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It has been generally believed that both time delay and network structure could play a crucial role

in determining collective dynamical behaviors in complex systems. In this work, we study the

influence of coupling strength, time delay, and network topology on synchronization behavior in

delay-coupled networks of chaotic pendulums. Interestingly, we find that the threshold value of the

coupling strength for complete synchronization in such networks strongly depends on the time

delay in the coupling, but appears to be insensitive to the network structure. This lack of sensitivity

was numerically tested in several typical regular networks, such as different locally and globally

coupled ones as well as in several complex networks, such as small-world and scale-free networks.

Furthermore, we find that the emergence of a synchronous periodic state induced by time delay is

of key importance for the complete synchronization. Published by AIP Publishing.
https://doi.org/10.1063/1.5010304

The study of collective behavior of complex systems has

attracted much attention of researchers in various fields

due to its potential applications in physics, chemistry,

biology, and engineering. We here study synchronous

behavior in chaotic pendulum systems with time-delay

coupling. Although it is generally believed that the topol-

ogy structure of network is determinant for the dynami-

cal behavior of complex systems, we find that the critical

coupling strength for complete synchronization is the

same for four network models studied here. Thus, the

threshold value of coupling strength for synchronization

in such networks depends strongly on the time delay of

coupling, but is insensitive to the network structure in the

coupled chaotic pendulum systems.

I. INTRODUCTION

Time delays are pervasive and significant in many sci-

ence and application fields.1 Many systems such as physical

or biological systems interact in the form of time delay due

to the fact that the interaction signal is transported with a

limited speed through media. For example, in neurons, the

time delays as large as 300 ms can be generated, as a result

of finite speed at which action potentials propagate across

neuron axons as well as time lapses occurring during both

dendritic and synaptic processing.2 The transmission delay is

a sum of axonal, synaptic, and dendritic delays. The effect of

a time delay on nonlinear systems has been recently studied,

and various phenomena have been discovered. For example,

time delay can induce oscillation death and multistability in

limit-cycle oscillators.3–8 Time delay can also be used to

control cluster and synchronization in excitable Boolean

networks and large laser networks.9,10 An appropriate time

delay can induce stable synchronous patterns in a network of

neuronal oscillators with attractive coupling.11

Synchronization has been widely observed in many

nonlinear systems12,13 and attracted much attention due to its

key roles in physics, biology, and sociology, etc.14 Various

phenomena have been discovered, including complete syn-

chronization,15–17 phase synchronization,18,19 generalized

synchronization,20 lag synchronization.21 Many interesting

problems on synchronization have been discussed, such as

analytical methods for synchronization,22,23 applications of

synchronization,24,25 and stability conditions for synchroniza-

tion,26,27 which include the dynamical behavior of uncoupled

system (periodic or chaotic), the coupling mode (active or

inhibited and instantaneous or time-delayed coupling), and

the topology structure of networks.

It has been found that dynamical behaviors of complex

networks can be significantly influenced by its topological

structure.28–37 However, a counterexample has been found in

Ref. 6 that the delay-induced oscillation death is insensitive

to the complex network structure. In this work, we will

mainly investigate dynamics in delay-coupled networks of

chaotic pendulums. We find that the occurrence of complete

a)Author to whom correspondence should be addressed: jianweishuai@

xmu.edu.cn
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synchronization is insensitive to the topology structure of

networks in the coupled chaotic pendulums, and the critical

coupling strength of synchronization is inversely propor-

tional to the time delay.

The paper is organized as follows. In Sec. II, we will

give our numerical results. Section III is devoted to theoreti-

cal analysis for regular networks. In Sec. IV, we analyze

other paradigmatic types of networks to test the insensitivity.

Finally, conclusions are presented in Sec. IV.

II. MODEL AND RESULTS

We consider first the neighboring-coupled chaotic pen-

dulums38 with time delay, described by

ml2€hi þ c _hi ¼ �mgl sin ðhiÞ þ Bþ A cos ðxtÞ

þ �

2d

Xiþd

j¼i�d;j 6¼i

ðhjðt� sÞ � hiðtÞÞ; (1)

where i ¼ 1; 2;…;N. The parameters are set as follows and

fixed throughout the paper: the mass of the oscillator m is 1,

the length l is 1, the acceleration due to gravity g is 1, and

the damping c is 0.75. The d.c. torque B with B¼ 0.7155 and

the a.c. torque A cos ðxtÞ with A¼ 0.4 and x ¼ 0:25 over-

come the pendulum’ s rotational inertia to drive the pendu-

lum’ s motion. It is found that an uncoupled pendulum is

chaotic for values l ¼ 1:060:002 with other fixed parame-

ters.39 It performs a libration if the length is larger than one.

