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Abstract
Cell migration, which is regulated by intracellular signaling pathways (ICSP) and extracellular
matrix (ECM), plays an indispensable role in many physiological and pathological process such as
normal tissue development and cancer metastasis. However, there is a lack of rigorous and
quantitative tools for analyzing the time-varying characteristics of cell migration in heterogeneous
microenvironment, resulted from, e.g. the time-dependent local stiffness due to microstructural
remodeling by migrating cells. Here, we develop a wavelet-analysis approach to derive the
time-dependent motility parameters from cell migration trajectories, based on the time-varying
persistent random walk model. In particular, the wavelet denoising and wavelet transform are
employed to analyze migration velocities and obtain the wavelet power spectrum. Subsequently,
the time-dependent motility parameters are derived via Lorentzian power spectrum. Our results
based on synthetic data indicate the superiority of the method for estimating the intrinsic transient
motility parameters, robust against a variety of stochastic noises. We also carry out a systematic
parameter study and elaborate the effects of parameter selection on the performance of the
method. Moreover, we demonstrate the utility of our approach via analyzing experimental data of
in vitro cell migration in distinct microenvironments, including the migration of MDA-MB-231
cells in confined micro-channel arrays and correlated migration of MCF-10A cells due to
ECM-mediated mechanical coupling. Our analysis shows that our approach can be as a powerful
tool to accurately derive the time-dependent motility parameters, and further analyze the
time-dependent characteristics of cell migration regulated by complex microenvironment.

1. Introduction

Cell migration [1] is a ubiquitous and basic biological
phenomenon that underlies many crucial physiolog-
ical processes for normal tissue and organ develop-
ment as well as immunological responses [2], wound
healing [3], embryogenesis [4]. Eukaryotic cell migra-
tion is a complex process involving many cellular and
sub-cellular level events [5], which are regulated by

various intracellular signaling pathways (ICSP) [6]
and the extracellular matrix (ECM) [7, 8]. The onset
of ill-regulated cell migration is often associated with
many human diseases, and the most representative
example is cancer metastasis [9, 10].

In order to study cell behaviors, a number of
interesting works have been done in recent years.
It was reported that the substrates with different
rigidities lead to different cell movements, namely
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stiffer substrates generally promote the directionality
of cell movement, while soft substrates typically result
in random motions [11]. These distinct behaviors
regulated by substrate stiffness are called ‘durotaxis’,
which are combined with mechanical strains to con-
trol a number of pathological processes involving cell
migration [12]. In addition to substrates, the gradi-
ent of the nanoscale topographic features in ECM
will guide a new type of directed migration termed as
‘topotaxis’ and the direction of topotaxis can reflect
the effective cell stiffness [13]. Furthermore, in order
to systematically investigate the heterogeneous ECM,
a micro-fabricated biochip was constructed to cre-
ate a 3D funnel-like matrigel interface, which veri-
fied that the heterogeneous structures of ECM can
guide the aggressive cell invasion in the rigid matrigel
space [14]. More recently, it was shown that the local
fiber alignment in a constructed collagen I-matrigel
microenvironment directs the migration of MDA-
MB-231 breast cancer cells during the intravasation
into rigid matrigel [15].

To phenomenologically describe the anisotropic
migratory behaviors, a persistent random walk model
(PRW) [16–18] has been proposed, which explicitly
considers the memory of cell to the past velocities.
The PRW model is based on Brownian motion [19],
and can be derived from Langevin equation [20] of
the following form

d�v

dt
= −�v

P
+

S√
P
· w̃, (1)

where �v is the migration velocity, P is the persistence
time, S is the averaged migration speed and w̃ is the
random vector of a Wiener process [21]. Note that
neither of the parameters P and S change with time
in PRW model. Inspired by the PRW model, many
novel models have been constructed for exploring
how cells behave in complex ECM [22]. For example,
amoeba exhibits a special random walk mode, which
can greatly increase the chance of finding a target [23].
Likewise, CD8 (+) T cell in brain performs a move-
ment known as generalized Lévy walk, which enables
T cells to find rare targets [24]. Moreover, a mathe-
matical model was developed for describing the sta-
tistical properties of cell’s velocity and centroid, which
are consistent with the phenomenological description
of amoeboid motility [25].

