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ABSTRACT Cell migration, which can be significantly affected by intracellular signaling pathways and extracellular matrix,
plays a crucial role in many physiological and pathological processes. Cell migration is typically modeled as a persistent random
walk, which depends on two critical motility parameters, i.e., migration speed and persistence time. It is generally very chal-
lenging to efficiently and accurately quantify the migration dynamics from noisy experimental data. Here, we introduce the
normalized Shannon entropy (SE) based on the FPS of cellular velocity autocovariance function to quantify migration dynamics.
The SE introduced here possesses a similar physical interpretation as the Gibbs entropy for thermal systems in that SE naturally
reflects the degree of order or randomness of cellular migration, attaining the maximal value of unity for purely diffusive migration
(i.e., SE ¼ 1 for the most ‘‘random’’ dynamics) and the minimal value of 0 for purely ballistic dynamics (i.e., SE ¼ 0 for the most
‘‘ordered’’ dynamics). We also find that SE is strongly correlated with the migration persistence but is less sensitive to the migra-
tion speed. Moreover, we introduce the time-varying SE based on the WPS of cellular dynamics and demonstrate its superior
utility to characterize the time-dependent persistence of cell migration, which typically results from complex and time-varying
intra- or extracellular mechanisms. We employ our approach to analyze experimental data of in vitro cell migration regulated
by distinct intracellular and extracellular mechanisms, exhibiting a rich spectrum of dynamic characteristics. Our analysis indi-
cates that the SE and wavelet transform (i.e., SE-based approach) offers a simple and efficient tool to quantify cell migration
dynamics in complex microenvironment.
SIGNIFICANCE We introduce SE to quantify complex cellular migration dynamics, which enables us to extract the time-
varying dynamics and persistence of cell migration. We also demonstrate the superior utility of the method in reflecting
distinct intra- and extracellular mechanisms regulating cell migration.
INTRODUCTION

Cell migration (1) is a ubiquitous and crucial phenomenon
that is found in many physiological processes, including
neural system development (2), wound healing (3,4), and
immunological responses (5). Eukaryotic cell migration
(6) is a complex behavior involving various cellular and sub-
cellular level events and is strictly regulated by intracellular
signaling pathways (ICSPs) (7,8) and extracellular matrix
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(ECM) (9–13). Many human diseases are associated with
ill-regulated cell migration, among which cancer metastasis
is the most representative and fatal case (14,15).

To get insights into the cell migration in ECM, a number
of in vitro experiments attempting to mimic various aspects
of realistic in vivo environments have been designed and
carried out in recent years. For instance, stiffer substrate
usually increases the persistence of cell migration, whereas
the soft substrate typically leads to apparently more random
motions (16). This unusual behavior, which depends on the
substrate stiffness, is typically referred to as ‘‘durotaxis,’’ a
mechanism that can regulate many pathological processes
when combining with mechanical strains (17). Besides the
substrate properties, it has been shown that nanoscale
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SE for persistence
topographic features in ECM, coupled with the effective
stiffness of cells, can guide persistent migration, which is
called ‘‘topotaxis’’ (18). In addition, it was found that the
heterogeneous topology of ECM can boost cell invasion
into a three-dimensional (3D) funnel-like matrigel interface
in a microfabricated biochip (19). Aligned fibers can also
facilitate the migration of MDA-MB-231 breast cancer cells
into rigid matrigel in a constructed collagen I-matrigel
microenvironment (20).

To phenomenologically investigate and quantify the rich
spectrum of cellular migratory behaviors, many motility
models have been developed (21). For instance, amoeba
perform a special random walk, which can increase the
probability of finding a target in complex microenvironment
(22). Similarly, the CD8 (þ) T cell adopts a strategy known
as the generalized L�evy walk, which also contributes to
finding rare targets (23). Among these models, the persistent
random walk (PRW) (24–26) is one of the most representa-
tive and commonly used models, which incorporates the
memory of cell to the past velocities in additional to the
standard Brownian motion (27) and can be derived from
the following Langevin equation (28):

d~v
dt
¼ � ~v

P
þ Sffiffi

P
p � ~w; (1)
where ~v is the instantaneous velocity of the cell, P is the
persistence time, S is the averaged migration speed and ~w
is the random vector derived from a Wiener process (29).
Here, both of P and S are typically referred to as the
‘‘motility parameters’’ and together determine the overall
cellular migratory capability and dynamical behaviors.

In studying cell behaviors in complex microenvironment,
how to efficiently and accurately quantify cellular migratory
dynamics has become a crucial issue, and significant efforts
have been devoted to deriving effective estimators that can
characterize cell migration behaviors (30,31). For instance,
the diffusion coefficient associated with individual cells can
be obtained from a time-lapse recorded trajectory (32,33). In
addition to the diffusion coefficient, direction autocorrela-
tion and other parameters are typically computed to analyze
two-dimensional (2D) cell migration (e.g., via the DiPer
package) (34). Moreover, motility parameters (e.g., persis-
tence time and migration speed) can be derived from the fit-
tings to mean-square displacement (34–36), velocity
autocovariance function (VAC) (25), or FPS (FPS) (35).

Different from the aforementioned cases in which the
motility parameters and cellular and environmental
properties do not change with time, cell migration can be
significantly affected by many factors (1) and thus exhibits
time-varying migratory capability and behavior. For
example, the time-dependent parameters were found and ex-
tracted when cells migrated on tissue culture-treated poly-
styrene surfaces and untreated polystyrene plates (37). In
such cases, the time-dependent motility parameters (e.g.,
persistence) can be derived from time-lapse recorded trajec-
tories with a Bayesian method (38) to better describe the na-
ture of the migratory dynamics.

Although the aforementioned different types of motility
parameters and their generalization to the time-dependent
cases have been very successful in describing particular
cellular migration dynamics, there are two major issues
that need to be addressed: 1) the motility parameters are
typically determined in an ad hoc fashion, by assuming
that the associated physical model is sufficient to capture
the underlying cellular behavior. This will fail and lead to
inaccurate results in the cases in which novel cell behaviors
are not described by the prescribed physical models (21); 2)
the calculation of the numerical values of the motility pa-
rameters mainly involves fittings (e.g., R2 analysis) based
on noisy experimental data, which inevitably leads to nu-
merical uncertainties that are generally difficult to quantify.
Therefore, it is highly desirable to introduce model-indepen-
dent metrics that can capture the intrinsic dynamics of
migratory behaviors and are robust against noises.

