [24, 32].

5.1. IP3R channelmodel
There are different IP3R channel models suggested by
now [12–18]. In the paper we adopt amodified version
of the DYK model [14], a simple IP3R model widely
applied in numerical simulation of intracellular Ca2+

signals, in which each model parameter has a direct
meaning related to ligand (Ca2+ or IP3) binding to or
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unbinding from the channel. In our modified DYK
model, an IP3R channel is composed of four identical
and independent subunits. In each subunit, there are
one IP3 binding site, one activating Ca

2+ binding site
and one inhibitory Ca2+ binding site, as shown in
figure 2. We use ijk to denote the state of each subunit,
where i represents the IP3 binding site, j the activating
Ca2+ binding site, and k the inhibitory Ca2+ binding
site. The bound state of each binding site is represented
by 1, whereas the empty state by 0. Thus each subunit
has 8 possible states (figure 2). The subunit is active
when it is occupied only by IP3 and activating Ca2+,
i.e., state 110. In the model we suppose that once three
out of the four subunits are in activated state, the
channel will become open [34, 35].

There are ten parameters in the IP3R model, in
which ai represents the binding rate constant, bi the
unbinding rate constant, so the dissociation constant
is given by Ki=bi/ai. According to the thermo-
dynamic constraint of detailed balance, we have
K1K2=K3K4. In this paper,C and I represent the con-
centrations of Ca2+ and IP3, respectively.

With the deterministic matrix transition method
[16], the stationary properties, i.e., open probability
Po, mean open time τo andmean close time τc, of IP3R
channel can be expressed as a function of the binding/
unbinding parameters of the model. Supposing that
the probability of an IP3R subunit in state 000 is
q000=1, the probability of a subunit in state ijk, i.e.
qijk, is then given by the ratio between the product of
forward rates and the product of backward rates along
the shortest binding or unbinding path relative to the
state 000. For example, the probability q110 of the open
state (110) is given as

( )=q
IC

K K
. 13110

1 5

Then we normalize the equilibrium probability for
state ijk and obtain

( )=w
q

Z
, 14ijk

ijk

where å=Z q ,ijk i.e.
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= + + + + +
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Therefore, the normalized equilibrium probability for
state (110) is

( )=w
I

K

C

K Z

1
. 16110

1 5

Because the channel openswhen three or four sub-
units are in activated state (110), the channel open
probability is then given by

( ) ( )= + = + -P P P w w w4 1 , 17O 4O 3O 110
4

110
3

110

where =P w4O 110
4 and ( )= -P w w4 13O 110

3
110 repre-

sent the probabilities when four and three subunits are
in active state, respectively.

The equilibriumprobabilityflux iswritten as follow:

( ) ( )= + +J P b b a C3 . 183O 1 5 2

Thus the mean open time and mean close time are
given by

( )t =
P

J
, 19O

O

and

( )t =
- P

J

1
. 20C

O

According to above formulas, we can calculate Po,
τo and τc at different I andC.

5.2.Multi-objective functions
Because the objective of the HIMO algorithm is to find
out the approximateminimaofmulti-objective functions,
we set the relative mismatch between modeling and
experimental values as our objective functions. The
experimental results are PO, τo and τc of Oo-IP3R1 [6],
Oo-IP3R3 [7] and Sf-IP3R [8] obtained by nuclear patch
clamp technique. The three relative mismatch functions
betweenmodelingandexperimental results aredefinedas:
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Applying these equations to HIMO algorithm, we
set above three mismatch functions as the objective

Figure 2.The schematic diagramof the state transitions for a
DYK IP3R subunit. In each subunit, there are one IP3 binding
site, one activatingCa2+ binding site and one inhibitory Ca2+

binding site.
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functions f1(X), f2(X) and f3(X)withX the fitting vector
of the objective functions. Thus we have

( ) ( ( ) ( ) ( ))= t tF X W X W X W X, ,PO O C
for equation (1).

For IP3R model, there are 10 parameters, which
consist of the fitting vector of the objective function,
i.e. K1, K2, K3, K4, K5, a1, a2, a3, a4, a5. For the gating
dynamics, we are more interested in the processes of
IP3 binding, activating and inhibitory Ca2+ bindings,
i.e., the parameters of K1, K5, and K2. The parameter
K4 can be determined by K4=K1K2/K3. Further-
more, we will not discuss the properties of parameters
a3 and a4 in the paper, because a3 and a4 could not be
determined from the observed quantities of PO, τO
and τC, as shown in equations (13)–(20). As a result,
we just search for the optimal vector X=(K1, K2, K3,
K5, a1, a2, a5)with seven parameters.