On the other hand, if the pendulum’ s length is shorter than

one, the pendulum executes a rotation. Periodic boundary

conditions are chosen for the coupled pendulums, i.e., hNþk

¼ hk; h1�k ¼ hNþ1�k; k ¼ 1; 2;…; d. Here, 2d (1 � d � N
2
)

stands for the number of coupled neighbors. So, d¼ 1 corre-

sponds to the nearest neighboring coupled mode, and d ¼ N
2

corresponds to the globally coupling with N¼ 64. The sym-

bols � and s denote the coupling strength and the time delay,

respectively.

To quantify the level of synchrony, we define the syn-

chronous factor C

C ¼ 2

NðN � 1Þ
X

1�i<j�N

cij; cij ¼

ðT0þT

T0

hihjdt

ðT0þT

T0

h2
i dt

ðT0þT

T0

h2
j dt

" #1=2
;

(2)

where cij denotes the correlation between the i-th and j-th
oscillators. Sufficiently, large T0 and T are always selected for

the transient processing and proper measurement of averaging

over a long period, respectively. Clearly, we have �1 � C �
1 with C¼ 1 indicating complete synchronization. Figures

1(a)–1(c) illustrate the synchronous factor C as a function of

coupling strength � without time delay (s ¼ 0:0) and with

time delay (s ¼ 0:1, 0.2), respectively. For s ¼ 0:0, the com-

plete synchronization depends on the number of neighbors 2d,

as shown by the three dashed critical lines in Fig. 1(a). In

addition, the critical value of coupling strength �c deceases

with increasing d with �c ¼ 1:29, 0.92, and 0.42 for d¼ 2, 6,

and 10, respectively. For s ¼ 0:1 and 0.2, however, we find

that the time-delay coupling makes the system synchronous

under a very weak coupling strength, i.e., �c � 0:058 and

0.034 for s ¼ 0:1 and 0.2, respectively. More interestingly,

they are always the same for different d’s, as shown in Figs.

1(b) and 1(c). Furthermore, Fig. 1(d) shows the complete syn-

chronization occurs when time delay increases above a same

critical value (e.g., sc � 0:06 for � ¼ 0:1) for different cou-

pling structures (d¼ 10, 6, and 2).

To demonstrate the dependence of the critical coupling

strength �c on d, Fig. 2(a) summarizes the relation between �c

and d. A monotonic decrease of �c on d is observed in the

absence of time delay, i.e., at s ¼ 0. But differently, a con-

stant �c � 0:058 (or 0.034) is found for an arbitrary d with a

FIG. 1. Plots of synchronous factor C against � for s ¼ 0 (a), s ¼ 0:1 (b),

and s ¼ 0:2 (c), respectively. In (a), �c � 0:42, 0.92, and 1.29 for d¼ 10, 6,

and 2, respectively. In (b), �c � 0:058 and in (c) �c � 0:034 which are

unchanged for different d’s. (d) The synchronous factor C versus s for

� ¼ 0:1. Here, three different coupling structures are considered with d¼ 10

(square), 6 (open circle), and 2 (solid circle).

FIG. 2. (a) Plots of critical values of coupling strength as a function of d
with s ¼ 0:0 (solid circles), s ¼ 0:1 (hollow circles), and 0.2 (solid squares).

The inset of (a) as a zoomed-in part of (a) shows the identical value of �
� 0:058 and 0.034 for s ¼ 0:1 and 0.2, respectively. (b) Region of complete

synchronization of the delay-coupled system of Eq. (1) on the �� s space

for d¼ 2 (solid circles) and 10 (hollow circles). The critical curve for com-

plete synchronization is determined by C¼ 1. The pink solid line corre-

sponds to the critical curve for the transition from chaotic to periodic states.