In this work, we introduce the normalized Shannon en-
tropy (SE) based on the FPS of cellular velocity autocovar-
iance function to quantify migration dynamics. The SE
introduced here possesses the similar physical interpretation
as the Gibbs entropy for thermal systems in that SE naturally
reflects the degree of order or randomness of cellular migra-
tion, attaining the maximal value of unity for purely diffu-
sive migration (i.e., SE ¼ 1 for the most ‘‘random’’
dynamics) and the minimal value of 0 for purely ballistic dy-
namics (i.e., SE ¼ 0 for the most ‘‘ordered’’ dynamics).
Moreover, we introduce the time-varying SE based on the
WPS of cellular dynamics and demonstrate its superior util-
ity to characterize the time-dependent persistence of cell
migration, which typically results from complex and time-
varying intra- or extracellular mechanisms.

To establish the framework and verify its accuracy, we
first employ the time-varying PRW model to simulate cell
migration with time-varying characteristics to generate syn-
thetic testing data and compute the FPS of migratory veloc-
ities. Second, we analyze the effects of individual
parameters on FPS and introduce normalized SE to charac-
terize the persistence of cell migration, inspired by changes
in power spectra. We find that SE is strongly correlated with
the migration persistence but is less sensitive to the migra-
tion speed. Then, we perform the wavelet transform (WT)
of migration velocities to obtain WPS, which is employed
to derive the time-varying SE that can reflect the time-vary-
ing persistence. Finally, one indicator has been further
defined to estimate the overall persistence of a given cell
population.

We subsequently employ the SE to analyze experimental
data of in vitro cell migration regulated by distinct intracel-
lular and extracellular mechanisms exhibiting a rich spec-
trum of dynamic characteristics and persistence. These
include capturing distinct migration persistence regulated
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by Arpin protein, the transition of cellular migration dy-
namics in confined microenvironment, and strongly corre-
lated migration dynamics due to remodeled collagen fiber
bundles. Our analysis indicates that the SE-based approach
offers an efficient tool to estimate the directional persistence
of migration, which may reflect the real-time effects of
ICSPs and the ECM to some extent.
METHODS

Cell migration with time-varying characteristics

Usually, cell migration exhibits time-dependent characteristics because of the

effects of many factors (1), among which the ECM is the most representative

one. Here, the ‘‘time-dependent’’ means that cell migration capability (e.g.,

the persistence time P and migration speed S, cf. Eq. 1) will vary with time

and cannot be describedwell by a Langevin equation with constant parameters

PandS (28).Thus, it is necessary to generalize theLangevinequationwith time-

varying parameters, i.e., P(t) and S(t), and both of them together quantify cell

migration capability. Further, the PRWmodel derived from the Langevin equa-

tion with constant parameters will be generalized to the time-varying persistent

random walk (TPRW) model; see detail simulations in next subsection.

Considering the time-varying characteristics of cell migration, we first

construct a function P(t) based on a linear variation (16,38), which is of

the following form:

PðtÞ ¼ KP � tþ P0; (2)

where KP is the changing rate of persistence time and P0 is initial value at

t ¼ 0 min. The case of KP ¼ 0 denotes that cell migration capability is a

constant function of time and corresponds to the PRW model. It was

recently reported that there is a correlation between the persistence time

P and migration speed S, which can be well fitted by a simple exponential

curve before saturating at larger speed (39), as follows:

P ¼ AelS; (3)

where A and l are constant and are mainly determined by cell type and ECM.

Thus, migration speed S(t) can be derived when the constants in Eq. 3 are

determined. Note that we always set the trivial constant A ¼ 1 in this work.
Numerical simulations of cell migration based on
the TPRW model

Using a similar procedure for the PRWmodel (31,40), cell migration described

by theTPRWmodelcanbeperformed incomputer simulations.Wewillmainly

focus on 2Dmigrations in the ensuing discussions, and the generalization to 3D

is straightforward. In particular, the 2D position for one cell at each time step

can be readily computed using the following functions:

xðtþDtÞ ¼ xðtÞ þ Dxðt;DtÞ (4)

and

yðtþDtÞ ¼ yðtÞ þ Dyðt;DtÞ; (5)

where Dx and Dy are displacements for a given time interval Dt, and they

are written as

Dxðt;DtÞ ¼ aðtÞ � Dxðt� Dt;DtÞ þ FðtÞ � ~W (6)

and
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Dyðt;DtÞ ¼ aðtÞ � Dyðt� Dt;DtÞ þ FðtÞ � ~W; (7)

where a(t)¼ 1�Dt/P(t) shows the memory of one cell of the past velocities

and F(t) ¼ [S(t)2 � Dt3/P(t)]1/2 quantifies the amplitude of Gaussian white

noise ~W, which is also called intrinsic noise in cell dynamics. On the one

hand, it is evident that the parameter a approaches to 1 and the F does to

0 when P tends to infinity for a given time step Dt, which indicates that

cell will migrate along a fixed direction without turning. Similarly, the a ap-

proaches to 0 and the F does to S(t) � Dt when P tends to Dt, which means

that the direction of cell migration cannot be predicted, corresponding to the

normal Brownian motion. On the other hand, the a always lies in the closed

interval [0, 1]; thus, the displacements will gradually decrease to 0 with

time lapsing without taking into account the contribution of F. Thus, we

can view the a and F as slow-down and speed-up factors, respectively.

After generating cell migration trajectories, we further add positioning

errors to the simulated data to mimic the effects of experimental observa-

tions, as follows:

bxðtÞ ¼ xðtÞ þ spos � ~W (8)

and

byðtÞ ¼ yðtÞ þ spos � ~W; (9)

where spos is the positioning error and assigned as 0.01 mm (25) in this

work.
FPS of cell migration velocities

To get insights into cell migration dynamics, we define a set of parameters

P0¼ 8.0 min, KP¼ 0, S0¼ 0.5 mm/min (A¼ 1 and l¼ 4.16), based on Eqs.

