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Abstract: Multiple types of sleep arousal account for a large proportion of the causes of sleep
disorders. The detection of sleep arousals is very important for diagnosing sleep disorders and
reducing the risk of further complications including heart disease and cognitive impairment. Sleep
arousal scoring is manually completed by sleep experts by checking the recordings of several periods
of sleep polysomnography (PSG), which is a time-consuming and tedious work. Therefore, the
development of efficient, fast, and reliable automatic sleep arousal detection system from PSG may
provide powerful help for clinicians. This paper reviews the automatic arousal detection methods
in recent years, which are based on statistical rules and deep learning methods. For statistical
detection methods, three important processes are typically involved, including preprocessing, feature
extraction and classifier selection. For deep learning methods, different models are discussed by
now, including convolution neural network (CNN), recurrent neural network (RNN), long-term and
short-term memory neural network (LSTM), residual neural network (ResNet), and the combinations
of these neural networks. The prediction results of these neural network models are close to the
judgments of human experts, and these methods have shown robust generalization capabilities on
different data sets. Therefore, we conclude that the deep neural network will be the main research
method of automatic arousal detection in the future.

Keywords: sleep arousal; polysomnography (PSG); machine learning; deep learning

1. Introduction

The appearance of sleep arousals (also known as microarousals) reflects the interrup-
tion and fragmentation of sleep and is a harbinger of the presence of somnipathy. Frequent
microarousals can cause sleep disruption, sleep fragmentation, sleep disorder, aggravating
daytime sleepiness, and other symptoms [1]. An increasing amount of evidence indicates
that sleep arousals diseases are the concomitant symptoms of other diseases, including
weight gain, depression, heart diseases, and diabetes. Therefore, advancing our current
understanding of microarousals neurophysiology is not only a challenging research issue
but also a public health issue.

Microarousals can also be spontaneous, caused by grinding teeth, partial airway
obstruction, or even snoring [2]. A certain amount of spontaneous arousals seems to be an
intrinsic part of physiological sleep [3,4], but excessive arousals can disrupt healthy sleep.
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Polysomnography (PSG) collects all of the vital signs in a multidimensional time
series. The vital signs include electroencephalogram (EEG), electromyography (EMG),
electrocardiography (ECG), electrooculography (EOG), blood oxygen saturation level
(SaO2), respiratory airflow (airflow), and respiratory movement (chest ABD). Normal and
abnormal brain activities are typically picked up by EEG. Some neuropathic disorders
leave their signature on EEG [5–7]. PSG is the gold standard for detecting sleep disorders.

The physiological band of interest for PSG signals usually ranges from 0.01 to several
hundred cycles per second. The lowest band in conventional EEG studies has a lower
limit of 0.5 Hz or 1.0 Hz as the ‘slow frequency’ and ‘sub-slow’ EEG bands, while 100 Hz
corresponds to the highest frequency of the EEG band [8,9]. The ECG spectrum is generally
considered to be 0.05–100 Hz [10]. Jarvis et al. [11] suggested that ECG frequency associated
with sleep apnea can be reduced to 0.02 Hz. EMG ranges from 5.0 Hz to higher frequencies
up to 450 Hz [12]. Respiration movements, airflow, and other forms of SaO2 are low-
frequency phenomena with activity ranging from 0.05 Hz to 0.35 Hz [13].

The paper is organized as follows: in Section 1, we discuss the hazards of arousals,
arousal detection, and the range of PSG signals. In Section 2, we introduce the clinical
medical background of arousal, arousal indicators in the American Academy of Sleep
Medicine (AASM), and the cyclic alternating pattern (CAP). The criteria for selecting
articles are given in Section 3. In Section 4, we introduce three public datasets and some
local datasets appearing in the article and discuss the different measurement indicators. In
Section 5, the classification methods based on traditional machine learning are discussed.
In Section 6, we present the methods using deep learning. In Section 7, some commercial
products of arousal detection are introduced. In Section 8, we review some methods for
CAP detection. The paper is concluded in Section 9.

2. Microarousal Events

In 2004, the American Academy of Sleep Medicine (AASM) produced a manual of
new sleep staging rules, updating criteria for staging sleep, as well as for staging wake,
respiratory, cardiac, and motor events. Accordingly, microarousals are defined as the
transition from sleep to wakefulness, or from rapid eye movement (REM) to non-rapid
eye movement. Microarousals of the brain are an abrupt shift in EEG frequency including
alpha, theta and/or frequencies greater than 16 Hz (but excluding the spindle band) which
typically last for 3–15 s and last at least 3 s, but not including the spindle band [14].

The microarousal does not mean complete awakening from sleep but partial “arousal”
from slow-wave sleep, which can happen at any stage of sleep. Sudden changes in brain
wave activity patterns are an important feature of microarousals [15]. Microarousals
are usually found in non-rapid eye movement phase II (N2) or REM phase based on
conventional scores [16,17], and they also occur during REM phase with an increase in
EMG signal [18,19].

Microarousal can cause PSG signals to present different fluctuations around the
normal activity. Screening for sleep disorders is aided by several signals or even a single
signal [20], such as ECG [21], pulse oximeter [22], breathing [23], snoring [24], or nasal
airway pressure [23]. The main signs of micro awakening in the new AASM manual [25],
as examples shown in Figure 1, are as follows:

(1) EEG channel: sleep lasts for at least 10 s, followed by a sudden change in EEG
frequency for at least 3 s.

(2) EMG channel: amplitude increases [26], and the degree of increase is related to sleep
stage.

(3) ECG channel: this is related to the increase in cardiac activity [27], and the increase in
the heart rate depends on the degree of arousal.

(4) Respiratory related channels: includes chest, airflow and abdominal (ABD), as shown
as shown in Figure 2, the respiratory sequence of the channel changes continuously
for more than 10 s, which is manifested in the increase in the respiratory effort or the
flattening of the inspiratory part of the respiratory channel.
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Figure 2. Airflow, chest, and ABD channels during awakening events.

As an extension of PSG technology, the CAP [28] is a sufficient supplement to evaluate
sleep quality and to detect arousal states. The CAP is a periodic EEG activity occurring
during NREM sleep. A CAP cycle is defined as a phase A period and the following phase
B period. B period separates two successive phase A periods with an interval lasting a
minute or less. At least two CAP cycles are required to form a CAP sequence [28].

Phase A periods are subdivided into three subtypes [28,29], i.e., subtype A1, A2, and
A3. Subtype A2 and A3 mark the arousal of the central nervous system.

Subtype A1 is an important component of NREM sleep. Its frequency range is gener-
ally between 0.25 Hz and 2.5 Hz [29], and its origin is located in the frontal lobe, which
plays a protective role in maintaining the continuity of sleep.

Subtypes A2 and A3 are generally considered to be the prelude to REM sleep [29].
Their origin is located in the parietal and occipital parts [29], which has the function of
maintaining sleep.

Phase B consisted of the background rhythm [29] to that stage.
The three subtypes of phase A include NREM sleep arousal (A2 and A3) and the sleep

maintenance and protection process (A1). The general indicators used for CAP analysis
are the total occurrence rate of CAP (the proportion of the CAP sequence in the whole
NREM sleep); the total number; or the percentage of A1, A2, and A3 subtypes. Generally,
the increase in CAP rate is a significant feature of the decrease in sleep quality [28].
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CAP analysis cannot replace the traditional analysis methods, but it can further our
understanding of the microstructure of human sleep as a supplementary means. For the
integrity of the subject content, the CAP methods are introduced below.

Increased amounts of CAP are often observed in sleep-disordered breathing (SDB)
and insomnia [28,30], sleep movement disorders (periodic leg movements (PLM) [28,31],
restless leg syndrome (RLS) [28,32]), parasomnias such as REM behavior disorder (RBD),
epileptic diseases such as nocturnal frontal lobe epilepsy (NFLE) [28,33], and hypersomnia
of central origin such as narcolepsy [28,34].