Considering the biologically reasonable values for
each binding and dissociation constants, the possible
ranges for parameters (K1, K2, K3, K5, a1, a2, a5) are set
as follows: the lower limits are (10−4, 1, 10−4, 10−4,
10−4, 10−4, 10−4) and the upper limits are (1, 104, 102,
1, 104, 1, 103) with unit μM for Ki and μM−1ms−1 for
ai, respectively. After we define the objective functions
and constraint conditions of fitting vector, we run
HIMO algorithm to get the optimal anti-bodies (the
optimal vector) tominimize F (X).

In order to test the efficiency of HIMO, we first
consider a set of chosen parameters for IP3R model to
generate a series of PO, τO and τC as the ‘experimental
data’. Then we apply the HIMO algorithm to fit the
model parameters. In our simulation, the convergence
condition of the immune algorithm is that the sum of
the three mismatch functions in equations (21)–(23)
(i.e.,W=  + +t tW W WPo o c

) should be smaller than a
critical number. Our simulation results show that with
a smaller critical number, the obtained optimal para-
meters are closer to the chosen parameters, especially
for those sensitive parameters in themodel.

6. Results and discussions

6.1. Numericalfitting ofOo-IP3R1,Oo-IP3R3 and
Sf-IP3R
The experimental data of Po, τo and τc against [Ca

2+]
at different [IP3] are given in figure 3 for Oo-IP3R1 [6],
Oo-IP3R3 [7] and Sf-IP3R [8] with different symbols.
We apply HIMO algorithm to fit the model para-
meters. In our simulation, the convergence condition
of the immune algorithm is that the sum of the three
mismatch functions in equations (21)–(23) is smaller
than 2.2, i.e.W<2.2. In figure 3, as a comparison, the

Figure 3.Themodeling fittings to experimental data of the open probability Po (left column), themean open time τo and (middle
column) and themean closing time τc (right column) as a function of [Ca2+] for different [IP3] for (a)Oo-IP3R1, (b)Oo-IP3R3, and (c)
Sf-IP3R, respectively. Thefitting parameters (a) forOo-IP3R1 areK1=0.0074,K2=82.5,K3=0.23,K5=0.16, a1=1×10−4,
a2=1.0×10−4, a5=0.76; (b) forOo-IP3R3 areK1=0.0093,K2=18.65,K3=0.06,K5=0.029, a1=0.0021, a2=1.0×10−4,
a5=2.48; and (c) for Sf-IP3R areK1=0.013,K2=27.6,K3=0.49,K5=0.18, a1=0.61, a2=0.0018, a5=0.017.Units of
parameter areμMforKi andμM

−1ms−1 for ai (same in all the followingfigures).
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modeling curves with a set of optimal parameters are
plotted for these three types of IP3Rs.

Figure 3 shows that the immune algorithm can
automatically find sets of model parameters to prop-
erly fit the experimental results. Some fittings are not
perfect, such as that for τc in figure 3(b). This is
because we did not apply the criteria that each of the
three mismatch functions in equations (21)–(23)
should be smaller than a small critical number in our
simulation. Instead, the convergence condition of the
immune algorithm here is that the sum of the three
mismatch functions should be smaller than 2.2, which
is a rather loose criterion. In fact, we found that the
best fitting can give a value ofW as small as 0.55. How-
ever, we are not trying to find out a set of best para-
meters to fit the experimental data, but to find many
sets of good parameters and then to examine the dis-
tributions of these parameters. Thus, we consider a
loose criterion with the critical number W=2.2
which is four times of value of 0.55. We set 100

antibodies in the simulation, and so 100 sets of opti-
mal parameters can be obtained for each searching
process with the immune algorithm.

A large open time (∼30 ms) for Sf-IP3R does not
mean that Sf-IP3Rmust have a largeK2. In fact, we plot
figure 3 with K2=82.5, 18.65 and 27.6 μM for Oo-
IP3R1, Oo-IP3R3, and Sf-IP3R, respectively. Interest-
ingly, a larger and a smaller K2 applied for Oo-IP3R1
and Oo-IP3R3 both result in small open time. But a
mediumK2 for Sf-IP3R produces the large open time.