2 and 3. Note that here the motility parameters are nonvarying with time;

thus, the cell migration underlying these parameters can be described by

the PRW model. Next, we follow the procedure above (cf. Eqs. 4, 5, 6, 7,

8, and 9) to simulate 200 cell migration trajectories and each trajectory con-

tains 4800 þ 1 (N þ 1) frames, corresponding to a total time of T ¼
960 min, one of which is plotted in Fig. 1 a. Further, the velocity compo-

nents on the x and y axes are also obtained from cell positions, based on

the displacements for time step Dt ¼ 0.2 min, as shown in Fig. 1 b. It seems

like that the velocity components keep stable with time lapsing.

In general, one can compute a variety of physical quantities from the tra-

jectory data to characterize the cell migration dynamics, e.g., mean-square

displacement, VAC, and the FPS. The motility parameters can then be

derived and estimated from the fittings to the calculated quantities with the

corresponding theoretical formula (34,35,40). Finally, the resulting parame-

ters can be analyzed by statistical methods to extract the desirable properties

and characteristics. In this work, we follow these procedures but without nu-

merical fittings to quantify the persistence of cell migration.We introduce the

VAC for individual cell migration velocities, which is given as

VAC
�
tj
� ¼ �

~vi � ~viþj

�
¼ 1

N�j�1

PN�j

g¼ 1

 
~vg � 1

N�j

PN�j

h

~vh

!

�
 
~vgþj � 1

N�j

PN
h¼ jþ1

~vh

!
; (10)

where tj ¼ j � Dt, N is the total number of migration velocities per trajec-

tory, and lowercase letters (i, j, g, and h) are time indexes. The resulting

VAC for individual trajectories is shown in Fig. 1 c. It is obvious that the

VAC follows a nonlinear decay in linear-log axes, which is the consequence
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FIGURE 1 FPS analysis of cell migration velocities. (a) Individual cell migration trajectories simulated by TPRW model. (b) Velocity components on x

and y axes. The red line corresponds to components on the x axis, and the blue corresponds to those on the y axis. (c) Velocity autocovariance function (VAC)

in linear-log axes for individual cells. (d) FPS (FPS) in log-log axes for individual cells corresponding to the VAC in (c). (e) The effects of persistence time P

on Fourier power spectra. (f) The effects of migration speed S on Fourier power spectra. To see this figure in color, go online.

SE for persistence
of finite migration data. It is well known that the VAC of an Ornstein-Uh-

lenbeck (OU) process (41) obeys a linear decay in linear-log axes (i.e., sin-

gle exponential decay in linear-linear axes); thus, the nonlinearity in Fig. 1 c

will transition to linearity when considering a large amount of cell-trajec-

tory data.

Although the VAC is a classical and widely used approach to analyze the

properties of cell migration, especially the persistence, it still has limita-

tions. For instance, it could not return reliable errors on the fitted motility

parameters because of the correlations between velocities in time domain

(35). To eliminate the correlations, a novel quantity, FPS, has been intro-

duced based on the Wiener-Khinchin theorem (42,43), which states that

‘‘the power spectrum of any generalized stationary random process is the

Fourier transform of its autocovariance function.’’ According to this theo-

rem, the Fourier transform of migration velocities is given as follows:

~vk ¼ Dt
XN
j¼ 1

ei2pfktj � ~vj ¼ Dt
XN
j¼ 1

ei2pkj=N � ~vj; (11)
and similarly, the Fourier transform of velocity autocovariance function is

given as

VAbCðfkÞ ¼ Dt
XN
j¼ 1

ei2pfktj � VAC
�
tj
�

¼ Dt
XN
j¼ 1

ei2pkj=N � VAC
�
tj
�

(12)
finally, the FPS is
FPSðfkÞ ¼
����~vk ��� 2��T ¼ ðDtÞ2

T

PN
j1 ¼ 1

PN
j2 ¼ 1

ei2pfkðtj1�tj2Þ

�
�
~vj1 � ~vj2

�
¼ Dt

X
j

ei2pfktj � VAC
�
tj
� ¼ VAbCðfkÞ;

(13)

where fk ¼ k/T is Fourier frequency, k is frequency index, T ¼ N � Dt is

total time for recording individual trajectories, j1 and j2 are time indexes,

and the symbol ‘‘̂’’ denotes Fourier transformation. Thus, the corresponding

FPS can be easily computed and then plotted in log-log axes, as shown in

Fig. 1 d.

Next, we continue to analyze the effects of persistence time P and migra-

tion speed S on FPS separately; thus, several sets of motility parameters

have been defined based on Eqs. 2 and 3, as given in Table 1. There, all

the motility parameters are initial values at t ¼ 0 min, and KP equals 0.

The left part in the table aims to study the effects of persistence time on

FPS, and the right aims to study the effects of migration speed.

The corresponding results are shown in Fig. 1, e and f. It is evident that

the FPS behave differently in the four cases of persistence times P (see

Fig. 1 e), i.e., the horizontal region (e.g., 0.001–0.2/min for the code P1)

gradually gets narrower as the decay region becomes wider (e.g., 0.2–2.5/

min for the code P1), and the horizontal region corresponds to greater power

spectral values as the persistence time P increases. Thus, the FPS will tran-

sition from the horizontal curve to a sharp decaying curve, which corre-

sponds to the transition from pure diffusive motion to ballistic motion

(44), i.e., the power spectral values in a given frequency domain will change

from the uniform to nonuniform. In contrast, Fig. 1 f indicates that the

increasing of S only increases the amplitude of FPS instead of changing
Biophysical Journal 120, 2552–2565, June 15, 2021 2555



TABLE 1 Prescribed motility parameters in TPRW model

Increasing persistence

time P (min)

Increasing

migration speed S

(mm/min)

Code P0 l S0 Code P0 l S0

P1 0.5 �1.39 0.5 S1 1.0 0 0.5

P2 2.0 1.39 0.5 S2 1.0 0 1.0

P3 8.0 4.16 0.5 S3 1.0 0 2.0

P4 32.0 6.93 0.5 S4 1.0 0 4.0

Liu et al.
the decay rate. When the motility parameters are different from the counter-

parts for other cases, the corresponding FPS will exhibit more complex

changes, which can be directly quantified by the Lorentzian power spec-

trum (31,35).
SE based on FPS

Inspired by the changes in FPS (see Fig. 1, e and f), we introduce SE to

analyze the information encoded in FPS, especially the persistence. Entropy

is an extensively used concept in thermodynamics, which is typically used

to describe the degree of disorder or randomness in the states of molecules.