These three curves nearly overlap with each other. The pink solid curve is

determined by K0 ¼ 0, in which K0 is the transverse Lyapunov exponent of

the synchronous manifold.
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fixed time delay, s ¼ 0:1 (or 0.2), giving an insensitive

dependence on d. To further demonstrate such an indepen-

dence, the phase diagram of synchronization on the �� s
plane is shown in Fig. 2(b) with N¼ 64 and d¼ 2, 10. From

Fig. 2(b), we clearly see that the synchronous and asynchro-

nous regions are divided by the critical curves, and those

critical curves are nearly the same for different d’s. As a

result, the insensitivity of the critical coupling strength to the

number of connections d holds for different s’s.

To understand how the time delay influences the collec-

tive dynamical behavior, we discuss the bifurcation of the

average angular velocity which is defined by

HðjT0Þ ¼ 1

N

XN

i¼1

_hiðjT0Þ; (3)

at times that are integer multiples of the forcing period

T0 ¼ 2p=x. Figure 3(a) gives the average angular velocity at

t ¼ 60T0; 61T0;…; 80T0 with s ¼ 0:2;N ¼ 64 for d¼ 2. The

chaotic states (which can be tested by time series) are pre-

served for small � but they become periodic for larger � as it

comes across a critical value of �c � 0:034. Similarly, the

case for d¼ 10 is shown in Fig. 3(b). Figure 3 indicates that

the critical couplings for the system transition from chaotic

to periodic states are the same for different d’s. As a fact,

this value of �c ¼ 0:034 equals to the critical couplings

for the system transition from asynchronous to synchronous

states found in Fig. 1(c). Therefore, we suggest that time-

delay coupling induces a transition from chaotic to periodic,

resulting in the occurrence of complete synchronization.

III. ANALYTIC SOLUTION

In this section, we consider a theoretical analysis on the

mechanism of synchronization induced by time-delay cou-

pling. For the stability of complete synchronization of coupled

chaotic systems, we follow the method of master stability

functions for local stability of complete synchronization.40–42

Then, Eq. (1) becomes

_xi ¼ f ðxiÞ þ
�

ki

XN

j¼1

gi;jCðxjðt� sÞ � xiðtÞÞ; (4)

where xi 2 Rn is a dynamical variable vector and the func-

tion f ¼ ½f1; f2;…; fn�T is nonlinear, in general. C denotes a

n� n constant matrix linking coupled variables. If the nodes

j and i are connected by a link, gi;j ¼ 1, and otherwise

gi;j ¼ 0:0; gi;i ¼ 0:0; namely, self-connection is not allowed.

ki ¼
PN

j¼1 gi;j is degree of the node i. According to Eq. (4),

Eq. (1) can be written as follow:

_x1
i ¼ x2

i ; (5a)

_x2
i ¼

1

ml2

�
� cx2

i � mgl sin x1
i þ Bþ A cos ðxtÞ

þ �

ki

XN

j¼1

gi;jðx1
i ðt� sÞ � x1

i ðtÞÞ
�
; (5b)

where x1
i ¼ hi and x2

i ¼ _hi .

The synchronization state resides on the synchronous

manifold defined by M ¼ fx1 ¼ x2 ¼… ¼ sðtÞg, and accord-

ing to ki ¼
PN

j¼1 gi;j, its solution satisfies the following form:

_s ¼ f ðsÞ þ �Cðsðt� sÞ � sðtÞÞ: (6)

Clearly, now the solution depends on � also. Note that this is

fundamentally different with the synchronization state in the

absence of time delay (s ¼ 0), where the coupling term will

naturally vanish.40–42

The stability of the synchronization state can be ana-

lyzed by setting xiðtÞ ¼ sðtÞ þ giðtÞ, where giðtÞ represents a

very small deviation of j-th oscillator from the synchronous

manifold sðtÞ, and inserting it into Eq. (4), the linearization

equations can be obtained as follows:

_gi ¼ Df ðsÞgiðtÞ þ
�

ki

XN

j¼1

gi;jCðgjðt� sÞ � giðtÞÞ; (7)

where Df ðsÞ is a Jacobi matrix of f on the synchronous man-

ifold s. Denote gðtÞ ¼ ðg1; g2;…; gNÞT , they can be rewritten

in a compact form

_gðtÞ ¼ IN � ðDf ðsÞ � �CÞ½ �gðtÞ þ �G� Cgðt� sÞ; (8)

where � represents the Kronecker product, IN denotes the N-

dimensional identity matrix, and G ¼ gi;j

ki

n o
N�N

is a coupling

matrix which can be diagonalized with a matrix A, namely,

FIG. 3. Average velocities H plotted against �, with H taken at t
¼ 60T0; 61T0;…; 80T0 (T0 ¼ 2p=x) for each � at d¼ 2 (a) and d¼ 10 (b),

respectively. Here, s ¼ 0:2 and N¼ 64. An identical critical value �c for sys-

tem transition from chaotic to periodic states exists at �c � 0:034.
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AGA�1 ¼ diagðk0; k1;…; kN�1Þ; (9)

where ki’s are the eigenvalues of the matrix G, ordered by

1:0 ¼ k0 � k1 �… � kN�1 � �1:0: (10)

In particular, for the neighboring-coupling, the eigenvalues

are

kk ¼
1

d

Xd

j¼1

cos
2jkp

N
; k ¼ 0; 1; 2;…;N � 1: (11)

By setting dðtÞ ¼ AgðtÞ, Eq. (8) becomes

_dðtÞ ¼ IN � ðDf ðsÞ � �CÞ½ �dðtÞ þ �AGA�1 � Cdðt� sÞ:
(12)

Then, we can transform Eq. (8) into the following equations

for the N independent modes:

_dkðtÞ ¼ ðDf ðsÞ � �CÞdkðtÞ þ �kkCdkðt� sÞ: (13)

The k¼ 0 mode describes the dynamical behavior of the syn-

chronous manifold [Eq. (6)]. The other modes for k 6¼ 0 gov-

ern the transverse stability of the synchronous state. For Eq.

(1), the equation of perturbation can be obtained:

_d1
k ¼ d2

k ; (14a)

_d2
k ¼

1

ml2
�cd2

k � mgl cos s1d1
k

h i
þ �ðkkd

1
kðt� sÞ � d1

kðtÞÞ;

(14b)

where s1 ¼ h in Eq. (17). We can define the transverse

Lyapunov exponent of complete synchronization as follows:43

Kk ¼ lim
T!þ1

1

T
ln

ð0

�s
jjdkðT þ tÞjjdt

( )1=2

ð0

�s
jjdkðtÞdtjj

( )1=2
; (15)

where jj 	 jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd1

kÞ
2 þ ðd2

kÞ
2 þ 	 	 	 þ ðdn

kÞ
2

q
is the modulus

of the vector dk. The largest transverse Lyapunov exponent

K ¼ maxðK0;K1;…;KN�1Þ which governs the stability of

the synchronization state can be calculated. In particular,

if K < 0, we will be able to observe a stable complete

synchronization.

Figures 4(a) and 4(b) show the largest transverse

Lyapunov exponent K of the neighboring-coupled chaotic

pendulums in the �� d parameter space for s ¼ 0:1 and 0.2,

respectively. From Fig. 4, we see that similarly the parame-

ters plane is divided into green (K > 0) and pink (K < 0)

parts by the vertical dashed line. Roughly the largest trans-

verse Lyapunov exponent K becomes negative for all d if the

coupling strength is above the identical critical value �c

(�c � 0:058 and 0.034 for s ¼ 0:1 and 0.2, respectively). It

indicates that the coupled chaotic pendulums with different

neighbors d have an identical critical coupling strength for

synchronization. Thus, the critical coupling strength of syn-

chronization is insensitive to the number of connection d.

In addition, we find that the critical value �c for the

transverse stability of the synchronous state [e.g., �c ¼ 0:034

for s ¼ 0:2 in Fig. 4(b)] is roughly equal to the critical cou-

pling for system transition from chaotic to periodic states in

Fig. 3 where �c ¼ 0:034 for s ¼ 0:2 again. This point is

understandable based on the similar linearization form for

the stability analysis on the synchronous manifold:

_d0 ðtÞ ¼ ðDf ðsÞ � �CÞd0ðtÞ þ �Cd0ðt� sÞ; (16)

where d0ðtÞ ¼ d0ðtÞ for k0 ¼ 1:0. The largest Lyapunov

exponent K0, which characterizes the dynamics of synchro-

nous manifold, can be computed according to Eq. (15). K0

> 0 and K0 ¼ 0 correspond to the chaotic and periodic state,

respectively. The critical curve for periodic state which is

determined by K0 ¼ 0 is shown in Fig. 2(b). Roughly, the

critical curve for periodic state shows a good agreement with

these critical curves of complete synchronization. Therefore,

we believe that the mechanism of synchronization of delayed

system is due to time-delay coupling induced transition from

chaotic to periodic states.