3. Materials and Methods

We reviewed the literature using the ResearchGate, Springer, and IEEE databases from
1980 to 2021 for this review paper. Each study in this review was screened to meet all the
inclusion criteria. The inclusion criteria are (A) human studies, (B) studies published in
English or Chinese, and (C) experimental studies using a quantitative approach. The criteria
of article exclusion are given as follows: (A) articles that do not address the phrase used for
search, which was completed by reviewing the abstracts and results; (B) articles that are not
research-type papers, e.g., review papers, editorials, case studies, and conference abstracts;
and (C) articles that do not have a definite data source, a reproducible model structure,
or specific experimental results. We used the following search terms: (“sleep arousal”
or “microarousal” [title]) AND (“detection” OR “algorithm” OR “method” OR “model”
[title/abstract]). For the CAP detection, we used the following search terms: (“Cyclic
Alternating Pattern” or “CAP” [title]) AND (“detection” OR “algorithm” OR “method”
OR “model” [title/abstract]). This search produced 304 articles. Finally, 40 of them met the
inclusion criteria after full-text review and are included in this review paper. The number
of publications per year is provided in Figure 3.
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4. Introduction of Public PSG Data Sets

At present, most related approaches are usually limited to relatively small (less than
40 recordings) and private datasets. Whether the detection ability of these algorithms can
be extended to larger samples or different databases remains a problem. At the same time,
we are not sure that these algorithms perform well in a clinical (uncontrolled) environment.

On the other hand, different databases involve different signal acquisition and digiti-
zation methods, different population characteristics and different expert interpretations.
Even if the arousal scoring is limited to the same recordings, human subjectivity will still
lead to differences.

Therefore, we need to build a large and heterogeneous database to verify the general-
ization ability of sleep arousal detection methods and promote these methods to be applied
in clinical practice. In this review, we introduce three external and publicly accessible
sources, namely the PhysioNet dataset, Wisconsin Sleep Cohort dataset, and Sleep Heart
Health Study (SHHS) dataset. Each of the databases is described in detail below, Figure 4
shows the percentage of the studies that used different databases.
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4.1. 2018 PhysioNet/Computing in Cardiology Challenge

In the 2018 PhysioNet/Computing in Cardiology Challenge [2], the PhysioNet dataset
consisted of 1985 subjects with sleep disorders who were monitored at the Massachusetts
General Hospital (MGH) Sleep Laboratory. For each subject, 13 different physiological
signals were collected during the PSG sleep study and manually scored by a certified
sleep technician at the MGH Sleep Laboratory according to the AASM guidelines. The
13 different physiological signals includes EEG of six channels (F3-M2, F4-M1, C3-M2,
C4-M1, O1-M2, and O2-M1), left eye EOG, EMG lead (Chin1-2) placed under the chin,
respiratory movements in the chest and abdomen (chest and abdomen), ECG, SaO2, and
single lead of airflow [2].

The publicly available training sets include 994 PSG recordings associated with sleep,
respiratory events and arousal annotations. The annotations of the other 989 PSG recordings
are kept hidden by the Challenge organizers as test sets. The labels of sleep stages include
wakefulness; REM sleep; stages 1, 2, and 3 of non-REM sleep; and the undefined stage.
Annotated arousals are classified as spontaneous arousal, respiratory effort-related arousal
(RERA), bruxism, hypoventilation, apnea (central, obstructive, and mixed), vocalization,
snoring, periodic leg movements, Cheyne–Stokes respiration, or partial airway obstruc-
tion [2]. The target values for the non-apnea arousals, the apnea (hypopnea)-arousals
and the non-arousals sections are set to ‘−1’, ‘1’, and ‘0’, respectively. More details of the
PhysioNet dataset can be found in the literature [2].

4.2. Wisconsin Sleep Cohort (WSC)

WSC is a local population-based study. Some participants suffer from sleep disorders
ranging from normal to severe. WSC collects information such as personal sleep patterns,
quality, time, and related disorders. According to AASM criteria, two medical professionals
annotated arousals, sleep stages, leg movement events, and respiratory events.

Qualified investigators and organizations can obtain data access rights by completing
the application form on the official website at https://show.wisc.edu/ (accessed on 11
August 2021).

4.3. Sleep Heart Health Study (SHHS)

Granted by the Case Western Reserve University, SHHS was developed by the Na-
tional Heart Lung and Blood Institute to determine cardiovascular and other consequences
of sleep-disordered breathing [35]. SHHS is regarded as a resource for subsequent studies
related to sleep disorders. There are 10,000 nightly PSG records of 79,456 h of clinical
data. These data have been recorded in clinical sleep laboratories for more than eight
years and are highly robust to physical variability among patients. The SHHS dataset was
scored using the Rechtschaffen and Kales (R&K) guidelines. SHHS’ data are available at
https://www.sleepdata.org/ (accessed on 11 August 2021).

4.4. The CAP Sleep Database

The CAP Sleep Database [28,34] is a collection of 108 polysomnographic recordings
registered at the Sleep Disorders Center of the Ospedale Maggiore of Parma, Italy. The

https://show.wisc.edu/
https://www.sleepdata.org/
https://www.sleepdata.org/
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included subjects were healthy people who did not present any neurological disorders
and were free of drugs affecting the central nervous system, and patients diagnosed
with NFLE, RBD, PLM, insomniac, narcoleptic, SDB, or bruxism. The labels have the
following fields [28,34]:

(1) Sleep stage (W = wake, S1–S4 = sleep stages, R = REM, MT = body movements);
(2) Body position (left, right, prone, or supine; not recorded in some subjects);
(3) Time of day (hh:mm:ss);
(4) Event (either a sleep stage (SLEEP-S0 . . . S4, REM, MT), or phase A of CAP);
(5) Duration (in seconds);
(6) Location (the signal(s) in which the event can be observed).

4.5. Comprehensive Comparison of Database

The properties such as, the location of the participants, sex ratio, age, and medical
history are discussed for the three public datasets and some local datasets in Table 1.

First, most datasets regard adult subjects. Second, many datasets have the problem
of an insufficient sample size. Third, less than half of the datasets distinguish the types
of sleep arousals. Fourth, most datasets have a balanced proportion of men and women,
but few datasets regard a specific type of patient, such as the dataset for studying the
sleep of elderly men with osteoporosis. Fifth, some datasets regard patients with one or
several diseases, such as patients with cardiovascular disease or stress drivers. Sixth, there
is no work that examines the differences between races among various automatic arousal
recognition methods. Finally, the numbers of arousal events are much smaller than those
of non-arousal events in most datasets.

4.6. Discussion of Different Measurement Indicators

Accuracy represents the proportion of correct judgment of the model in the total
number. Although accuracy can judge the overall accuracy rate, when the samples are
unbalanced, for example, when there are 90 positive samples and 10 negative samples in
the sample set, the model only needs to predict all samples as positive samples, then the
model can achieve 90% accuracy. Therefore, in the case of unbalanced samples, the high
accuracy obtained is meaningless.

Precision (specificity) refers to the probability that all samples predicted to be positive
are actually positive samples. Precision represents the prediction accuracy in the positive
sample results.

Correspondingly, the recall rate (sensitivity) measures the recognition ability of
the classifier.

In medical clinical practice, relatively sensitivity of the model is desirable to doctors,
because if a patient suffers from a disease that is not detected by the disease detection
instrument, the patient’s treatment may be delayed. Assuming that the patient does not
suffer from a disease and the test result is positive, the patient’s condition can be confirmed
by repeated testing or other testing methods.

When there is an imbalance in the dataset, the PRC curve can better reflect the re-al
performance of classification. It reflects the relationship between the accuracy and recall
rate. The greater its value (close to 1), the more comprehensive and accurate the model. The
official measure to evaluate the performance of arousal detection is the area under precision
recall curve (AUPRC). The abscissa is the recall rate, and the ordinate is the accuracy. It is
effective when the category distribution in the dataset is unbalanced. It is often used in
medical target detection, machine learning, data mining, etc.

Here, we provide a new index for readers’ reference: the ratio of the performance
metric to the number of studied subjects.



Brain Sci. 2021, 11, 1274 7 of 27

Table 1. Comprehensive comparison of databases.