It was not until 1948 that it was introduced to describe the ‘‘uncertainty’’ in

information source by C. E. Shannon (45). Therefore, it is also referred to as

‘‘SE’’ when related to information theory.

Suppose there is a set of possible events with probabilities of occurrence

p1, p2, ., pn; the SE is given as

H ¼ �
Xn
i¼ 1

pi � log2ðpiÞ; (14)

where n is the total number of the events and pi represents the probability

of each event. Note that the SE is more commonly denoted by the capital

letter ‘‘H’’ in the literature. The H not only measures how much ‘‘choice’’

is involved in the selection of the event but also how uncertain the

outcome can be. To illustrate the relationship between the probabilities

of events and H, we consider an example stochastic event with two out-

comes associated with probabilities p and q, respectively, whose H is

then given by

H ¼ � ½p � log2ðpÞþ q � log2ðqÞ�; (15)

where p lies in the closed interval [0, 1], and q¼ 1� p. The result is plotted

in Fig. 2 a, which shows that the H first increases and then decreases as the

probability p increases. In addition, it is symmetrical at about p ¼ 0.5,

which means that the H reaches a maximum (one bit) when the probabilities

of events are the same, and we are completely uncertain of the outcome.

Inversely, when p ¼ 0 or 1, H reaches a minimum (0 bit); thus, we are

completely certain of the outcome. Otherwise, H lies in the open interval

(0, 1).

Inspired by the analysis above for the case of two possibilities, we first

normalize the individual power spectral values in Fig. 1 d by dividing the

sum of individual power spectral values in the entire frequency domain,

as shown in Fig. 2 b. The normalized spectral values associated with

different frequencies can be viewed as probabilities associated of specific

dynamic modes in Eq. 14, in which each value represents the probability

of occurrence for each frequency (i.e., specific dynamic modes). Although

the pattern of the normalized result is identical with that of FPS, it possesses

completely different physical interpretations.

Following the procedure above, we calculate the H for every cell using

Eq. 14. Further, we normalize all Shannon entropies (H) by dividing the

maximal H corresponding to the case with same occurrence probabilities

for all events, which excludes the effects of the total number of frequencies
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on H. After the normalization of all H, all normalized H are dimensionless

and locate in the closed interval [0, 1] (see Fig. 2 c), which makes it conve-

nient to compare with other cases. Here, we employ the abbreviation ‘‘SE’’

to denote the normalized H for avoiding confusion in this work. Fig. 2 c

clearly shows that all SE values fluctuate around 0.6 with small derivation

(standard deviation (SD): 0.016), which reflects the similarities between

cells in a given cell population. Moreover, the distribution of all SEs in

Fig. 2 d vividly exhibits the averaged SE (0.603) for this cell population

in a more straightforward manner. Because the cell population here is

modeled based on the same motility parameters, there are no big differences

between all SEs. Similarly, we compute the ensemble-averaged SE for each

case with 200 cells listed in Table 1. The detail results are shown in Fig. 2, e

and f. In Fig. 2 e, the ensemble-averaged SE significantly decreases when

the persistence time P increases, which indicates that the more persistent

the cell migration, the smaller the corresponding SE (see Fig. S1 for the de-

tails about statistical significance test). However, the ensemble-averaged

SEs in Fig. 2 f are identical with each other, which illustrates that migration

speed S will not significantly affect the SE. Note that data are represented as

mean 5 SEM, where the SEM is ‘‘standard error of the sample mean’’ and

estimated using SD/(nsample)
1/2, which quantifies the difference between the

sample mean (estimated based on available data) and the overall mean

(ground truth) and thus is a better metric here compared to SD, used to mea-

sure the degree of dispersion of the data (Fig. 2, e and f).

Because cellular migration with larger persistence time P can be consid-

ered as more ordered (as the migration dynamics of a later time is more

strongly correlated with the state at earlier times), which is also associated

with smaller SE, it is reasonable to consider that the SE naturally offers a

metric for quantifying the degree of order or randomness of the migration

dynamics, in a similar sense as to how Gibbs entropy quantifies the order

or randomness of a thermal system. To further illustrate the physical

meaning of SE, we show in the Supporting materials and methods that

SE attains the maximal value of unity for purely diffusive migration

(i.e., SE ¼ 1 for the most ‘‘random’’ dynamics) and the minimal value

of 0 for purely ballistic dynamics (i.e., SE ¼ 0 for the most ‘‘ordered’’ dy-

namics) (see Figs. S4 and S5). With this physical interpretation, it is al-

ways easy to understand why SE is less sensitive to migration speed S,

i.e., the change of S only speeds up or slows down the migration but

does not affect the degree of randomness of migration dynamics. On the

other hand, changing the persistence time P can significantly affect the

correlation of migration dynamics at different time points, thus strongly

influencing the SE.
Time-varying motility parameters incorporating
cellular heterogeneity

Different from the cases with constant motility parameters, the function P(t)

is constructed again, based on two Gaussian distributions, i.e., N1(2.0, 0.1
2)

and N2(20.0, 1.0
2). The persistence times at initial P(0) and final P(T) mo-

ments are determined by the distributions N1 and N2, respectively. The

persistence time still obeys a linear function (cf. Eq. 2). Furthermore, the

migration speed can be computed using Eq. 3 when both of A and l are

equal to 1. So far, the motility parameters for a cell population have been

constructed (see Fig. S2 for more details), which exhibit three characteris-

tics: 1) both of them vary with time and the former changes linearly,

whereas the latter exhibits nonlinear behavior; 2) both of them increase

with time and together reflect the ‘‘enhance’’ of migration capability; and

3) the motility parameters for each cell are different from the corresponding

parameters of another cells, reflecting the heterogeneities among the cell

population.

Fig. 3 a shows how the motility parameters change over time for one cell,

and the corresponding trajectory is plotted in Fig. 3 b. The velocity compo-

nents in Fig. 3 c exhibit smaller random fluctuations with time lapsing when

compared with those in Fig. 1 b, which may reflect the enhanced persistence

of cell migration to some extent.
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FIGURE 2 SE characterizing the persistence of cell migration. (a) SE (H) as a function of probability in the case of two possibilities. (b) The probability as

a function of frequency obtained from the normalization to FPS in Fig. 1 d. (c) Shannon entropies (SEs) for a given cell population. (d) Distribution of Shan-

non entropies (SEs) for a given cell population with mean and SD. (e) Shannon entropies (SEs) in the cases of four different persistence times. Data are mean

5 SEM (standard error of the sample mean); the cell number for each group is 200; ***p < 0.001, Kruskal-Wallis test. (f) Shannon entropies (SEs) in the

cases of four different migration speeds. Data are mean 5 SEM; the cell number for each group is 200; p > 0.05, analysis of variance. To see this figure in

color, go online.