About 10 000 sets of optimal parameters were cal-
culated for each of the three channels. Then with these
optimal parameters, we can plot the Pareto-optimal
front, which consists of all the dots plotted in the axes
of the three mismatch functions of W ,PO tW

O
and tW

C

with the optimal parameters. In figure 4, only 250
points randomly chosen from 10 000 points are plot-
ted for each IP3R for a clear view. The Pareto-optimal
fronts obtained for Oo-IP3R1 show more clustered
dots with relatively small mismatch values

Figure 4.The Pareto-optimal front, i.e., themismatch values of optimal parameters plotted in axes of W ,PO tW O and tW C for (a)Oo-
IP3R1, (b)Oo-IP3R3 and (c) Sf-IP3R.Here only 250 points are plotted.
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(figure 4(a)), while the Pareto-optimal fronts scatter
more in space with large mismatch values for Sf-IP3R
(figure 4(c)).

6.2.Model parameter comparison amongOo-IP3R1,
Oo-IP3R3 and Sf-IP3R
For each type of IP3R model, the distributing ranges
with about 10 000 sets of optimal parameters are given
in figure 5 for parameters of K1, K2, K3, K5, a1, a2 and
a5. The scatter ranges for the three IP3R channels are
quite similar.

Although each parameter scatters in a certain
range, the 10 000 values show a certain probability dis-
tribution in the scatter range for each parameter. In
detail, we calculate the distribution probability for
parametersK1,K2,K3,K5, a1, a2 and a5 against log(K1),
log(K2), log(K3), log(K5), log(a1), log(a2) and log(a5),
respectively. To examine the robustness and reliability
of model parameter, we delete all the sets of para-
meters in which distribution probability of any

parameter is less than 5%. As a result, the remaining
model parameter sets have >95% distribution prob-
abilities for all seven parameters.

After this filtering process, only about 2000 sets of
parameters remained for each channel type. The scat-
ter ranges of the filtered parameters are plotted in
figure 6 forOo-IP3R1,Oo-IP3R3 and Sf-IP3R.One can
see that the parameter of a1 is scattered over quite a
large range for all three channels, indicating that a1 is
an insensitive parameter for gating dynamics. In other
words, change of IP3 binding rate in such a large range
has little effect on channel behavior of Po, τo or τc. The
parameters of K2 for Oo-IP3R3, and a2 for both Oo-
IP3R1 and Oo-IP3R3 are confined in significantly nar-
rower ranges, indicating that they are sensitive para-
meters for gating dynamics. So, PO, τO and τC are
sensitive to the values ofK2 and a2.

Figure 6 indicates that the scatter range of para-
meter K3 for Oo-IP3R1 is quite different from that for
Oo-IP3R3 and Sf-IP3R; the scatter range of parameter

Figure 5.The scatter ranges ofmodel parameters forOo-IP3R1 (triangles), Oo-IP3R3 (circles) and Sf-IP3R (squares).

Figure 6.The scatter ranges of thefiltered parameters forOo-IP3R1 (triangels), Oo-IP3R3 (circles) and Sf-IP3R (squares).
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a2 for Sf-IP3R is totally different from those for Oo-
IP3R1 and Oo-IP3R3; and the scatter range of para-
meter a5 for Sf-IP3R is totally different from that for
Oo-IP3R3. Similar scatter ranges are observed for
other parameters with the three IP3Rs.

6.3. Comparison of disassociation constants among
Oo-IP3R1,Oo-IP3R3 and Sf-IP3R
Actually, the probability distribution of each para-
meter can reveal more information on the channel
binding and unbinding dynamics. First, we discuss the
probability distributions of the disassociation con-
stants of IP3R channels.

Figure 7(a) compares the probability distributions
of dissociation constant K1 among three types of
IP3Rs. In themodel as shown in figure 2,K1 represents
the dissociation constant of IP3 when the inhibitory
Ca2+ binding site is not occupied. Figure 7(a) indicates
that in order to open IP3R the dissociation constantK1

for IP3-binding is typically around 0.01 μM for these
three types of IP3Rs. Thus, these three types of IP3Rs
show the similar open sensitivity in responding
to [IP3].