Dataset Number Types of Sleep Arousals Area Sex Ratio
(Man:Woman) Age Medical History

PhysioNet 994 Non-apnea/hypopnea arousals USA 65:35 Mean: 55 Apnea, hypopnea, periodic limb
movement disorder, sleep stage

SHHS 6441 Indistinguishable USA about 1:1 40 years or older OSA, SDB

WSC over 1000 Indistinguishable Not mentioned about 1:1 Mean: 51 BMI, sleep stage

CAP Sleep Database 108 CAP Italy 42:66 14–82 NFLE, RBD, PLM, insomniac,
narcoleptic, SDB, bruxism

David et al. [36] 40 Indistinguishable USA 4:1 Quite diverse AHI, height, weight

Agarwal et al. [37] 2 Indistinguishable Italian Not mentioned 19–67 years (mean: 45)

Breathing disorders, nocturnal
myoclonus, epileptic,
psychophysiologic

insomnia, narcoleptic

Foussier et al. [38] 15 Indistinguishable Boston (USA), Hoven
(Netherlands) Not mentioned Not mentioned Without any known

sleep disorder

Gouveia et al. [39] 9

(1) Sleep apneas;
(2) Micro-arousals related to

other breathing events;
(3) No noticeable micro-arousal

Houston (USA) Not mentioned Not mentioned UARS

Espiritu et al. [40] 1 (8 h, 25 min) (1) Arousal from sleep(2) Left
and right leg movement Texas State (USA) Not mentioned Not mentioned Sleep disorder

Cho et al. [41] 9 Indistinguishable South Korea 8:1 28–67 years (mean:
50.33)

Sleep apnea, snoring, and
excessive daytime
sleepiness (EDS)

Shmiel et al. [42] 26 Indistinguishable Petach-Tikva, Tel-Aviv,
Sheba (Israel) Not mentioned Not mentioned Sleep disorder

Huupponen et al. [43] 6 Indistinguishable Not mentioned Not mentioned Not mentioned Sleep disorder

Shahrbabaki et al. [44] 9 Indistinguishable Sydney (Australia) 6:3 34–69
Obstructive sleep apneas, periodic

limb movement disorder,
healthy subjects
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Table 1. Cont.

Dataset Number Types of Sleep Arousals Area Sex Ratio
(Man:Woman) Age Medical History

Wallant et al. [45] 32 Indistinguishable Not mentioned Not mentioned 19–26 Healthy subjects

Olsen et al. [46] 258 (1) Autonomic arousals (AA);
(2) Cortical arousals (CA) USA Not mentioned Not mentioned A variety of sleep and

cardiac disorders

Olesen et al. [47] 1500 Indistinguishable USA All male 67 years or older AHI, incident falls, fractures, and
cardiovascular disease

Jia et al. [48] 323 Indistinguishable Beijing (China) Not mentioned Not mentioned Not mentioned

AHI = apnea–hypopnea index; UARS = upper airway resistance syndrome; OSA = obstructive sleep apnea; SDB = sleep-disordered breathing; BMI = body mass index.
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5. Microarousal Detection with Traditional Machine Learning Methods

The first work in this field was to use the simple indices related to the frequency of
the EEG waveform. This work concluded that the automated detection of sleep arousal
is feasible using the frequency analysis of EEG channels [19]. Feature engineering is
performed manually and requires a considerable amount of domain expertise, so it has
become the main bottleneck of most machine learning tasks. The features are engineered
in the time domain, the frequency domain, or the time-scale domains. The common
characteristics of the PSG signal for microarousal detection are listed in Table 2.

Table 2. Common characteristics of PSG in arousal detection with machine learning methods.

Channel Name The Discussed Features and the Related References

EEG

Spectral energies in the delta, theta, alpha, beta, and
gamma bands [49]

Approximate entropy (ApEn) [50]
Power spectrum density [51]

Wavelet packet decomposition (WPD) [52]
Hjorth parameters (including Hjorth activity, mobility,

and complexity) [53]
Wavelet transform [54]

Frequency and amplitude [45]

EOG/chin EMG

Spectral energies in the delta, theta, alpha, beta, and
gamma bands [49]

Form factor, standard deviation, skewness, kurtosis, and
relative energies [55]

Submental, amplitude [45]

CHEST/ABDOMINAL/AIRFLOW

Breath rate, width, amplitude, inspiratory, slope,
inter-breath intervals [56]

Coefficient of variation of the signal envelope [57]
Form factor, standard deviation, skewness, kurtosis, and

relative energies in two regions [55]
Respiratory disturbance variable (RDV) [57]

Correlation between abdomen and thorax signals [58]

SaO2

Rolling mean [59]
Hypoxic burden, proportion, standard deviation,

skewness, kurtosis [60]
Statistical features [59]

ECG

Heart rate, inter-beat intervals, and R-wave amplitude
time-series [36]

Rolling variance [59]
QRS [61]

Heart rate variability (HRV) signals [62]

The general workflow in this field is shown in Figure 5. Data scientists first extract
the domain-specific features of PSG signals. Then, they use machine learning methods to
classify them into non-arousal and arousal fragments.
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Different automatic or semi-automatic detection algorithms have been proposed with
widespread machine learning methods, such as statistical methods [36–39,63], tree-based
methods, decision tree [40], random forest (RF) [64], and bagged tree [65], support vector
machine (SVM) [40,41,66], sequential pattern discovery field [42], multi-layer perceptrons
(MLP) [43], and K-nearest neighbors (KNN) [44]. A recent study used the adaptive thresh-
old method [45] based on time and frequency characteristics to automatically detect the
arousal from PSG data. It proved that the automatic method can be much more reliable
than human raters.

David et al. [36] designed a portable ballistocardiograph-based system to obtain
cardiopulmonary data from the upper chest at the approximate level of the heart and from
the abdomen area above the waist. The self-built dataset achieved a racial demographic
similar to that of the surrounding geographical area (Virginia, USA). The first 27 subjects
were used as the training set, while the last 13 subjects were used as the test set. The
cardiopulmonary data were preprocessed using bi-directional recursive filtering, and then
scored according to the AASM. The sensitivity and specificity of the detection for arousals
were 77.3% and 96.2%, respectively.

Agarwal et al. [37] used two full-night PSGs manually scored by three experienced
sleep technologists for the initial performance assessment and to illustrate the new arousals
detection algorithm. They first removed segments containing large amplitude artifacts
based on the probability distribution of the MAA feature. Finally, based on this dataset,
they proposed a method with a set of decisional rules based on spectral feature of EEG
signals to find the start and end of arousal events. It may be necessary to adjust the
detection threshold to meet different scorekeeper preferences. The average sensitivity and
specificity were 69.55% and 70.37%, respectively. This method needs to be validated on a
larger data set.

Patanerli et al. [63] built a database containing 11 subjects affected by different patho-
logical conditions from Naya University Sleep Disorders Center; 3 were used as the training
set and 8 as the program testing set. The model relied on the joint analysis of EEG and EMG
to calculate the moving average power after the wavelet transform; and the STEPDISC
procedures of the SAS software package was used for analysis. The STEPDISC procedures
includes forward selection, backward elimination, and gradual selection of quantitative
variables. The STEPDISC program evaluated the EEG signals every 0.125 s. When an
arousal event was detected and the detection result remained positive for more than 3 and
up to 30 s, a possible arousal was marked. This method can automatically identify the
arousal fragments with system sensitivity of 88.1% and selectivity of 74.5%.

Foussier et al. [38] built a database containing 15 whole-night polysomnographic ECG
recordings without any known sleep disorder. They analyzed 72 features derived from
HRV based on Mahalanobis distance (MD) ranking. Then, they performed the multivariate
analysis of variances (MANOVA).

Gouveia et al. [39] measured overnight sleep in nine subjects with upper respiratory re-
sistance syndrome (UARS). Three types of events were labeled in the dataset: sleep apneas,
micro-arousals related to other breathing events, and no noticeable micro-arousal. They
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firstly analyzed the frequency feature of about 8 h on a single EEG channel and then applied
the scoring rules published in 1992 by the American Sleep Disorder Association (ASDA).
Then they used other available channels to validate the results. Finally, the supervised,
and unsupervised machine learning and data fusion methods were used to classify the
signals into sleep apneas/micro-arousals related with other breathing events/no noticeable
micro-arousal. The detection rate was about 70%.