SE for persistence
Wavelet power spectrum of cell migration
velocities

Because cell migration is significantly affected by ICSPs and ECM, it is

necessary to study the time-varying characteristics encoded in cell migra-

tion trajectories. Although the SE based on FPS used above is able to cap-

ture the intensity of persistence for each cell, it is incapable of obtaining

time-dependent information (46). To address this issue for a time series, re-

searchers developed two approaches, i.e., windowed Fourier transform

(WFT) and WT.

TheWFT is an analytical tool to extract time-frequency information from

a time series, which performs the Fourier transform on a sliding segment of

a constant time interval from a time series. Here, the segment can be

windowed with an arbitrary function, e.g., a boxcar or a Gaussian window.

Although the WFT shows the ability of extracting time-frequency informa-

tion, it still cannot avoid several deficiencies, e.g., 1) it takes much effort to

determine the most appropriate window size, 2) the aliasing of high and low

frequency components may not fall within the frequency range of the win-

dow, and 3) the frequencies corresponding to the segment must be analyzed

at each time step, regardless of the window size or the dominant fre-

quencies. These deficiencies make the WFT inaccurate and inefficient un-

der certain situations, as discussed by Kaiser et al. (47), Torrence et al.

(48), and Daubechies (49).

Different from theWFT, the window size of WT can vary with frequency,

which allows one to analyze the time-frequency characteristics of a time se-

ries (48–50). The WT was originally employed by Morlet et al. to analyze

seismic signals in the early 1980s (51,52), and later formalized by Goupil-

laud et al. (53,54). Because of the better performance in studying the

nonstationary and infinitely correlated processes, the WT has become an

influential tool. For instance, the wavelet coefficients of fractional Brow-

nian motion are stationary and uncorrelated (55). Note that the WT here in-
cludes discrete WTand continuous WT; the latter is employed in this work.

For a given time series vj, the continuous WT (48) is performed by

computing the convolution of vj0 with a scaled and the translated version

of the wavelet function j�
0, which is written as

WjðsÞ ¼
XN�1

j0 ¼ 0

vj0 � j�
0

	ðj0 � jÞ � Dt

s



; (16)

where the asterisk ‘‘*’’ represents the complex conjugate and s is the

wavelet scale relating to Fourier frequency. Moreover, the Morlet wavelet

is employed here as the wavelet function, which consists of a plane wave

modulated by a Gaussian

j0ðhÞ ¼ p�1=4 � eiu0h � e�h2=2; (17)

where u0 ¼ 6 is a nondimensional frequency and satisfies the admissibility

condition (56). Note that the Morlet used is a complex function; thus, the

final results are also complex. Further, we have access readily to the corre-

sponding real part and imaginary part, both of them together are used to

compute the wavelet power spectrum (WPS) (48,57), i.e., jwj(s)j2.
So far, we can analyze the characteristics of cell migration in time-fre-

quency domain following the procedure above, as seen in Fig. 3 d. The hor-

izontal axis corresponds to the total time for recording cell trajectory, and

the vertical axis corresponds to the Fourier frequency. The legend in the

right of the plot shows the power spectral values represented by different

colors. Here, the power spectral values along the frequency axis are called

the local WPS, and the ‘‘local’’ denotes each moment of the total time. It is

evident that the local WPS in the interval (0–0.5/min) are greater than those

in other ranges (0.5–2.5/min), which roughly exhibit the persistence or
Biophysical Journal 120, 2552–2565, June 15, 2021 2557
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FIGURE 3 WPS of cell migration velocities. (a)

Motility parameters as functions of time. The red

line indicates the persistence time P obeying Eq.

2, and the blue line indicates the migration speed

S derived from Eq. 3. (b) Individual cell migration

trajectories simulated by the TPRW model based

on the motility parameters plotted in (a). (c) Veloc-

ity components on x and y axes. The red line de-

notes the components on x axis, and the blue

denotes those on y axis. (d) WPS of individual

cell migration velocities. The different colors

denote the power spectral values in the time-fre-

quency domain. To see this figure in color, go on-

line.
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correlations of cell migration velocities. When averaging the local WPS

along the time axis, we obtain time-averaged power spectral values for

all cells, which are also called global WPS. Torrence et al. (48) validated

that the local WPS is identical with the FPS of an OU process, and the

global WPS tends to approximate the FPS; thus, it is reasonable to compute

SE for all cells at every moment based on the local WPS.

Actually, edge effects will occur in the beginning and end of the WPS

because of the finite-length time series, which is also called ‘‘cone of influ-

ence’’ (COI) (48). Because the COI will affect the true information, we

exclude the region affected by COI in this work and the remaining region

(see Fig. 3 d) exhibits the true characteristics of cell migration.
The time-varying SE based on WPS

Based on the WPS in Fig. 3 d, we normalize the local WPS to obtain prob-

abilities and compute the Shannon entropy (SE) at each moment. Further-

more, the time-varying SEs can be obtained for a given cell population with

200 cells that are stacked along the vertical axis, as shown by the SE heat-

map in Fig. 4 a. From the overall view, the time-varying SEs gradually

decrease with time lapsing, which indicates that all persistence for this

cell population gradually increases, and this tendency is consistent with

that of P in Fig. 3 a.

When averaging the SE heatmap of this cell population along the time

axis, we obtain the time-averaged SE for each cell, which quantifies the

average persistence in the process of one cell migration. The corresponding

distribution is exhibited in Fig. 4 b, with mean (0.404) showing overall

characteristics for this cell population, which can be easily used to compare

with other cell populations. Similarly, we obtain the cell-averaged SE by

averaging the SE heatmap of this cell population along the vertical axis,

as shown in Fig. 4 c. Different from the time-varying SE of individual cells,

the cell-averaged SE looks smoother (SD: 0.032) because the fluctuations

caused by intrinsic noises have been averaged. Moreover, the gradual

decrease of the cell-averaged SE illustrates that the persistence of cell

migration gradually increases, which conforms to the tendency of P in

Fig. 3 a. Thus, the cell-averaged SE is better to reflect the overall changes

against time in persistence of cell population. Although this case exhibits
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different dynamical characteristics from conventional motility models, its

statistical profiling is consistent with that for in vitro cell experiments, as

shown in Fig. S7.