Figure 7(b) compares the probability distributions
of dissociation constant K2 among three types of
IP3Rs. In the model, K2 represents the dissociation

constant of inhibitory Ca2+ when IP3 is binding to the
subunit. Figure 7(b) shows that high [Ca2+] around
30, 30, and 10 μM are required in order to inhibit the
open Oo-IP3R1, Oo-IP3R3, and Sf-IP3R, respectively.
As a comparison, with a simple Hill equation fitting to
experimental data, it has been suggested that typical
dissociation constant K2 should be around 59, 39, and
30 μM for Oo-IP3R1, Oo-IP3R3 and Sf-IP3R, respec-
tively (figure 7 in [3]), showing similar result of K2 for
these three IP3Rs. Thus, the open Sf-IP3R channel is
easier to be inhibited than Oo-IP3R1 and Oo-IP3R3 in
responding to high [Ca2+].

Figure 7(c) plots the probability distributions of
parameter K3 which represents the dissociation con-
stant of IP3 when the inhibitory Ca2+ binding site is
occupied. It shows that, when the channel is inhibited
by Ca2+ ions, dissociation constants of [IP3] are
around 0.02, 0.16 and 0.16 μM for Oo-IP3R1, Oo-
IP3R3 and Sf-IP3R, respectively. This result indicates
that the Ca2+-inhibited states 001 and 011 can more
easily jump to IP3-bound states 101 and 111 for Oo-
IP3R1 thanOo-IP3R3 and Sf-IP3R in responding to the
same [IP3].

Figure 7(d) plots the probability distributions of
parameter K5 which represents the dissociation con-
stant of active Ca2+ when inhibitory Ca2+ is not

Figure 7.The comparison of probability distributions of the dissociation constants of (a)K1, (b)K2, (c)K3, and (d)K5 forOo-IP3R1
(black), Oo-IP3R3 (blue) and Sf-IP3R (red)models. All the bars in eachfigure correspond to the same range of log(Ki) for the three
IP3Rs. However, for a clear view, the bar width is smaller than the range length, and so the blue, red and black bars in the same range lie
next to each other, rather than overlappingwith each other.
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bound to the subunit. In order to open IP3R channel
the dissociation constants K5 for [Ca2+] are about
0.13, 0.04, and 0.13 μM for Oo-IP3R1, Oo-IP3R3 and
Sf-IP3R, respectively. As a comparison, it has been sug-
gested byHill equation fitting to the experimental data
that typical dissociation constant K5 should be around
0.25, 0.077, and 0.25 μM forOo-IP3R1, Oo-IP3R3 and
Sf-IP3R, respectively (figure 7 in [3]), showing similar
result of K5 for these three IP3Rs. This result indicates
that Oo-IP3R3 channel is easier to open than Oo-
IP3R1 and Sf-IP3R in responding to low [Ca2+].

6.4. Comparison of binding rates amongOo-IP3R1,
Oo-IP3R3 and Sf-IP3R
In figure 8, the probability distributions of binding
constants a1, a2, and a5 are plotted and compared. The
parameter a1 defines the binding rate of IP3 onto the
subunit when the inhibitory Ca2+ binding site is not
occupied. Although the scatter ranges of parameter a1
given in figure 6 suggest that the binding rates may be
typically large for Oo-IP3R1 and small for Sf-IP3R,
figure 8(a) shows an overlap of binding rate around 2
μM−1ms−1 with large probability for these three types
of IP3Rs. This result indicates that the IP3 binding rate
a1 could be quite similar among Oo-IP3R1, Oo-IP3R3
and Sf-IP3R channels.

We have concluded from figure 7(a) that the 3
types of IP3Rs show the similar open sensitivity in
responding to IP3 messenger. As a result, when the
inhibitory Ca2+ binding site is not occupied, the IP3
binding and unbinding rates could be quite similar
amongOo-IP3R1,Oo-IP3R3 and Sf-IP3R channels.

The parameter a2 defines the binding rate of Ca
2+

to inhibit the subunit when IP3 is binding to the sub-
unit. Figure 8(b) points out that Oo-IP3R1 and Oo-
IP3R3 have the same binding rate around 10−4

μM−1ms−1, which is slower than that of Sf-IP3R

(around 10−3 μM−1ms−1). As observed from
figure 7(b), Sf-IP3R channel has a smaller dissociation
constant K2 than Oo-IP3R1 and Os-IP3R3. These data
indicate that, among these three types of IP3R chan-
nels, Sf-IP3R has the faster unbinding rate for inhibi-
tory Ca2+, while Oo-IP3R1 and Oo-IP3R3 have the
similar slowunbinding rate for inhibitory Ca2+.