The decision tree uses a tree-like model of decisions. Each non-leaf node in the decision
tree represents an attribute of samples. The branch from the non-leaf node represents all
possible values of this attribute. The leave nodes represent the final outcomes of the
classification. Some data scientists first take each segment (window) of the PSG signal, and
then test the segments against the decision tree to decide whether the segments contain
an event of arousal or not. However, the decision tree is prone to overfitting and ignore
the correlation between the inputs. Random forest uses the voting mechanism of multiple
decision trees to improve the performance of a single decision tree. The predictions of
microarousal by the decision tree method, the logistic regression method, and the naïve
Bayes method were compared by Espiritu et al. [40]. The results are limited to sleep
arousal and leg movement events. The dataset was from the Texas State Sleep Center,
which included 121 arousal events, 342 right leg movement, and 359 left leg movement
events. It was shown that the decision tree method for both the fixed window segmentation
and the adaptive window segmentation had the highest accuracy at 84.84% and 90.57%,
respectively. More data for each type of event from PSG need to be collected, allowing
for extracting more features and experimenting with more classifiers, so that the feature
models can achieve the higher accuracy.

Most of the previous works did not analyze the differences between the experimental
data set, nor did they conduct in-depth analysis of PSG channels for sleep arousal detection.
Therefore, they cannot guarantee the extraction of the most valuable information from the
subsequent networks. In order to solve the above problems, Liu et al. [64] applied two
classification schemes by using the multi-convolution neural network to extract signals
features and by applying random forest to determine the weight of these initial classifiers.
They divided the data set into a training set, a verification set and a test set according to
the ratio of 7:1:2, and they used the synthetic minority oversampling technique (SMOTE)
algorithm to deal with the problem of data imbalance. The area under the receiver operating
characteristic curve (AUROC) and AUPRC were 0.953 and 0.552, respectively, which are
better than the results of the team that ranked first in PhysioNet 2018.

Subramanian et al. [65] used 27 spectral and time domain features to detect arousal
in obstructive sleep apnea. The work compared two classifiers’ methods, the generalized
linear model, and RF using the PhysioNet dataset. The highest AUPRCs for target arousals
and all types of arousals were 0.238 and 0.630 using RF.

The SVM [67] is often used for the classification of EEG signals. It is based on the
principle of finding hyperplanes. With an appropriate nonlinear mapping to an adequately
high dimension, data from two categories can always be separated by these hyperplanes.

Cho et al. [41] proposed the automatic method to detect arousals based on time-
frequency analysis and the SVM classifier using a single channel signal of EEG (C3-A2). In
this study, nine patients with sleep apnea, snoring and excessive daytime sleepiness (EDS)
underwent an overnight PSG recording in a sleep laboratory in Asan medical center (South
Korea). The sensitivity and specificity were 75.26% and 93.08%, respectively.

The algorithm proposed by Ugur et al. [66] is based on the continuous wavelet trans-
form (CWT) to extract the EEG scalogram, mean, and variance of the scalogram coef-
ficients and the squared magnitude of the continuous wavelet transforms. The SHHS
PSG database of the National Sleep Research Resource (NSRR) was used. Half of the
recordings were used for training with five-fold cross-validation. Then, the remaining
recordings were used for testing. SVM was applied as a classifier. The overall sensitivity,
specificity, accuracy, and positive predictive value of the algorithm are 94.67%, 99.33%,
98.2%, and 97.93%, respectively.
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Based on datamining techniques, Shmiel et al. [42] proposed the use of EEG, EMG,
pulse, and SaO2 channels for arousal detection. They built a database that contains data on
26 adult patients from 3 independent sleep laboratories: 6 patients from Assuta Medical
Center in Petach-Tikva as a training set, 10 from Sheba Medical Center, and 10 from Assuta
Medical Center in Tel-Aviv as independent test sets. They extracted the meta-rules using
the first six patients. The automatic detection was then applied to another 20 patients. The
framework adopted meta rules, which dynamically adjust the actual scoring rule according
to each patient, thereby overcoming the obstacles of different patient signal characteristics.
The sensitivity was 75.2% and the positive predictive value was 76.5%.

Huupponen et al. [43] presented a multilayer perceptron neural network for automatic
arousal detection from one EEG channel through sampling, log-likelihood evaluation, and
latent variable manipulations. They used six patients. There were 6190 segments of NREM
sleep, 3095 segments containing normal sleep, and 3095 arousal events. The test data
include 1 NREM segment. In the first test, the method was able to find a large number of
true arousals, but the number of false-positive predictions was high.

The nearest neighbor (k-nearest neighbors, KNN) algorithm is a classification algo-
rithm that is used in the fields of character recognition, text classification, image recognition,
and physiological signal classification. First, the samples of all known categories are used
as a reference. In the second step, the distance between the unknown samples and all
known samples is calculated. In the third step, the K known samples that are closest to the
unknown sample are selected. According to the majority-voting rule (majority-voting), one
can select the category that the majority of the nearest neighbor samples belong to. Finally,
the unknown samples are classified into this category.

Shahrbabaki et al. [44] analyzed nine subjects’ overnight PSG recordings from St
Luke’s Hospital (Sydney, Australia). Five subjects suffered from different sleep disor-
ders. They used the Butterworth filter and Welch’s algorithm to extract 32 features from
polysomnographic signals with KNN as the classifier. The leave-one-out cross-validation
method was used to assess the validation of the algorithm. Eight subjects were selected for
training; one subject was selected for the test. Then, the same process was repeated for the
other eight subjects. However, the algorithm only focused on the detection of arousals with-
out distinguishing between the types of arousal and sleep disorder groups. The average
sensitivity, specificity, and accuracy were 79.0%, 95.5%, and 93.6%, respectively.

Wallant et al. [45] detected artifacts with scoring windows of 20 s or 30 s, on 60 whole-
night (8–12 h) continuous sleep recordings from 35 healthy volunteers (male and female)
aged between 19 and 26. The model extracted the power spectral density (PSD) in four
frequency bands and the maximal amplitude and slope. With the adapted thresholds
derived from sleep recordings, the sensitivity was 83%.

Designing hand-made features and then finding the best combination of these features
to improve the classifier performance are difficult and time-consuming, because the process
requires extensive domain knowledge, such as feature selection or dimensionality reduction
techniques. Even so, the automatic detection with manual feature extraction does not
guarantee optimal identification for tasks.

Another obstacle for automatic detection with traditional machine learning methods
is that the classifier needs to work for many different patients whose signals may have
different relevant statistics. Therefore, the same algorithm can produce different results,
depending on how its criteria match the data for a particular patient. Table 3 summarizes
the above methods.
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Table 3. Various studies conducted on the automated detection of microarousal regions in PSG signals using traditional
machine learning methods.

Author (Year) [Reference] Database Data Preprocessing Machine Learning
Model Results

Huupponen et al.
(1996) [43] Local dataset FFT, average power MLP Accuracy = 41%

Patanerli et al. (1999) [63] Naya University Wavelet transform, moving
average, filter

SAS software;
STEPDISC program

Sensitivity = 88.1%,
Selectivity = 74.5%

Gouveia et al. (2003) [39] Local dataset FFT, frequency analysis A set of scoring rules Detection rate = 70%

Cho et al. (2005) [41] South Korea’s Asan
Medical Center

Filtering, power
spectrum, FFT SVM Sensitivity = 75.26%,

Specificity = 93.08%

Agarwal et al. (2006) [37] Local dataset
(two patients)

Second-order adaptive filter,
frequency, MAA, etc.

A set of
decisional rules Sensitivity = 76.15%

David et al. (2006) [36]

National Institutes
of Health (NIH)
Sleep Disorders
Research Plan

1. Bi-directional recursive
filtering, 2. peak detection
3. relative trough position

Passive
ballistocardiograph-

based system

Sensitivity = 77.3%,
Specificity = 96.2%

Shmiel et al. (2009) [42] Aviv’s Assuta
Medical Center FFT, critical points, etc. Sequential pattern

discovery field

Sensitivity = 75.2%,
positive predictive

value = 76.5%

Foussier et al. (2013) [38] Self-bulit database HRV, MD, 72 features Linear mixed mode MD = 1.16, χ2 = 16, 633

Espiritu et al. (2015) [40] Texas State Sleep
Center

Savitzky-Golay filter,
energy power/entropy,
zero-crossing rate, etc.