For validating the efficiency of SE in analyzing cell migration, we simu-

late 200 cell migration trajectories again with the same procedure as the

enhance case (see Fig. S2 for detail illustration). The only difference is

that both of the initial and final persistence times are obtained from the

Gaussian distribution N3(11.0, 0.1
2), and this case is referred to as ‘‘stable,’’

meaning that the persistence of cell migration almost does not change with

time. As seen in Fig. 4 d, it is clear that the SE heatmap of this cell popu-

lation looks more homogeneous, the time-averaged SE in Fig. 4 e has a

smaller mean (0.389), and the cell-averaged SE in Fig. 4 f exhibits a

more stable tendency (SD: 0.010) when compared with the results of the

enhanced case (see Fig. S7 for more statistical profiling).

Furthermore, we replace the linearly varying P(t) with a randomly vary-

ing P0(t), in which the persistence time P(t) at every moment is sampled

randomly from a given Gaussian distribution. The results indicate clearly

that the SE decreases significantly when the persistence times, i.e., the

mean values of three Gaussian distributions, increase, which also validates

that the SE correlates negatively with persistence time (see Fig. S3 for detail

results).
RESULTS AND DISCUSSION

SE measures the directional persistence of
migration regulated by Arpin protein

With the physical meaning and information encoded in SE
having been clearly understood from the study of the simu-
lated trajectory data in the previous sections, we now apply
an SE-based approach to analyze the migratory dynamics
regulated by ICSPs. In this subsection, all the experimental
data are obtained from the work by Dang et al. (8), which
reported a new protein, Arpin. The new Arpin inhibits the
Arp2/3 complex and antagonizes an intrinsic positive
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FIGURE 4 The time-varying Shannon entropies (SE heatmap) for enhance (a–c) and stable (d–f) cases. (a) The time-dependent Shannon entropies (SEs)

for a cell population with 200 cells. The different colors denote the values of SE. (b) Distribution of the time-averaged SE for a cell population. (c) The cell-

averaged SE as a function of time. (d–f) The captions are the same as those for (a)–(c). To see this figure in color, go online.

SE for persistence
feedback loop sustaining lamellipodial protrusion, which
promotes turning during migration, i.e., the inhibitory Ar-
pin decreases the directional persistence of migration.
Dang et al. (8) analyzed the migratory dynamics of four
different motility types regulated by Arpin protein, i.e.,
the mammary carcinoma cell line MDA-MB-231 in 2D
(MDA in 2D), in 3D (MDA in 3D), the motile amoeba Dic-
tyostelium discoideum, and fish keratocytes. In this work,
we analyze the four motility types above using the SE-
based approach; the results for D. discoideum are shown
in Figs. 5 and 6, and the other results are exhibited in
Fig. S12.

Fig. 5 shows the comparison of results based on SE anal-
ysis for Arpin-knockout amoeba, wild-type amoeba, and
rescued by green fluorescent protein (GFP)-Arpin expres-
sion in knockout amoeba. In terms of qualitative analysis,
the SE heatmap for rescued amoeba (see Fig. 5 g) contains
an excess of larger values of SE, whereas the Arpin-
knockout amoeba (Fig. 5 a) contains a larger number of
smaller values. For quantitative analysis, the mean (0.701)
of time-averaged SE for rescued amoeba (Fig. 5 h) is
maximal, wild-type (0.687) is smaller (Fig. 5 e), and Ar-
pin-knockout (0.660) is minimal (Fig. 5 b). Furthermore,
the cell-averaged SEs show the time-dependent characteris-
tics, e.g., the abrupt increase (peak) in the interval 10–
11 min for Arpin-knockout amoeba (Fig. 5 c), which may
be due to mechanisms including observation noises and
physical constrains, etc. In addition, the cell-averaged SEs
also show the overall fluctuations (corresponding to fluctu-
ations in migration persistence), e.g., the SEs for rescued
amoeba exhibit the smallest fluctuations (SD: 0.016) with
time lapsing (Fig. 5 i), wild-type is the next (SD: 0.022)
(Fig. 5 f), and those for Arpin-knockout exhibit the largest
fluctuations (SD: 0.041) (Fig. 5 c).

The above analysis of D. discoideum indicates that Arpin
content is apparently positively correlated with SE based on
the migration trajectories, i.e., Arpin depletion increases
directional persistence of migration. To further verify this
observation in a rigorous manner, we perform statistical sig-
nificance tests for three groups ofD. discoideum (see Fig. S1
for detail procedure and criteria about statistical significance
test). Fig. 6 shows ensemble-averaged SEs and indicates
evidently that Arpin-knockout amoeba possesses the mini-
mal SE (0.660), which implies greater directional persis-
tence of migration and significantly differs from those for
wild-type and rescued by GFP-Arpin expression in
knockout amoeba. In addition, there is no significant differ-
ence between the wild-type and rescued amoeba, which il-
lustrates that the directional persistence is more than fully
rescued by GFP-Arpin expression in knockout amoeba.
These results are consistent fully with those reported by
Dang et al. (8), which not only illustrate that Arpin depletion
does increase the persistence of migration but also illustrate
the utility of an SE-based approach in quantifying the
persistence of migration (see Fig. S12 for analysis of other
three motility types).
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FIGURE 5 SE of the automatically trackedD. discoideum. The captions are the same as those in Fig. 4, a–c, but the results correspond to Arpin-knockout (Ar-

pinKO) (a–c),wild-type (WT) (d–f), and rescuedbyGFP-Arpinexpression inknockout amoeba (Rescue) (g–i), respectively.Here, the time interval between frames

is 5 s and the number of trajectories is 38, 43, and 45, respectively. All the experimental data are obtained from (8). To see this figure in color, go online.
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SE detects the transition of cell migration
dynamics in confined microenvironment

In this subsection, we continue to investigate transition be-
tween two types of cell migration modes resulted from
confined physical environments using SE. We will show
that the resulting SEs as function of time clearly indicates
distinct migration modes as the cell crawls through very
confined channels and gets into less confined environment.
Firstly, we use the experimental data obtained from (58),
in which the authors constructed a microstructural channel
array and measured primary breast cancer cell migration
through a one-dimensional array of sequentially channels
and chambers (see Fig. 7 a). To record the cells’ positions,
the nuclei are stained with Hoechst and marked in red.
The trajectory of cell 4 is plotted in Fig. 7 b, which contains
two sections marked by green and red, respectively. The
2560 Biophysical Journal 120, 2552–2565, June 15, 2021
enlarged red section clearly shows that the cell ‘‘flutters’’
with a smaller migration capability when compared with
the green section (see Fig. S6 for similar simulated
trajectory).