In the study of cellular phenomena and modeling
cell movements, accurately characterizing cell migra-
tion capability is of great interest. In order to address
the challenge that the total time of the recorded tra-
jectories in the experiments may not be precisely
controlled, an optimal estimation was constructed
to obtain the diffusion coefficients based on the
individual and short trajectories [26]. Similarly, an
unbiased and practically optimal covariance-based
estimator was also constructed to optimally deter-
mine the diffusion coefficient of a diffusing particle

from a time-lapse recorded trajectory [27]. Besides
the diffusion coefficient, the direction autocorre-
lation function and other essential quantities are
computed to analyze cell migration in two dimen-
sions, based on an open-source computer program,
DiPer [28]. In the previous works, we also devel-
oped exclusive methods to analyze anisotropic ECM
and derived the time-independent cellular motility
parameters [29, 30].

Different from the cases above whose character-
istics and properties are assumed to be non-varying
with time, the more complex ECM changes glob-
ally or locally due to the changes of temperature,
pressure, the heterogeneous surfaces in which cells
migrate [11, 12], the special components (oriented
fibers) [15] or the concentration of biochemical fac-
tors [7] such as cytokine or drug molecules. In addi-
tion, migrating cells can actively remodel the ECM
either mechanically or chemically, leading to spatial-
temporally varying properties that in turn influences
cell migration [31–33]. Accordingly, there are a few
works focusing on time-varying cell dynamics in het-
erogeneous ECM. For instance, when cells migrate on
the tissue with cultured polystyrene surface, a random
motion coefficient increased significantly over time,
while for experiments with untreated polystyrene
plates, the random motion coefficient remained rel-
atively constant [34].

In this study, we consider the PRW in ECM
with time-varying characteristics, and propose an
approach to derive the time-dependent motility
parameters (persistence time and migration speed)
from cell migration trajectories. Specifically, we intro-
duce wavelet transform (WT) to analyze the cell
migration velocities and obtain the wavelet power
spectrum, which exhibits the time-frequency char-
acteristics of cell trajectories. Moreover, the time-
dependent motility parameters can be derived from
the fits to wavelet power spectrum at each moment
with Lorentzian power spectrum (LPS), and we intro-
duce wavelet denoising (WD) on migration veloc-
ities to derive more accurate motility parameters
before performing the WT. Finally, we also validate
the utility of our approach by analyzing experimental
data of in vitro cell migration regulated by complex
microenvironment.

The rest of the paper is organized as follows: in
section 2, we introduce the PRW model in ECM
with time-varying characteristics, further explore the
properties of cell migration and illustrate the lim-
itations of commonly used physical quantities for
characterizing cellular dynamics in a certain situa-
tion. In section 3, we combine the WD, WT with
LPS to derive the time-dependent motility param-
eters, and demonstrate the utility of the proposed
approach via representative examples. We also analyze
the effects of several factors on the performance of the
approach, and clarify the limitations of our approach.
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In section 4, we employ our approach to analyze the
time-dependent characteristics of in vitro cell migra-
tion, and reveal the underlying mechanism of the
highly correlated cell pair. In section 5, we provide
concluding remarks.

2. Persistent random walk model with
time-varying motility parameters

In this section, we develop a motility model to
describe cell dynamics in ECM with time-varying
characteristics. Based on the model, we computation-
ally generate cell migration trajectories. The analysis
of these trajectories shows that commonly used classic
physical quantities, including mean squared displace-
ment (MSD), velocity autocovariance function (VAC)
and Fourier power spectrum (FPS), are not sufficient
to characterize cell motility.