Decision tree Accuracy = 81.63%

Shahrbabaki et al.
(2015) [44]

Self-bulit database
(6 male, 3 female)

Butterworth filter,
Welch’s algorithm,
32 features

KNN Accuracy = 93.6%

Wallant et al. (2016) [45]
Self-bulit database

(35 healthy
volunteers)

PSD, filtering data,
segmentation, maximal
amplitude, and slope

Adapted thresholds Sensitivity = 83%

Subramanian et al.
(2018) [65] PhysioNet 2018 28 features GLM, RF Highest AUROC = 0.847,

highest AUPRC = 0.630

Ugur et al. (2019) [66] SHHS CWT SVM
Accuracy = 98.2%,
positive predictive

value = 97.93%

Liu et al. (2020) [64] PhysioNet 2018 ICA, double density DWT
algorithm, FIR filter CNN with RF AUPRC = 0.552

MLP = multilayer perceptron neural network; SVM = support vector machine; MAA = maximum absolute amplitude; HRV = heart rate
variability; RF = random forest; SCL = skin conductance level; GLM = generalized linear model; CWT = continuous wavelet transforms;
ICA = independent component correlation algorithm; DWT = discrete wavelet transformation; AUROC = area under the receiver operating
characteristic curve; AUPRC = area under the precision-recall curve.

6. Microarousal Detection with Deep Learning Methods

Different from the manual feature extraction, neural networks can automatically learn
variations and trends in the signal by carrying out feature extraction procedures through
an abstract method. Deep learning methods possess the strong capability to learn complex
features by directly applying them to raw data without extracting any hand-crafted features.
Only recently have researchers begun to show a preference for deep learning methods,
such as CNN [68–71], ResNet [48], the Siamese architecture network [70], RNN, and
LSTM [59,72,73], over traditional machine learning methods in arousal detection.

Recently, in the field of complex medical pattern recognition tasks, such as the visual
diagnosis of diabetic retinopathy [63] and dermatosis [74], deep learning has displayed
identical performance with that of medical specialists. Deep learning methods have
been applied to the sleep stage classification of EEG [75,76], depression [77–79], and
proteomics [80–82]. The deep learning models have been considered as a practical solution
for the assessment of sleep arousals [83].
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6.1. Microarousal Detection with Feed Forward Neural Networks (FFNNs)

Álvarez-Estévez et al. [84] proposed a microarousal detection method using the infor-
mation of two EEG channels and the EMG. They chose 20 patients from the SHHS database,
which contained 4180 arousal events over 12,187 min of PSG recording. They used the
data of 15 patients as the training set and the data of the remaining 5 patients as the test
set. First, frequency-based analysis was performed on the training set. Correlations of the
individual events in time were solved by using some temporal aggregation rules. Finally,
the classifiers based on Fisher’s linear and quadratic discriminants, SVM and the FFNN,
were compared. Experiments with 20 patients reported sensitivity and specificity of 86%
and 76%, respectively, in the detection of arousal events.

Chazal et al. [85] scored non-apnea arousals using 59 hand-crafted features from
PhysioNet PSG signals. In total, 994 records were randomly divided into two groups, one
as the training set and the other as the test set. Then the two groups were exchanged, and
the comprehensive performance results of the two test sets were calculated. The specificity
of the FFNN is 70%.

Following the study in [84], Behera et al. [86] fed more features to the FFNN, such
as the signal that contains the alpha and beta frequency components, Hjorth parameters
and power spectral density. Firstly, two groups of EEG signal channels (C4/M1 and
C3/M2) were selected and preprocessed by an 8–30 Hz band-pass filter. When an event
of sleep arousal was detected, the correlation features of EEG and EMG signal were
extracted. These features were fed into a single hidden layer FFNN to detect the presence
of arousal. Experiments were carried out on 26 patients, and 80% of the data was used
for training the ANN. The remaining 20% was used for testing, the reporting, and the
sensitivity, average specificity, average precision, and AUC were 0.933, 0.914, 0.917, and
0.923, respectively. Behera et al. [86] recommended the analysis of information in multiple
channels at a time. There are two reasons for this: First, there is a simultaneous change
in all of the channels during the time of arousal identification. When we consider only a
single channel for analysis, we will miss information from the signals of other channels.
The second reason is that the arousal detection in one channel may sometimes be due to the
disturbances or misalignments of the corresponding electrodes, which may not be reflected
in other channels.

Based on ECG, Olsen et al. [46] developed a model for automatic detection of au-
tonomic arousals (AA) with HRV using 258 (181 training size, 70%; 77 test size, 30%)
polysomnographic recordings with a variety of sleep and cardiac disorders from the Wis-
consin Sleep Cohort. Discarding the unstable heart rhythm, ectopic beats and/or atrial
fibrillation (AF) as preprocessing, the signals were processed in the three blocks using the
CWT. The FFNN was considered for the classification. A precision value of 0.72 and a
sensitivity of 0.63 were achieved.

Via the application of DWT, Macias Toro et al. [87] discussed the characteristics of
each PS in time and frequency using the PhysioNet dataset. In order to ensure balanced
data, the model randomly selected the same number of segments of the non-ARS class and
ARS segments. These characteristics were fed to a fully connected network model. With
less than 3% of the training data, an AUPRC of 0.261 was obtained. It is also important
to adopt data augmentation techniques to generate artificial samples in order to feed the
model in a balanced way.

Liang et al. [88] first downloaded 7680 s of arousal event from SHHS, including 144 s
of positive data. The 144 negative periods were randomly selected from 7536 non-arousal
seconds. Then, the datasets of 288 periods obtained in the first step were randomly divided
into 10 groups for cross-validation. The authors used a curious extreme learning machine
with a set of 22 features. The extreme learning machine was based on a single hidden layer
FFNN. The average AUC and ACC of the model were 0.85 and 0.79, respectively. The
methods with FFNN reviewed in this paper are summarized in Table 4.
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Table 4. Summary of the methods reviewed in this paper.

Author (Year) Database Data Preprocessing Machine Learning Model Results

Álvarez-Estévez et al.
(2010) [84]

SHHS Temporal aggregation rules Single hidden layer FFNN Sensitivity = 0.86,
Specificity = 0.76

Behera et al. (2014) [86] SHHS Hjorth, etc. Single hidden layer FFNN Sensitivity = 0.933,
Specificity = 0.914

Liang et al. (2015) [88] SHHS Band-pass filter, FFT,
22 features C-ELM AUC = 0.85,

ACC = 0.79

Macias Toro et al.
(2018) [87] PhysioNet Average power, etc. Fully connected network AUPRC = 0.261

Olsen et al.(2018) [46] Local Dataset CWT Single hidden layer FFNN Precision = 0.72,
Sensitivity = 0.63

Chazal et al. (2020) [85] PhysioNet 59 combining features from
adjacent epochs FFNN Specificity = 70%

FFNN = feed forward neural networks; C-ELM = curious extreme learning machine.

6.2. Microarousal Detection with Convolutional Neural Networks (CNNs)

The layout of the CNN [89] is close to that of the actual biological neural network. The
feature detection layer of the CNN implicitly learns from the training data. The CNN has
unique advantages in speech recognition, image processing and other high-dimensional
data because of its special structure of local weight sharing. The high-dimensional input
vector image can be directly fed into the network with the strategy of weight sharing.
The structure of local weight sharing avoids the complexity of data reconstruction in the
process of feature extraction and classification. In addition to the field of computer vision,
the CNN has also performed well in analyzing physiological signals. The CNN makes
it easier to extract different features of the input PSG data through convolution kernels.
Therefore, CNNs are also used for arousal detection [68–71].

At the preprocessing stage, raw EEG signals were sampled from 200 Hz down to
100 Hz to reduce complexity [68]. In order to solve the problem of data imbalance, the
model adjusted the step size of the sliding window according to the corresponding label.
When the label of the current segment was judged as 0 or 1, the model adopted a step
of 10 or 2 s, respectively. The power spectrum density of PSG signals was computed
using Welch’s algorithm to extract frequency domain information. These features were
then fed into a 34-layer CNN for further feature extraction and classification. The method
achieved an AUPRC of 0.114 and an AUROC of 0.646 on the official test set of the PhysioNet
Challenge 2018.