Furthermore, for the chaotic pendulums in Eq. (1), the

equation of synchronous manifold can be specially expressed as

ml2€h þ c _h ¼ �mgl sin ðhÞ þ Bþ A cos ðxtÞ
þ �ðhðt� sÞ � hðtÞÞ: (17)

Based on the approximation of hðt� sÞ ¼ hðtÞ � s _hðtÞ for

s
 1, we can estimate its synchronization threshold pre-

cisely for a fixed time delay from the dynamical equation of

FIG. 4. The largest transverse Lyapunov

exponent K on the �� d plane for s
¼ 0:1 (left panel) and 0.2 (right panel),

respectively. Two planes are divided into

two parts (K > 0 and K < 0) by the crit-

ical coupling strength �c at 0.058 (for

left panel) and 0.034 (for right panel),

respectively, showing that K highly

depends on �, but not on d.
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synchronous manifold [Eq. (17)], which is now reduced to

the following equation:

ml2€h þ c _h ¼ �mgl sin ðhÞ þ Bþ A cos ðxtÞ

þ �ðhðtÞ � s _hðtÞ � hðtÞÞ; (18)

and further,

ml2€h þ ðcþ �sÞ _h ¼ �mgl sin ðhÞ þ Bþ A cos ðxtÞ: (19)

Now Eq. (19) becomes uncoupled, showing the same equa-

tion form with Eq. (1) for the uncoupled pendulums. The

coupling strength and time delay have come into the evolu-

tion equation with the redefined damping coefficient, and the

combinative action of time delay and coupling strength will

be important for dynamical behavior of system.

In Fig. 5(a), we plot the bifurcation diagram of the aver-

age angular velocity with the change of c. A critical cc for

a transition from chaotic to periodic states exists, i.e., cc

� 0:757. Thus, the system can transfer from a chaotic state

to a periodic one if cþ �s > cc. Thus, we can deduce a pre-

cise estimation for the critical coupling strength

�c ¼
cc � c

s
: (20)

As both cc ¼ 0:757 and c ¼ 0:75 (chosen as a system param-

eter in the paper and fixed) are constant, �c is then in inverse

proportion with s. As given in Fig. 5(b), this analytical result

(blue dashed line) shows a good agreement with the numeri-

cal results from Eq. (17) (pink solid line). A deviation is

clear for larger s, as our approximative method highly relies

on the condition of a small time delay (s
 1).

IV. OTHER TYPES OF NETWORKS

So far we have shown the insensitive dependence of

synchronization on the regularly connected ring structures

with different coupling distances d in the delay-coupled

chaotic pendulums. Next, we show that such an indepen-

dence can be easily applied to other complex networks.

As paradigmatic examples, the globally coupling network,

ring network with nearest neighbor coupling but zero-

flux boundary, star network, and 8� 8 grid network are

computed with N¼ 64 and s ¼ 0:1, several complex net-

works, including small-world networks for different con-

necting probability p’s (p¼ 0.1, 0.5, and 0.9) and scale-free

networks with different average degree hki’s (hki ¼ 2 and

4) are tested with N¼ 200 and s ¼ 0:2. Here, we apply the

standard construction algorithms for the small-world net-

works which are adding links with random reconnection

probability p and that for scale-free networks which is con-

structed by preferential attachment. We find that the critical

value �c � 0:058 and 0.034 are always unchanged for s
¼ 0:1 and 0.2, as illustrated in Figs. 6(a) and 6(b) and Figs.

6(c) and 6(d), respectively.

Finally, it remains of great interest to verify our main

results for other chaotic systems. As one example, Fig. 6(f)

shows the critical coupling strength �c as a function of d in

the neighboring coupled chaotic Rossler system, described

by

FIG. 5. (a) Bifurcation diagram of the average angular velocity against c. A

critical cc � 0:757 is obtained to show the transition from chaotic to periodic

states. (b) Plots of s against �c. The blue dashed line comes from the analysis

of Eq. (20), and the pink solid line which is determined by K0 ¼ 0 stands for

the numerical results from Eq. (17).