To quantify this difference, we calculate the time-varying
SE and the time-averaged values (marked by black lines), as
seen in Fig. 7 c. The time-averaged SEs exhibit significant
differences, i.e., the cell first possesses smaller SE (mean:
0.618) with greater fluctuations and then possesses greater
SE (0.794) with smaller fluctuations (transition position,
1210 min). The transition in time-varying SE clearly indi-
cates that the cell migrates with greater persistence initially,
then the persistence gradually decreases to a smaller level,
which behaves like the transition from ballistic to diffusive
motion (44) (a similar transition is shown in Fig. S6).

Following the same procedure, we analyze a single MDA-
MB-231 cell migrating on a two-state pattern, as indicated



FIGURE 6 Arpin depletion increases directional persistence of migration

in D. discoideum. Arpin-knockout amoeba possesses the minimal SE and

Arpin expression can rescue the directional persistence in Arpin-knockout

amoeba. Data are mean 5 SEM; the number of trajectories is 38, 43, and

45, respectively; **p< 0.01, ***p< 0.001, analysis of variance. To see this

figure in color, go online.

SE for persistence
in Fig. 7 d. The two-state patterns are coated by fibronectin
and consists of two square islands (37 mm� 37 mm) that are
connected by bridges. The corresponding data are obtained
from (59), and more details are given in (60,61). The trajec-
tory contains three sections, which are denoted by red,
green, and blue, respectively (see Fig. 7 e). The SE as a
function of time clearly indicates three migration modes:
1) the first mode (red) indicates SE almost keeps stable
(mean: 0.790) with smaller fluctuations (transition point,
1340 min); 2) the second mode (green) possesses a smaller
SE (mean: 0.541) with greater fluctuations (transition point,
1940 min); and 3) the third mode (blue) shows the gradually
decreasing SE (mean: 0.655) with gradually increasing fluc-
tuations, as seen in Fig. 7 f. These three modes can be ex-
plained perfectly by the colored trajectory and correspond,
respectively to three migration states in this two-state
pattern: 1) the first mode demonstrates that the cell migrates
in one island and possess smaller persistence as it has more
space to move around, 2) the second mode shows that the
cell is migrating through the bridge and possess greater
persistence because of stronger physical constraints and
confinement, and 3) the third mode shows that the cell mi-
grates from island to bridge and the confinement is
enhanced gradually. The results in Fig. 7 further illustrate
SE is efficient in detecting the transition of cell migration
dynamics.
SE reveals strongly correlated cell migrations
regulated by remodeled collagen fiber bundles

To further demonstrate the utility of SE, we perform
in vitro experiments to obtain migration dynamics of
MCF-10A mammary epithelial cells on top of 3D collagen
gel (�2 mm thickness) and on a 2D petri dish (solid poly-
styrene substrate, as control group) and compute the Shan-
non entropy (SE) to analyze these data sets. In particular,
MCF-10A cells marked with GFP were obtained from
China Infrastructure of Cell Line Resource. The culture
medium of MCF-10A-GFP is Dulbecco’s modified Eagle’s
medium-F12 (Corning, Corning, NY) supplemented with
5% horse serum (Gibco, Gaithersburg, MD), 1% peni-
cillin/streptomycin (Corning), 20 ng/mL human EGF
(Gibco), 10 mg/mL insulin (Roche Diagnostics, Basel,
Switzerland), 100 ng/mL cholera toxin (Sigma-Aldrich,
St. Louis, MO), and 0.5 mg/mL hydrocortisone (Sigma-Al-
drich). Type I collagen extracted from rat tail tendon
(Corning) was diluted and the PH neutralized to �7.2,
then the collagen solution was spread on the substrate of
petri dish and incubated in 37�C for 30 min until it poly-
merized into a 3D matrix with a thickness of around
2 mm. The final collagen concentration was 2 mg/mL for
the tests. The cell suspension covered the matrix and stayed
in the cell incubator overnight before imaging. For cell
migration test, 0.5 mL of cell suspension with different con-
centrations of cells was dropped on top of collagen gel or a
solid petri dish, then incubated for 2 h before imaging.
Time-lapse images were obtained using both a confocal
laser scanning microscope with a 25� water immersion
objective and an automatic inverted fluorescent microscope
(Nikon Ti-E, Tokyo, Japan) with a 10� objective. Both mi-
croscopes are equipped with an on-stage cell-culture incu-
bator to provide a constant temperature of 37�C with
humidity 5% CO2.

We obtain in vitro migration trajectories of MCF-10A
cells on 3D collagen I hydrogel with a collagen concentra-
tion 2 mg/mL and thickness of �2 mm by randomly distrib-
uting the MCF-10A cells on collagen-based ECM with a
low cell density of 104 cells/cm2. Furthermore, we carry
out control experiments by obtaining migration trajectories
of MCF-10A cells on a 2D petri dish by initially randomly
distributing the cells on solid polystyrene substrate with a
number density of 104 cells/cm2. We record the migration
trajectories for the two cases above with a sampling time
of 2 min for every frame.