Varga et al. [69] proposed a DNN architecture to deal with 68 features, such as the
power spectral density and entropy of PSG signals. The DNN consisted of a 2D convolution
layer and two dense layers with seven outputs. Two of the seven outputs were for arousal
and non-arousal classification, while the remaining ones were for sleep stage classification.
Results for the entire test set were evaluated with an AUPRC of about 0.42.

Patane et al. [70] considered an approach to preprocess EEG signals with a 0.5–45 Hz
band-pass filter and to remove the noise caused by human movement. Data augmentation
was also performed on the fly, making sure that every batch of data had as many aroused
samples as non-aroused ones. Then, a six-layer CNN structure and a sequence of fully-
connected layers were used to estimate sleep arousal. The architecture relied on the concept
of shared-parameter Siamese networks. Siamese networks [90] have two inputs. The two
inputs were fed into two neural networks. The two neural networks mapped the inputs
to the new space to form the representation of the inputs in the new space. The similarity
between the two inputs was evaluated by loss calculation.

Jegou et al. [91] improved the classical encoder-decoder model and applied it to the
field of image segmentation. The main idea was that each layer of the network was directly
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connected with other layers in the process of network forward propagation, which greatly
improved the accuracy of the network.

Inspired by Jegou et al. [91], Miller et al. [92] proposed a model that was composed of
eight convolutional layers, eight deconvolutional layers, and one SoftMax layer to calculate
binomial probability distributions of multi-channel time-series. The convolutional filter
weights of the encoder-decoder model can capture the interactions between temporally
correlated PSG signals. This architecture can be applied to many variable-length time series
tasks. The resultant model achieved an AUPRC of 0.369 and an AUROC of 0.855 on the
final competition test set.

Deep transfer learning strategies on multivariate PSG data were also adopted.
Olesen et al. [47] trained a baseline model on the 1500 PSG records. The dataset was
initially divided into three subsets: a training set, a verification set, and a test set, including
400, 100, and 1000 PSGs, respectively. Subsequently, a simple fine-tuning strategy was
employed to replace the first two layers. The F1-score can be seen as the harmonic mean of
precision and recall. The fine-tuning strategy gave an F1-score of 0.682.

Zhou et al. [93] divide 994 PhysioNet PSGs into 794 training, 100 validation, and
100 testing records. Then they proposed a convolutional–residual network with the posi-
tional embedding and multi-head attention (CRPEMA) method. CRPEMA adopts residual
blocks to extract features and reduce dimensions in models, which can maintain temporal
relations of multimodal physiological signals, giving an AUPRC of 0.391.

Jia et al. [48] used the ResNet network with a three-layer convolution structure, which
is called a bottleneck structure. The first convolution layer reduced the number of input
channels to one-quarter of the original channel. The second convolutional layer extracted
potential feature maps. The third convolution layer restored the number of channels to the
original number of input channels. The precision, recall, and F1 of the model were 86.7%,
86.0%, and 86.3%, respectively.

Zabihi et al. [71] investigated the application of five CNNs to sleep arousal detection,
where 30% of the training set is randomly chosen as the validation set. The authors
performed comparative evaluations to determine the best model for this task. The best 1D
CNN model achieved an average of 0.31 and 0.84 for AUPRC and AUROC, respectively.
The models using CNN reviewed in this paper are summarized in Table 5.

Table 5. Detailed information of models using the CNN.

Author (Year) Database Preprocessing Results

Dongya et al. (2018) [68] PhysioNet 2018 Welch algorithm AUPRC = 0.114
Varga et al. (2018) [69] PhysioNet 2018 68 features AUPRC = 0.42
Patane et al. (2018) [70] PhysioNet 2018 Filter, data augmentation AUPRC =0.40
Miller et al. (2018) [92] PhysioNet 2018 - AUPRC = 0.37
Zabihi et al. (2018) [71] PhysioNet 2018 - AUPRC = 0.31
Olesen et al. (2020) [47] National Sleep Research Resource Resampled, baseline model F1-score = 0.682
Zhou et al. (2020) [93] PhysioNet 2018 Re-sample, Fourier transform AUPRC= 0.39

Jia et al. (2020) [48] Beijing Tongren Hospital Down-sampled Recall = 86.0%

KSS = Karolinska sleepiness scale, F1-score = harmonic mean of precision and recall.

6.3. Microarousal Detection with RNN and Long Short-Term Memory (LSTM)

Common time series models include the RNN, LSTM, and bidirectional LSTM (Bi-
LSTM). RNN and LSTM are networks that contain loops to connect previous information
to current tasks.

Different from the CNN, the output of the RNN can directly affect itself in the next
time period. The important significance of the RNN [94] method is that it has the function
of historical memory. In theory, it can see infinitely long historical information, which is
very suitable for tasks with long-term relevance.
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The optimal use of the RNN is backpropagation through time (BPFT). Due to the
problems of the vanishing gradient and exploding gradient, the RNN cannot deal with the
problem of the long-term dependence in training.

LSTM [95] is based on the RNN with the addition of a forget gate, input gate, and
output gate to overcome the problems of the RNN during training. LSTM can learn to
bridge large time intervals while still keeping short time lag capabilities. Bi-LSTM depends
on the output layer not only at the current time but also at the next moment. Some recent
studies used RNN and LSTM networks to analyze PSG time series [59,72,73].

Warrick et al. [72] discussed a model in which PSG signals were presented to a
scattering transform [96] representation layer, and then fed into the three layers of LSTM
for sequence learning. A ten-fold cross-validation technique was used, each fold being
partitioned as training (90%), validation (10%) and testing (10%) sets. In order to solve
the class imbalance between the arousal area and non-arousal area, the loss function
was weighted for targets representing arousal by a factor of 14 (selected according to the
proportion of arousals in the training examples of a single fold), while the loss function
of non-arousal was weighted by 1. The proposed approach detected arousal regions on
the 10% random sample of the hidden test set with an AUROC of 0.88 and an AUPRC
of 0.36. The results showed that all EMG channels yielded the best score, while the
airflow had the lowest result. Using all EEG signals achieved a performance that was only
marginally better than that of a single EEG signal. Using all signals provided a significantly
improved performance. Már Þráinsson et al. [59] proposed a method with LSTM. The first
hidden layer was LSTM and the second hidden layer was a dense neural network. The
signals were first decomposed into sub-bands using the wavelet packet decomposition. For
each sub-band, the statistical features and the Hjorth parameters were calculated. Then,
the features were fed into Bi-LSTM, and 90% of the normal sleep regions were removed to
balance the training dataset. A five-fold cross-validation was performed on the training
dataset, and 20% of the available training data were set aside for final testing. The other 80%
were used for the five-fold cross-validation. For each model, 10% of the cross-validation
data were randomly selected as the cross-validation set. The predictions of results of five
sub-models were averaged for each sample to yield a more robust ensemble model. The
classifier was further validated on the PhysioNet Challenge test set, resulting in an AUPRC
score of 0.45.

Bi-LSTM can make a sequential prediction, and a Mell-Frequency Cepstral Coefficient
(MFCC) can be applied uniformly on the signal data regardless of signal type. Therefore,
Kim et al. [73] applied a Bi-LSTM model with MFCC feature vectors to sequentially detect
arousal in a single learning model. PSG data are split to training, validation, and test data
with a ratio of 7:1:2. The best performances of AUROC and AUPRC were 0.898 and 0.458,
respectively. The models with LSTM reviewed in this paper are summarized in Table 6.

Table 6. Comparison of LSTM-based approaches.

Author (Year) Database Data Preprocessing AUPRC

Warrick et al. (2018) [72] PhysioNet 2018 ST algorithm, logarithmic filters 0.36
Már Þráinsson et al. (2018) [59] PhysioNet 2018 Energy, Hjorth parameters, WPD 0.45

Kim et al. (2019) [73] PhysioNet 2018 MFCC 0.458

ST = scattering transform; WPD = wavelet packet decomposition; MFCC = Mel-Frequency Cepstral Coefficient.

6.4. Microarousal Detection with the CNN and LSTM

In order to achieve better results, numerous research efforts on this topic applied end-
to-end learning approaches with the combination of CNN and LSTM architectures [97–102].