2.1. The effects of ICSP/ECM with time-varying
characteristics on cell motility
Inspired by the time-varying protein content, e.g.
Arpin [6], physical/chemical properties, we generalize
the classical PRW [16–18] and obtain a new motility
model, namely the time-varying persistent random
walk model (TPRW). Note that both the parameters
P and S in this model are varying with time, which
together quantify the time-dependent cell migration
capability.

For simplicity, we first construct the following
affine functions for P and S [11], written as

P(t) = KP · t + P0, (2)

S(t) = KS · t + S0, (3)

where the constant P0 and S0 are motility parame-
ters at t = 0. KP and KS are coefficients quantifying
the changing rates of motility parameters P and S.
The functions defined above indicate that the cellular
migration capability gradually changes linearly with
time, and further reflect the effects of ICSP/ECM on
cell motility.

2.2. Numerical simulation of cell migration
trajectories
In order to explore the characteristics of cell migration
trajectories, we first specify the parameters in time-
dependent functions in equations (2) and (3), i.e.
KP = 7.292 × 10−4, P0 = 0.3 min, KS = 2.083 × 10−4

μm min−2 and S0 = 0.1 μm min−1. Here, the val-
ues of parameters are defined by referring the work
[35], partly. Thus, the motility parameter P lies in
the interval of 0.3–1.0 min, while S in the interval of
0.1–0.3 μm min−1, as plotted in figure 1(a). Cell
trajectories can be then simulated by TPRW model
according to equations (4)–(9). In particular, the cell
position at each time step can be obtained easily
according to the following equations [30, 36]

x(t +Δt) = x(t) +Δx(t,Δt), (4)

y(t +Δt) = y(t) +Δy(t,Δt), (5)

here Δx and Δy are displacements of cell position in
x and y axes in the time step size of Δt. Further, the
displacements are given by

Δx(t,Δt) = α(t) ·Δx(t −Δt,Δt) + F(t) · W ,
(6)

Δy(t,Δt) = α(t) ·Δy(t −Δt,Δt) + F(t) · W ,
(7)

where α(t) = 1 −Δt/P(t) and F(t) =√
S(t)2 ·Δt3/P(t). The former denotes the memory

of cell to the past velocities, while the latter is noise
amplitude. W ∼ N(0, 1) is white noise. Note that
the values of P are not less than that of Δt, ensuring
that α is always greater than zero. In computer
simulations, the total recording time T is 960 min
and the time step size Δt is 0.2 min. At the two limits
of persistence time, the cell migration described by
TPRW model either becomes the ballistic motion
(P ∼ infinity) or the random walk (P ∼ Δt). In
order to mimic the uncertainties in experimental
observations, we further add the positioning errors
σpos to the simulated trajectories by

ˆx(t) = x(t) + σpos · W , (8)

ˆy(t) = y(t) + σpos · W , (9)

where σpos is set as 0.01 μm [17]. We simulate 200
independent cell migration trajectories, and a repre-
sentative trajectory is presented in figure 1(b).

For each trajectory, the migration velocities are
computed based on the displacements within the
time step Δt. The velocities in figure 1(c) gradu-
ally increase with time, which is the consequence
of motility parameters in figure 1(a). Moreover, the
square of velocities obeys an exponential decay in
lin–log axes [see figure 1(d)], which may indicate
that velocity still are Gaussian distributed [35]. Based
on the computed migration velocities, we also obtain
the angle displacements between any two succes-
sive velocity vectors. The corresponding distribution
is presented in figure 1(e), which are symmetric at
0 rad in the interval of (−π–π) and means that
the chances of turning left and right are identical
when cell migrates. Moreover, the distribution indi-
cates that a self-propelled cell prefers to migrate along
a fixed direction, instead of a large deflection. In
addition, migration velocities become smaller when
the corresponding angle displacements increase as
depicted in figure 1(f). These results indicate that a
high-speed moving cell tends to migrate in straight
line, while a low-speed cell tends to make turn.
The phenomenon is also investigated in references
[25, 37]. These aspects indicate the TPRW model
are consistent with the Ornstein–Uhlenbeck process
(OU) [38] to some extent, and we believe that the
TPRW model could be regarded as the superposition
of many OU models.
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Figure 1. The PRW model with time-varying motility parameters (TPRW model). (a) The linearly time-dependent functions [cf
equations (2) and (3)] of motility parameters. The orange line corresponds to the persistence time P, while the green line
corresponds to the migration speed S. (b) Individual cell migration trajectories consisting of 4800 + 1 (N + 1) frames simulated
by TPRW model. (c) Cell migration velocities plotted against time. (d) Distribution of the square of cell migration velocities. The
inset indicates the same histogram but in lin–log axes and the black straight line denotes an exponential decay. (e) Distribution of
the angles between any two successive velocities. (f) Cell migration velocities as functions of angles between any two successive
velocities.