The parameter a5 defines the binding rate of Ca
2+

to activate the subunit when inhibitory Ca2+ is not
bound to the subunit. Figure 8(c) shows that, among
these three channels, Oo-IP3R3 has a fast activating
Ca2+ binding rate (around 2 μM−1ms−1), while Sf-
IP3R has a slow activating Ca2+ binding rate (around
0.1 μM−1ms−1). A middle binding rate around 0.4
μM−1ms−1 is suggested forOo-IP3R1.

As a result, the representative ranges for model
parameters of K1, K2, K3, K5, a1, a2 and a5 are listed in
table 1 forOo-IP3R1, Sf-IP3R andOo-IP3R3.

7. Conclusion

IP3R channels play a pivotal role in converting
extracellular stimuli into intracellular Ca2+ signals,
which regulate almost all cellular processes [3, 36].

Figure 8.The comparison of probability distributions of binding rates of (a) a1, (b) a2, and (c) a3, forOo-IP3R1 (black), Oo-IP3R3
(blue) and Sf-IP3R (red)models. All the bars correspond to the same range of log(ai) for the three IP3Rs.However, for a clear view, the
bar width is smaller than the range length, and so the blue, red and black bars in the same range lie next to each other, rather than
overlapping with each other.

Table 1.The parameter ranges ofOo-IP3R1, Sf-IP3R andOo-IP3R3.

Parameters Oo-IP3R1 Oo-IP3R3 Sf-IP3R

K1μM 0.002–0.02 0.004–0.025 0.01–0.04

K2 10–65 13–35 6–20

K3 0.005–0.06 0.05–0.3 0.07–0.5

K5 0.06–0.25 0.02–0.07 0.06–0.2

a1μM
−1ms−1 1–200 0.1–20 0.05–5

a2 1×10−4
–

1.6×10−4

1×10−4
–

1.3×10−4

6×10−4
–

0.002

a5 0.1–1.5 0.5–5 0.03–0.16

10

Phys. Biol. 13 (2016) 056005 XCai et al



Different from the typical procedure of channel
modeling with only a set of parameters [7, 8, 12–
14, 17] to describe the channel dynamics, in this paper
we apply the HIMO immune algorithm to fit the
parameters of a modified DYK IP3R model based on
the experimental data of nuclear membrane patch
clamp for Oo-IP3R1, Oo-IP3R3 and Sf-IP3R, and
fitting the open probability,mean open time andmean
close time, a mass of optimal parameters have been
obtained with the immune algorithm. Through con-
trastive analysis of probability distributions of para-
meters, the different binding and unbinding dynamics
with Ca2+ and IP3 have been studied and compared in
detail among these three types of IP3Rs. Our results
provide insights about the relation between the
observed gating characteristics and the gating para-
meters in different IP3Rs.

For IP3R gating dynamics, the most important
processes are the binding of IP3 and Ca2+ to open the
channel and the binding of Ca2+ to inhibit the chan-
nel, i.e., the processes related to K1, K5, and K2 shown
in figure 2. We show that these three IP3Rs have the
similar open sensitivity in response to [IP3]. In detail,
in the case that the inhibitory Ca2+ binding site is not
occupied, the IP3 binding and unbinding rates to the
subunit could be quite similar among Oo-IP3R1, Oo-
IP3R3 and Sf-IP3R channels. Among these three IP3Rs,
Oo-IP3R3 channel is easier to be open than Oo-IP3R1
and Sf-IP3R in responding to low [Ca2+], because Oo-
IP3R3 has a faster activating Ca2+ binding rate than
Oo-IP3R1 and Sf-IP3R. Our data indicate that the
open Sf-IP3R channel is easier inhibited than Oo-
IP3R1 and Oo-IP3R3 in responding to high [Ca2+].
Among these three channels, Sf-IP3R not only has a
fast binding rate for inhibitory Ca2+ to bind to the
active subunit, but also has a fast unbinding rate for
inhibitory Ca2+.