He et al. [97] selected a small part of the data in the training set in which arousal
regions take up a much larger proportion than that in the original training set. They used a
small training set to pre-train the model. A network that consisted of sequence-to-sequence
DNNs, an LSTM layer, and two fully connected layers was trained to classify samples
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in segments, giving an AUPRC of 0.43. It is notable that the study proposed the novel
methods of data augmentation. First, they relabeled PSG with the binary method. PSG
data were divided into small segments of fixed length. Pa indicated that the proportion
of arousal exceeded 5%; Pn indicated that the segment scale marked non-arousal in the
segment set. The Pd ratio (Pd = Pn − Pa) of all fragments suggested that non-arousal was
randomly discarded.

Sridhar et al. [98] considered other CNN and LSTM architecture for arousal detection.
A total of 994 PSG signals were randomly split into a training set of 793 recordings, 97 test
recordings, and 102 validation recordings. Different feature time-series were extracted
from PSG signals and passed into a separate convolutional tower. The outputs of the tower
could be fused to form a single tensor. The tensor was fed into a single RNN or fed into
separate RNNs that had 1 to 3 optional Bi-LSTM layers. The model achieved an AUROC
score of 0.916 and AUPRC score 0.573 on the test set.

The detector proposed by Warrick et al. [99] cascaded four different modules: a second-
order scattering transform with Morlet wavelets, a depth-wise separable CNN, a Bi-LSTM,
and a dense network, capturing low-frequency information as low as 0.1 Hz, which was
confirmed by the study to have a substantial impact on the performance of the detection of
arousal regions. The loss function was weighted more heavily in arousal regions to solve
the considerable class imbalance. The loss weighting was fixed to 14 for arousals (close to
the relative incidence of arousals). The loss weighting was fixed to one for all other classes.
The work produced an AUPRC of 0.50, which gave a substantial increase of 0.14 over the
previous approach [72] submitted for the 2018 PhysioNet Challenge.

A dense recursive CNN was constructed by Howe-Patterson et al. [100] to detect sleep
disorders, and it was composed of multiple dense convolution units, the bidirectional
LSTM layer, and the SoftMax output layer. A multi-task learning mechanism, including
sleep/wake, arousal presence/absence, and apnea/hypopnea presence/absence detections,
was taken into count. Three binary cross-entropy loss functions corresponding to the three
detections mentioned above were used to generate the overall network loss function. The
Adam method was used to optimize the loss function. An ensemble of four models that
were trained on different validation sets gave an AUPRC of 0.543 for detecting sleep arousal,
achieving first place in the official stage of the PhysioNet Challenge. An extended version of
the CNN produced by Howe-Patterson et al. [100] was provided by Pourbabaee et al. [101]
with an AUPRC of 0.54.

Achuth et al. [102] combined the features from various channels through the DNN
and Bi-LSTM to predict the probability of arousal. The 994 recordings were divided into
10 folds, where each fold included: 690 training, 200 validation, and 100 test recordings.
SMOTE was used to randomly generate the additional data points by interpolation from the
minority class samples. Then, the objective function that only uses RERA and non-arousal
regions was also proposed. The mean AUPRC was 0.50 in a 10-fold cross validation setup.
This study needs to analyze the changing relationship between channels in more detail
and impose the arousal/sleep duration constraint on the output of the network to further
improve the AUPRC.

The studies in this area are shown in Table 7. Table 8 provides the models and results
of the teams participating in the PhysioNet 2018 Computational Challenge in Cardiology.
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Table 7. Analysis of application of CNN+LSTM in sleep arousal.

Author (Year) [Reference] Database Data Preprocessing Model AUPRC

Li et al. (2018) [97] PhysioNet 2018 Signal segmentation CNN+BiLSTM 0.42

Sridhar et al. (2018) [98] PhysioNet 2018 Feature time-series LSTM 0.573

Howe-Patterson et al. (2018) [100] PhysioNet 2018 FFT, down-sampled DNN+BiLSTM 0.54

Warrick et al. (2019) [99] PhysioNet 2018 - ST-LSTM 0.36

Achuth et al. (2019) [102] Local dataset Filters, RF DNN+LSTM 0.50

Table 8. Comparison of detection of non-apnea/hypopnea sleep arousal in PhysioNet 2018 Computational Challenge.

Author (Year) [Reference] Number of Channels Model AUPRC

Sridhar et al. (2018) [98] 13 CNN+RNN 0.573

Howe-Patterson et al. (2018) [100] 12 CNN+LSTM 0.54

Pourbabaee et al. (2019) [101] 12 DNN+LSTM 0.543

Már Þráinsson et al. (2018) [59] 13 Bi-LSTM 0.45

Li et al. (2018) [97] 13 DNN+LSTM 0.43

Varga et al. (2018) [69] 13 CNN 0.42

Patane et al. (2018) [70] 5 CNN 0.40

Miller et al. (2018) [92] 13 CNN 0.36

Warrick et al. (2018) [72] 13 RNN 0.36

Zabihi et al. (2019) [71] 5 CNN 0.31

Note: Submitted inside the time frame of the official phase of the 2018 PhysioNet Challenge. AUPRC is for their internal test set and the
official blind test set.

7. Commercial Application of Microarousal Detection

Some microarousal detection systems have been installed in mobile phones, using
wearable devices, such as combined equipment of a smart watch and a heart rate belt [103],
and wrist-worn devices [104] for real-time monitoring.

Alexandratos et al. [103] designed a mobile system that works on an Android smart-
phone. The skin conductance level (SCL) and HRV were collected using wearable sensors,
smart watches, and heart rate bands from 11 participants (professional truck drivers) with
wrist-worn devices. Two experimental factors were manipulated: stress and sleepiness.
The Trier Social Stress Test was used to evaluate the stress of each driver. The Karolinska
Sleepiness Scale (KSS) was used to evaluate the subjective sleepiness of each driver. The
system uses the Bluetooth communication function of smart phones to transmit arousal and
non-arousal classification results to nearby connected devices. SMOTE directly changes the
distribution of the dataset to have an equal number of examples for every class. Moreover,
the categorical cross entropy loss function is modified to the reflect equal error from both
majority and minority classes. Leave-one-subject-out cross-validation (LOOCV) was used
to determine the performance of the learned model for each driver, and 80% of the data
were kept for model training and validation, and the remaining 20% were kept for final
model evaluation. The real-time notification of users’ selected contacts is valuable for
applications targeting autistic children, Alzheimer’ patients, and their caregivers. This
method gave a 68% new-subject arousal detection accuracy.

A seven-layer CNN was used to detect arousal levels, namely, under-aroused, normal
and over aroused levels of professional truck drivers [104]. Raw physiological signals, such
as heart rate, skin conductance, and skin temperature, were collected from 11 participants
via wrist-worn devices. The F1-score fluctuated between 0.75 and 0.82. The model can
be deployed locally on a smartphone for drivers to improve their alertness and safety in
a real-life situation. The major limitation is that it is difficult to differentiate between the
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normal and over-arousal conditions. Commercial application examples of microarousal
detection are listed in Table 9.

Table 9. Commercial application of microarousal detection.

Author (Year) [Reference] Database Data Preprocessing Model Results

Alexandratos et al. (2014) [103] Local dataset SCL, HRV RF Detection accuracy = 68%

Saeed et al. (2017) [104] Local dataset KSS CNN F1-score = 0.78

SCL = skin conductance level; HRV = heart rate data variability; RF = random forest.

8. Automated Detection of CAP

CAP reflects the instability of sleep through EEG, which is accompanied by some
dynamic events in the process of sleep (falling asleep, conversion of different sleep periods,
and awakening in sleep). It is suggested that when there are external or internal sleep
interference factors, the A1 subtype in CAP marks the brain’s efforts to continue to sleep.
When sleep becomes increasingly unstable and the brain cannot maintain continuous sleep,
EEG arousal will accompany or replace the slow activity with high amplitude. Therefore,
A2 and A3 subtypes constitute the arousal of the central nervous system.

Chindhade et al. [105] used the sleep cycle of the first healthy subject who did not
have a neurological disorder from the CAP Sleep Database [28,34] to develop a simple
binary logistic regression classifier for the classification of EEG data into phase A and
non-phase A. The AUROC and accuracy of the optimum combination were to 0.512 and
58%, respectively.