2.3. Characterizing cell migration
In what follows, we employ three classical physi-
cal quantities, including the MSD, VAC function,
and FPS to investigate the overall averaged motility
parameters P and S. We illustrate the limitations of the
three quantities when extracting the time-dependent
motility parameters.

2.3.1. Mean squared displacement
First we calculate the MSD [28, 35, 39] based on
the coordinates of cell migration trajectory �ri·Δt

(i = 0, . . . , N) in Cartesian coordinates given by

MSD(n ·Δt) =
1

N − n + 1

N−n∑
i=0

(
�r(i+n)·Δt −�ri·Δt

)2
,

(10)
where �r is the position vector of individual cells
at each time step, N the total number of displace-
ments per trajectory, n the step size. The overall aver-
aged MSD for 200 simulated trajectories is plotted in
figure 2(a). Here the theoretical MSD [28, 36] reads
as

MSD(t) = 4D · (t − P + P · e−t/P) + 4σ2
pos, (11)

where D is the diffusion coefficient. Therefore, we
obtain a set of motility parameters P, D and σpos by
the fit to the overall averaged MSD, and the migration
speed S is computed by the following formula [29, 34]

S =

√
2D

P
. (12)

The resulting parameters are shown in
figures 2(d)–(f).

2.3.2. Velocity autocovariance function
Similarly, figure 2(b) shows the overall averaged VAC
function, in which the VAC for individual trajectories
is computed by [17]

VAC(n ·Δt)

= 〈�vi·Δt · �v(i+n)·Δt〉

=
1

N − n − 1

×
N−n∑
k=1

(
�vk·Δt −

1

N − n

N−n∑
l

�vl·Δt

)

×
(
�v(k+n)·Δt −

1

N − n

N∑
l=n+1

�vl·Δt

)
. (13)

After computing the VAC based on cell migration
velocities, a widely-used fit can be performed via a
revised exponential decay, which is given as [35]

VACj = VAC(true)
j for |j| � 2, (14)

VAC±1 = VAC(true)
1 − 2σ2

pos/(Δt)2, (15)

VAC0 = VAC(true)
0 + 4σ2

pos/(Δt)2. (16)

Note that the theoretical VAC only is affected at
times t0 = 0 and t±1 = ±Δt when considering the

4
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Figure 2. The motility parameters derived from three overall averaged classical physical quantities. (a) Mean squared
displacement of cell migration calculated with equation (10) and the mauve theoretical curve from Fürth’s formula [cf
equation (11)]. The black dotted line is an auxiliary line with the slope 1. (b) Velocity autocovariance function computed from
equation (13) and the blue theoretical curve from equations (14)–(18). (c) Fourier power spectrum of migration velocities
obtained from reference [35] and the red theoretical curve from equations (19)–(21). (d) Comparison of the parameters P fitted
from three physical quantities. (e) Comparison of the fitted parameters S. (f) Comparison of the fitted positioning errors σpos.

positioning errors. Among the equations above, the
VAC(true) is defined by

VAC(true)
j−k =

2P2 ·
[
cosh(Δt/P) − 1

]
(Δt)2

× VAC(tj − tk) for j �= k, (17)

VAC(true)
0 =

2P2 · (e−Δt/P − 1 +Δt/P)

(Δt)2

× VAC(0) for j = k. (18)

It is evident that the overall averaged VAC in
lin–log axes could not be nicely fitted by the revised
exponential decay [see figure 2(b)], indicating the
insufficiency of the revised exponential decay in anal-
ysis of cell migration simulated by TPRW model.