Our results reveal that the Ca2+ activation and
inhibition properties are different for these three
channels. Especially, the Oo-IP3R3 channel is easy to
open in responding to low [Ca2+], while Sf-IP3R chan-
nel is easily inhibited in responding to high [Ca2+].
Therefore, they will have distinctive spatiotemporal
characteristics of IP3-induced Ca2+ oscillations. The
slight differences in the Ca2+ signaling patterns in
some cases can critically affect the final cellular deci-
sion for survival or death [1, 5]. As most cell types
expressing more than one subtype IP3R, the inte-
grative effects of the different types of IP3Rs expressed
in a cell on intracellular Ca2+ oscillations need to be
further investigated.

Different from the usual way to find one set of
parameter to best fit the experimental data and then to
discuss the channel dynamics, here we are trying to
find many sets of good parameters and then to exam-
ine their distribution properties. Such a discussion can
reveal the sensitivity of each parameter on channel gat-
ing dynamics. In order to do so, we consider a loose
criterion for the sum of three mismatch functions in

the immune algorithm. As a result, the fitting quality is
not perfect and the scatter is large, as shown in figure 5.
But after filtering out the parameters with small prob-
ability, the remained parameters are representative.
Some parameters then cluster in narrow ranges, but
others still scatter in wide ranges. The widely scattered
parameters just indicate that the gating dynamics of
PO, τO and τC are less sensitive to these parameters. As
an extreme case, the gating dynamics of PO, τO and τC
is totally independent of a3 and a4, meaning that the
simulating results will give homogenous distribution
scattering on thewhole parameter space for a3 and a4.

By considering the modeling parameter distribu-
tion, we find that the rate a1 for IP3 binding onto the
subunit scatters in quite a large range for all these
channels, indicating that the IP3 binding rate is not a
sensitive parameter for stationary gating dynamics. In
other words, the change of IP3 binding rate even in
such a large range has little effect on the channel beha-
vior of PO, τO and τC. The parameters of the dissocia-
tion constant K2 of inhibitory Ca

2+ for Oo-IP3R3 and
the binding rate a2 of Ca

2+ to inhibit the subunit for
both Oo-IP3R1 and Oo-IP3R3 cluster in narrow ran-
ges, indicating that inhibitory Ca2+ binding/unbind-
ing rates are sensitive parameters for gating dynamics.
As a result, the channel properties of PO, τO and τC are
sensitive to the values ofK2 and a2 forOo-IP3Rs.

In this paper, the IP3R channel properties are dis-
cussed and analyzed based on a modified DYK model
which was developed by considering only the most
basic three characteristics in IP3R gating dynamics, i.e.
PO, τO and τC. Other behaviors of channel gating,
including modal gating [25] and kinetic response to
changes in ligand concentrations [9], indicate that
complex cooperativity could exist among different
IP3R subunits and between IP3 and high-affinity Ca

2+

binding sites [17, 37]. Considering the limits of the
modified DYK model used in this study, one may
question the validity of our conclusions drawn from
the simulations solely on the DYK model. If, as still a
challenge for IP3R modeling, there is a full model
which can describe all these gating dynamics, one can
certainly find some parameters or expressions to
describe the binding/unbinding dynamics of Ca2+-
activation, Ca2+-inhibition and IP3 activation. In
other words, with such a full model, one can still
define the effective binding/unbinding rates for these
Ca2+/IP3 binding/unbinding processes. We suggest
that these binding/unbinding rates predicted by dif-
ferent models should be more or less similar, because
they actually describe the same processes. Thus, our
conclusions on these effective binding/unbinding
properties should still be valid. As an example, our
conclusions on the comparison of K2 and K5 for three
IP3Rs are quite similar as those given by some simple
Hill equation fittings to the same experimental
data [3].

The ultimate goal of developing kinetic models to
describe the single IP3R channel behaviors is to
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simulate the behavior of IP3R channels in ligand con-
ditions and to discuss the kinetic behavior of cytosolic
Ca2+ signals. One may propose that the sensitive
channel parameters could play important role in gen-
erating the spatially and temporally complex Ca2+

oscillations in the cytosol. Thus, an interesting ques-
tion for further investigation is how a small change of
sensitive channel parameter could cause a large kinetic
variation onCa2+ oscillations.We also suggest that the
immune algorithm can be applied to the parameter
sensitivity discussion in other biological systems.
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