FIG. 6. Demonstration of insensitive dependence of time-delay coupling

induced synchronization on different types of complex networks. (a) and (b)

The synchronous factor C versus � for globally coupling network, the link

network with nearest neighbor coupling but zero-flux boundary conditions

(a), star network and 8� 8 grid network (b) with N¼ 64 and s ¼ 0:1. (c) and

(d) Plots of the corresponding synchronous factor C against � for the small-

world network (c) with different p’s (p¼ 0.1, 0.5, and 0.9) and the scale-free

network (d) with different average degree hki’s (hki ¼ 2 and 4) for N¼ 200

and s ¼ 0:2, respectively. It shows that �c � 0:058 and 0.034 are unchanged

for s ¼ 0:1 and 0.2. (e) Schematic diagrams of regular ring network with

neighbor coupling. (f) Plot of critical coupling strength �c in regular ring net-

work of coupled chaotic Rossler system as a function of d with s ¼ 0:0
(solid circles) and s ¼ 1:0 (hollow circles).
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_xi ¼ �yi � zi; (21a)

_yi ¼ xi þ 0:15yi þ
�

2d

Xiþd

j¼i�d;j 6¼i

ðyjðt� sÞ � yiðtÞÞ; (21b)

_zi ¼ 0:4þ ziðxi � 8:5Þ: (21c)

Again it proves that the critical values of coupling strength

greatly decrease in the absence of time delay and are not

insensitive to the number of coupled neighbor with the time

delay.

V. CONCLUSION AND DISCUSSION

In summary, we have studied complete synchronization

in the delay-coupled chaotic pendulums. Extensive numerical

results, supplemented by a theoretical analysis from the

stability analysis of synchronous states, reveal that the delay-

coupled chaotic pendulums can transfer from an asynchro-

nous state to a synchronous one under a nearly identical

coupling strength, accompanying with the system transition

from chaotic to periodic states. The synchronization threshold

is determined by the time delay of coupling and independent

on how the chaotic oscillators are coupled. Furthermore, we

have demonstrated both numerically and theoretically that

the underlying mechanism is the time delay induced transi-

tion from chaotic to periodic states. This insensitivity to net-

work structure has been tested with several typical regular

(such as different locally coupled networks and globally cou-

pled network) and complex networks (such as small-world

network and scale-free network), and the similar qualitative

results can be found in delay-coupled Rossler chaotic system

with special parameters. Below it is necessary to give some

further discussions, and it is interesting to test the insensitiv-

ity on other chaotic systems. Finally, we investigate the

neighboring coupled chaotic Lorenz systems with two sets of

special parameters, described by

_xi ¼ rðyi � xiÞ þ
�

2d

Xiþd

j¼i�d;j 6¼i

ðyjðt� sÞ � yiðtÞÞ; (22a)

_yi ¼ 28:0xi � yi � xizi; (22b)

_zi ¼ xiyi � zi; (22c)

where i ¼ 1;…;N. N¼ 64. Figures 7(a) and 7(b) show the

synchronous factor d ¼ h 1
N�1

PN
j¼2 ðxi � x1Þ2i with s ¼ 0:1

for r ¼ 2:44 and 6.0, respectively, where h	i is time average. d
¼ 0 indicates complete synchronization. From Fig. 7(a), we

find that the insensitivity to the number of connection d can be

observed in the neighboring coupled chaotic Lorenz systems

with r ¼ 2:44, as the critical values of coupling strength are

approximately the same for different d’s. However, the com-

plete synchronization does not occur for r ¼ 6:0, and this

insensitivity cannot be observed for r ¼ 6:0 [Fig. 7(b)]. It indi-

cates that this insensitivity to network structure really relies on

the system or the parameter of system. Although we have tested

many numerical simulations for other chaotic systems, it is not

easy to find this insensitivity, since the time delays not only

affect the dynamical behavior of the synchronous manifold

[Eq. (6)] but also influence the stability of synchronous mani-

fold [Eq. (12)]. Since in many physical and biological systems,

time delay are unavoidable, we believe that the findings in our

paper can be extended to other realistic coupled systems and to

provide further insight into information processing.
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