2.3.3. Lorentzian velocity power spectrum
It has been reported that the physical quanti-
ties used above could not return reliable errors
on the fitted parameters P and S because of the
correlations between the velocities [35]. Therefore,
another method has been suggested to transform
the time domain to frequency domain by perform-
ing Fourier transform (FT) of the VAC according to
Wiener–Khinchin theorem [40, 41], which can elim-
inate the correlations. The results are referred to as
FPS, as seen in figure 2(c). It behaves like that for PRW
model in ECM with temporally non-varying proper-
ties. Then we fit the FPS with the LPS of OU process
[35], which is defined as

LPSu(fk) = LPS(true)
u (fk)

+
4σ2

pos

Δt

[
1 − cos(π · fk/fNyq)

]
, (19)

where the first term on the right side of equation (19)
is the true expression of LPS, with the following form

LPS(true)
u (fk) =

(1 − c2)

c
·
(

P

Δt

)2

· LPS(aliased)
v (fk)

+ 4D ·
(

1 − 1 − c2

2c
· P

Δt

)
, (20)

in which the term LPS(aliased)
v (fk) is defined by

LPS(aliased)
v (fk) =

〈∣∣∣�̂v∣∣∣2
〉

tmsr

=
(1 − c2) · 2D ·Δt/P

1 + c2 − 2c · cos(π · fk/fNyq)
,

(21)

and the second term on the right side of equation (19)
is an additional noise term when considering the
effect of positioning noise. Here, c = exp(−Δt/P),
fk = k ·Δf(k = 1, . . . , N/2), Δf = 1/tmsr, tmsr = N ·
Δt and fNyq = 1/(2 ·Δt). The imperfect fit in high
frequency domain (∼1.0 min) indicates that the LPS
is not the most suitable estimator for the FPS.

Figures 2(d)–(f) exhibit the fitted motility param-
eters P, S and σpos obtained from overall averaged
MSD, VAC and FPS. Figure 2(d) indicates that all
the fitted parameters P locate in the interval of
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0.6–0.7 min, while the fitted parameters S in the inter-
val of 0.2–0.25 μm min−1. Neither of the resulting
parameters P and S reflects the corresponding lin-
ear functional form of these parameters, they only
approximately derive the corresponding averaged val-
ues (Pave = 0.65 min, Save = 0.2 μm min−1) of all
theoretical P and S, respectively. The positioning error
σpos is independent of the intrinsic characteristics of
cell motility and could be regarded as a constant, thus
it is reasonable to average the fitted values from MSD
and FPS to obtain an approximate positioning error
(∼0.11 μm).

3. Deriving accurately the time-varying
motility parameters

In this part, we introduce WT and WD to compute
the wavelet power spectra of cell migration veloc-
ities, and further derive accurately time-dependent
motility parameters via LPS.

3.1. Wavelet transform of migration velocities
The WT was initially employed by Morlet et al to ana-
lyze seismic signals in the early 1980s [42, 43], and was
later formalized by Goupillaud and Grossmann et al
[44, 45]. Different from the stationary process ana-
lyzed by FT, the WT is regarded as a powerful tool to
deal with the non-stationary and infinitely correlated
process. For example, although the fractional Brown-
ian motion is nonstationary and infinitely correlated,
the corresponding wavelet coefficients are stationary
and uncorrelated [46]. Kumar et al also validated the
incapability of FT to characterize the time-varying
signals [47]. Further, windowed Fourier transform
(WFT) can be computed by performing a sliding win-
dow of a constant time interval from a time series. It
is also an analysis tool for extracting time-frequency
information from a time series, but shows the inac-
curacy and inefficiency because of the ‘imposed’ win-
dow size into analysis, i.e. how to determine the most
appropriate window size and how to address the alias-
ing of high- and low-frequency, etc, as discussed by
Kaiser et al [48], Torrence et al [49] and Daubechies
[50].