As shown in Fig. 8 a1–a4, we observe highly correlated
pairwise migration dynamics for cells on the collagen gel,
when the initial distance between the cells is roughly
within �80–120 mm. In particular, the two cells within
this influence region tend to rapidly move toward each
other, following a ballistic-like path (see Fig. 8 b). To bet-
ter quantify the correlated migration dynamics, we
compute the time-varying SEs for both cells exhibiting
the correlation behaviors (see Fig. 8 c). Subsequently, Pear-
son’s correlation coefficient is calculated (r ¼ 0.813) based
on the SEs against time, which indicates the high correla-
tion between the pairwise cells. The detailed illustrations of
Pearson’s correlation coefficient are given in the
Biophysical Journal 120, 2552–2565, June 15, 2021 2561
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FIGURE 7 SE detects transition of confined cell

migration dynamics. (a) Primary breast cancer cell

migration through microstructure with channels

and chambers (channel array). Cell nuclei are

stained with Hoechst and shown in red. The scale

bar (horizontal black line) is 50 mm. Note that

this image is flipped 180� left and right (see ‘‘flip-

ped 4’’ for reference). (b) Individual cell migration

trajectories containing two sections denoted by

green and red, respectively. The inset is an

enlarged view of the red section. The sample

time interval between frames is 5 min. Image (a)

and data (b) are reproduced from (38) and (58)

with permission, respectively. (c) SE as a function

of time. The black lines represent time-averaged

SEs, respectively for these sections. (d–f) The cap-

tions are the same as those for (a)–(c), but the data

correspond to a single MDA-MB-231 cell

migrating on a two-state pattern. The sample

time interval between frames is 10 min and the

scale bar (vertical black line) is 50 mm. Image

(d) and data (e) courtesy of David B. Br€uckner

(59). To see this figure in color, go online.
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Supporting materials and methods; here, we simply note
that a perfect correlation corresponds to r ¼ 1 (�1) and
totally uncorrelated migration is associated with r ¼ 0.
Furthermore, we compute averages of the absolute values
of Pearson’s correlation coefficients for 14 randomly
selected cell pairs migrating on collagen gel, and the aver-
aged coefficient is 0.407, as shown in Fig. 8 d. In contrast,
the Pearson’s correlation coefficient for cell pairs on a 2D
petri dish is much lower (0.219), indicating less significant
correlations among these cells. In addition, we also validate
that the high collagen concentration will contribute to
enhancing the directional persistence of cell migration
(62), whereas cell density shows no significant effects on
the directional persistence (see Figs. S8–S11 for detail
analysis).

In this case, we clearly see the utility of the SE-based
approach in quantitatively characterizing and distinguishing
distinct migration dynamics for cells in different microenvi-
ronment. Our subsequent analysis of the time-lapsing
confocal imaging data (see Fig. 9) revealing both the
migrating cells and the collagen fibers shows that correlated
migrations are mainly due to the dynamically reorganized
collagen bundles between the two migrating cells. Recent
studies (10,11,63–65) suggested that the remodeling of
collagen fibers is mainly due to the active tensile forces
generated by the migrating cells, and the bundles bridging
the two cells typically carry tensile forces that, in turn, regu-
late the cell migration and lead to the observed strongly
correlated migration.
2562 Biophysical Journal 120, 2552–2565, June 15, 2021
CONCLUSIONS

In this work, we introduce the time-varying Shannon en-
tropy (SE) based on the WPS obtained by performing WT
of migration velocities and demonstrate its superior utility
to characterize the persistence of cell migration. We first
introduce a TPRWmodel and further construct the functions
regarding motility parameters when considering the effects
of ICSPs or ECM to simulate cell migration. On the basis
of cell migration trajectories, we compute the VAC and
FPS to quantitatively investigate the characteristics of cell
migration in frequency domain. To study the effects of indi-
vidual motility parameters on the shape of FPS, we define
eight sets of parameters. Results show the persistence time
changes the decay rate of FPS, and the migration speed
changes the amplitude. Moreover, inspired by the changes
in Fourier power spectra, we then introduce SE that can
be obtained from the probabilities corresponding to power
spectral values to quantify the persistence of cell migration,
i.e., the smaller the SE, the closer the cell migration to a bal-
listic motion.

Because of the transitory nature of cell migration capa-
bility in heterogeneous environment, WT is employed to
analyze cell migration velocities and derive WPS, which ex-
hibits the time-frequency characteristics of cell migration.
Because the local WPS along the frequency axis is identical
with the FPS of an OU process, we further compute the SE
for each local WPS and naturally obtain the time-varying
SE, which accurately reflects the time-varying persistence.
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FIGURE 8 Analysis based on SE between pairs of MCF-10A cells migrating on collagen gel and 2D petri dish. (a1–a4) Time-lapsing images indicating a

typical pair of cells migration on collagen gel. (b) Migration trajectories of the pairwise cells. (c) Time-dependent Shannon entropies of the pairwise cells.

Pearson’s correlation coefficient is 0.813. (d) Averaged Pearson’s correlation coefficients for cells pairs migrating on collagen gel (randomly selected 14 pairs

of cells) and 2D petri dish (randomly selected 14 pairs of cells). Data are mean 5SEM; the number of coefficients is 14 and 14, respectively; *p < 0.05,

Wilcoxon rank sum test. The scale bar represents 30 mm. To see this figure in color, go online.

SE for persistence
To illustrate the utility and efficiency of our approach, we
analyze trajectory data of in vitro cell migration regulated
by distinct ICSPs and ECM, exhibiting a rich spectrum of dy-
namic characteristics and persistence. In particular, our re-
sults based on the experimental data of D. discoideum
indicate that SE can sensitively quantify the directional
persistence of migration regulated by the Arpin protein, and
it can also be as a metric to detect the transition of cell migra-
tion modes in a confined microenvironment. In addition, our
analysis based on themigration trajectories ofMCF-10Acells
on a collagen layer and solid 2D substrate indicates that SE
can very sensitively capture and quantify the strongly corre-
lated migration dynamics between cells on collagen gel and
distinguish the migration dynamics of cells on a petri dish.
Although SE alone does not directly offer insights on physical
mechanisms, SE-based quantifications certainly aid the sub-
sequent analysis to reveal themechanism leading to the corre-
lation migration. Therefore, we conclude by remarking that
the SE not only efficiently quantifies the directional persis-
tence ofmigration but also effectively captures the time-vary-
ing persistence of cell migration, which can also reflect the
real-time effects of ICSPs or ECM to some extent.
The data that support the results within this work are
available from the corresponding authors upon request.
SUPPORTING MATERIAL

Supporting material can be found online at https://doi.org/10.1016/j.bpj.
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FIGURE 9 Time-lapsing confocal imaging data revealing strongly corre-

lated pairwise cellular migration regulated by the remodeled ECM fiber bun-

dles. The cells are shown in green, and the fiber bundles bridging the

migrating cell pairs are shown in light blue. The scale bar represents 25

mm. Recent studies suggest that the fiber bundle bridge was formed because

of mechanical remodeling of the collagen gel by the active tensile forces

generated by the migrating cells (11,63). To see this figure in color, go online.
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