In [106], a deep learning model based on a one-dimensional convolutional neural
network (1D-CNN) was proposed for CAP detection and homogenous three-class sleep
stage classification, namely, wakefulness (W), rapid eye movement (REM), and NREM
sleep. The dataset contained single-channel EEG recordings (C4-A1 or C3-A2) from six
healthy subjects that were sampled at a sampling frequency of 512 Hz from the CAP Sleep
Database [28,34]. Subsequently, the dataset was split into a training set (70%), validation set
(15%), and test set (15%). The best model for CAP detection was obtained with validation
accuracy of 74.43% and sensitivity of 80.29%.

Mariani et al. [107] developed an automatic detector of the A phases of the cyclic
alternating pattern. The dataset consists of eight polysomnographic recordings of healthy
subjects from the Parma Sleep Disorders Center. The discriminant classifier, SVM, adaptive
boosting, and supervised artificial neural network were compared. The linear discriminant
showed the highest accuracy of 84.9%.

Automatic methodologies were proposed by using an LSTM model to perform the
classification of one EEG channel signal [108]. The model was composed of three classifiers,
one for each subtype, performing binary classification in a one versus all procedure. Record-
ings from 15 subjects, nine females and six males were selected from the PhysioNet CAP
Sleep Database [28,34]. The average accuracy, sensitivity and specificity were 81.3%, 73.7%,
and 81.7%, respectively. Methods for automated detection of CAP are listed in Table 10.
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Table 10. Automated detection of CAP.

Author (Year) [Reference] Database Data Preprocessing Model Results

Mariani et al. (2012) [107] Parma Sleep
Disorders Center

Hjorth activity;
EEG variance Discriminant classifier Accuracy = 84.9%

Chindhade et al. (2018) [105] CAP Sleep Database Differential moving
average Logistic regression AUROC = 0.512;

Accuracy = 58%

Hui et al.(2021) [106] CAP Sleep Database - CNN Sensitivity = 80.29%;
Accuracy = 74.43%

Mendona et al.(2021) [108] CAP Sleep Database Lowpass filter LSTM
Accuracy = 81.3%;
Sensitivity = 73.7%;
Specificity = 81.7%

9. Conclusions
9.1. Overall Summary

Sleep arousal (also known as microarousal) changes the deep stage of sleep to a shal-
lower stage. Frequent sleep arousals can cause day time sleepiness and result in degraded
cognitive performance. Sleep arousal is one of the main indicators of diagnosing sleep
disorders. Scoring microarousal remains a manual visual task using polysomnographic
(PSG) in most medical clinics and sleep labs.

We indirectly compared the detection abilities of the models via the following methods:
If the papers used the same data set, for example, the PhysioNet 2018 dataset, our unified
measurement standard was AUPRC. If the datasets used in the papers were different, we
sorted out all of the measurement standards, such as the accuracy, AUROC, AUPRC, F1,
sensitivity, and specificity, obtained in each paper for the readers’ reference.

In previous works, the data sets were generally divided into a training set and a test
set in various proportions (for example, 1:1 [66], 3:1 [84], or 7:3 [46]), or divided into a
training set, a verification set, and a test set in various proportions (such as 8:1:1 [93]).

In general, the datasets were unbalanced. There are several ways to address this
problem. The first method is the up sampling. The designed program can obtain the
same number of positive and negative samples from the training set every time one trains
the model [70].

The second method is down sampling. One has to specify some strategies to divide
the negative samples. For instance, in [37], all segments not occurring in a valid sleep stage
(stages 1–4 and REM) were excluded.

The third method is data augmentation. For example, SMOTE [64] is used to create
new data. Future work should include the design of new and more effective data augmen-
tation methods to produce more positive samples, so that we can alleviate the problem of
unbalanced distribution of data sets.

In this review, we showed the applications of the state-of-the-art methods of machine
learning and deep learning for the analysis of sleep arousal. The machine learning methods
usually require data scientists to have a certain understanding of the physiological signals.
Data scientists need to segment the PSG signals into smaller windows. Subsequently,
scientists need to use some preprocessing methods to extract features of each window data
in the frequency and time domains. After feature extraction and combination, the features
of physiological signals are fed to SVM [40,41,66], decision tree [40], RF [64], KNN [44],
and other classifiers [43,45] to obtain the final results.

In addition, some data scientists define a set of general rules and threshold val-
ues according to AASM rules. Then, they use statistical software and general rules to
detect arousals.

The problems of arousal detection models based on the statistical rules are as follows:
firstly, many methods are developed on data sets containing relatively few objects, which
may be difficult to be popularized on larger data-sets; secondly, machine learning requires
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feature extraction of signals, which is a cumbersome process; finally, the traditional machine
learning classifier cannot learn the timing relationship in PSG signals.

In this review, we showed that deep learning models can complete complex tasks,
and are more accurate than traditional machine learning models. Deep learning has the
powerful function of learning complex features by directly applying them to original data
without extracting any manual features. Because the changes in various physiological
parameters usually occur in a period of time before arousal, RNN and LSTM can learn the
temporal relation in PSG signals. Therefore, using deep learning methods to detect the
features of sleep arousals has become a mainstream trend in the field of PSG signals.

9.2. Open Research Challenges and Prospects

First, most research is usually limited to relatively small (less than 40 recordings)
and private datasets. It is difficult to prove the generalization ability of the models on
large datasets.

Second, in some studies, the more specific arousal labels were discussed with data sets.
For example, Saeed et al. [104] adopted a database that contained two types of arousals, i.e.,
the under-arousal and over-arousal. In further studies, the algorithm for the classification
of sleep arousals needs to be upgraded, with different types of arousal, such as respiratory,
movement, and spontaneous arousal.

Third, due to the different signal acquisition, the digitization methods adopted by
PSG instruments, and the privacy restrictions of medical data, building a large and hetero-
geneous database is a challenge. Future work should include the detection of more types of
sleep events from PSG signals, such as sleep stage, sleep apnea, and restless legs syndrome.

Fourth, multi-task learning mechanisms with other correlated tasks—such as apnea-
hypopnea/normal and sleep/wake—can be used to improve the generalization of the
arousal detector model. The multi-task learning mechanisms can make the model learn
more complex features.

Fifth, how the detection capabilities of different models can be effectively compared
remains an open question. The detailed analyzing programs discussed in many works are
not available to us, and the data sets used in many works are private and thus we cannot be
obtained. Therefore, we could not carry out a direct comparison of these different methods
in this review paper. For future work, the verification of models on private datasets and
then on large global datasets should be considered. The accuracy, AUROC, AUPRC, F1,
sensitivity, and specificity of the models on the two data sets can be calculated for a direct
comparison and evaluation among all of these methods.

Sixth, although the arousal detection models achieved credible results in a laboratory
environment, deploying them in a real environment such as hospitals may bring new
challenges. The reasons include patients’ complex etiologies, the privacy of patients, a high
number of model parameters, and the need to upgrade the hardware of PSG instruments.

Seventh, the features extracted by deep learning models are complex and high-
dimensional. Further research is needed to determine whether the features extracted
by deep learning models have medical interpretability or physical implications.

Eighth, in most studies, an automatic detection is observed to be valid if there is an
overlap with the manually marked events. There is only one study [46] that compares the
start and end times of arousal between the model prediction and the manually marking
result, in which the authors believed that the arousal events represent the transition from
sleep to wakefulness. Therefore, the start time is more important, while the periods of
stable wake are not of interest. In the future, the differences between the start and the end
times of arousal events predicted by the model and marked by experts can also be used as
a criterion to measure the detection ability of the model.

Finally, sleep arousal detectors can be used in the market of health management
services. Manufacturers place the automation models on modern, wearable, and devices,
including smart phones and smart bracelets to monitor users’ personal health data and to
predict and control disease risk.
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Reliable diagnosis of arousal is the most essential prerequisite of sleep disorder treat-
ment. The ‘gold standard’ for sleep disorders was developed manually by experienced
experts, which is a time consuming and costly process. Accurate automated scoring models
could assist doctors to identify medical images faster and more accurately, free doctors
from tedious work, and ultimately improve the efficiency of laboratory and home sleep
diagnostic methods.
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