Different from the WFT, the window size varies
over the frequency in WT, which is the main advan-
tage to analyze the local characteristics of time series
[49–51]. The WT includes discrete WT (DWT) and
continuous WT (CWT), the latter is utilized in this
study. For a given time series vn, the CWT is defined
as the convolution of vn′ with a scaled and translated
version of the wavelet function ψ0(η), as follows [49]

Wn(s) =
N−1∑
n′=0

vn′ ·ψ
∗
0

[
(n

′ − n) ·Δt

s

]
, (22)

where the symbol (∗) denotes the complex con-
jugate, s is wavelet scale that can result in the
compressed/stretched wavelets corresponding to the

high/low Fourier frequency [49]. The wavelet func-
tion used here is Morlet, which consists of a plane
wave modulated by a Gaussian

ψ0(η) = π−1/4 · eiω0η · e−η2/2, (23)

where ω0 is the non-dimensional frequency and is set
as 6 for satisfying the admissibility condition, which
ensures that continuous WT is invertible [52]. The
Morlet function used above is complex, so the result-
ing wavelet coefficient Wn(s) is also complex. Thus,
one can gain easily the information about the real
part, imaginary part, and finally the wavelet power
spectrum is computed by the absolute value squared
of the WT [49, 53], i.e. |Wn(s)|2.

So far, one can follow the procedure above to
graphically illustrate how the power spectral values
change over the frequency and time, as shown in
figure 3(a). In figure 3(a), the amplitude of wavelet
power spectrum lies in the interval 0–0.16μm2 min−1

denoted by different colors, which is correlated with
the effective diffusion coefficient for a migrating cell
at each moment. At the same time, edge effects will
occur in the beginning and end of the wavelet power
spectrum because of the finite-length time series,
which is also called cone of influence (COI) [49], see
the sharp decline parts affected by COI in figure 3(b).
Note that we do not exclude the sharp decline parts
for exhibiting the entire performance of the approach
developed.

3.2. Fitting local wavelet power spectra with
Lorentzian velocity power spectrum
There is an evident peak with the time increasing in
the low-frequency domain [see figure 3(a)], and it
corresponds to the linear functions [see figure 1(a)].
Figure 3(a) not only shows the dominant features
of migration velocities, but also how these features
vary with time. The power spectra along frequency-
axis for every moment in figure 3(a) are called
local wavelet power spectra, which are identical to
the Fourier power spectra of the univariate lag-1
autoregressive [AR(1) or Markov] process, on average
[49, 54]. When taking average on wavelet power
spectra along frequency-axis, the frequency-averaged
power (energy) is obtained, as shown in figure 3(b).
The frequency-averaged power behaves like the peak
in figure 3(a) and the tendency in figure 1(a), which
means that the power of migrating cells increases with
time, because of the enhancement of ICSP/ECM. The
abnormal decreases in the beginning and the end of
the time series are consequences of COI. When the
average is taking over all the local wavelet power spec-
tra, one will obtain the global wavelet power spectrum
[see figure 3(c)], which is an unbiased and reliable
estimation of the true power spectrum of any time
series [55].

Further, Torrence et al also validated the global
wavelet power spectrum approximates to the
corresponding FPS [49], thus it is reasonable to
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Figure 3. Wavelet transform of cell migration velocities. (a) Wavelet power spectra based on Morlet wavelet function. The left
axis denotes Fourier frequency corresponding to wavelet scale, while the bottom axis does time. The colors mirror the power
spectral values. (b) The frequency-averaged wavelet power against time. (c) The time-averaged wavelet power spectrum (global
wavelet power spectrum) against frequency. The red line represents theoretical values corresponding to Lorentzian power
spectrum. (d) Comparison of the fitted parameters obtained from FPS and global wavelet power spectrum. The orange bars
denote the persistence time P, while the green do the migration speed S. (e) The fitted persistence time P as a function of time.
(f) The fitted migration speed S as a function of time. Note that the black lines stand for theoretical motility parameters in
figure 1(a).

fit the global wavelet power spectrum using LPS
mentioned in section 2, as shown by black line
in figure 3(c). Figure 3(d) displays comparisons
between motility parameters fitted from FPS and
global wavelet power spectrum, respectively. It is
obvious that the fitted parameters P and S based on
WT are almost identical to these values based on
FT, respectively. These identities further illustrate
the rationality of LPS in fitting local wavelet power
spectra.

There is no doubt that fitting the local wavelet
power spectra using LPS will recover the time-
dependent functions [see figures 3(e) and (f)]. The
fitted parameters given in figure 3(e) for P and
in figure 3(f) for S both encode the linear func-
tions but with large deviations. Here, the fitted posi-
tioning errors are not shown due to the experi-
mental observation, because they are not intrin-
sic terms related to cell motility. The correspond-
ing errors can be estimated based on the results in
figure 2(d).

3.3. Wavelet denoising of migration velocities
In this part, we apply the WD to filter the migra-
tion velocities before implementing the WT
for improving the accuracy of fitting parame-
ters, which involves wavelet decomposition and
reconstruction [56, 57]. The calculation program
mainly calls some built-in functions (Matlab

R2017a, USA), e.g. idwt, wavedec, ddencmp and
wdencmp.

First, we decompose the velocities to obtain the
wavelet coefficients using Mallet algorithm [57].
Second, the coefficients are automatically thresholded
by the program. Then, the thresholded coefficients
are reconstructed to obtain the denoised signal, as
exhibited in figures 4(a) and (e). Here, the WD used
is implemented based on Haar wavelet (also referred
to as ‘db1’ in Matlab), which is the only discontin-
uous one of Daubechies wavelet family and known
as the first order Daubechies wavelet db1, see more
details in reference [58]. Moreover, the Haar wavelets
are most commonly used wavelets in database lit-
erature because they are easy to comprehend and
fast to compute [59, 60], for instance, denoising
the observed data without removing localized sig-
nificant changes to represent the time-series evo-
lution [61]. When performing the wavelet decom-
position once, the process is termed as ‘one layer’
decomposition, while decomposition twice as ‘two
layers’. For simplicity, we use ‘1db1’ to represent
the process of denoising applying db1 wavelet with
‘one layer’, while ‘2db1’ to represent that with
‘two layers’.

Figure 4(a) compares the original velocities and
denoised velocities based on 1db1, which clearly
shows the amplitude of the former is generally
greater than that of the latter. Furthermore, the cor-
responding trajectories are exhibited in figure 4(b).
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Figure 4. Derivation of the accurate motility parameters based on wavelet denoising. (a) The migration velocities denoised by
db1 wavelet function with one layer (1db1). The black line represents original migration velocities, while the red does the
denoised. (b) The denoised migration trajectory corresponding to 1db1 and denoted by red line. The inset indicates the difference
between the original and the denoised trajectories. The fitted persistence time P (c) and S (d) as functions of time in the case of
1db1. (e) and (f) The captions are identical to these for (a) and (b), but the results are obtained in the case of 2db1 (db1 wavelet
function with two layers). (g) and (h) The captions are identical to these for (c) and (d), but in the case of 2db1. The persistence
time P (i) and the migration speed S (j) obtained by averaging the corresponding results for the cases of 1db1 and 2db1.
(k) Comparison of the RMSE (RMSEP and RMSES) of motility parameters corresponding to the four cases (the original, 1db1,
2db1, the average). The mauve bars denote the RMSEP of the fitted P, while the blue do the RMSES of the fitted S. (l) Comparison
of overall RMSEPS. The overall RMSEPS are obtained by multiplying the RMSEP of P with RMSES of S.

The enlarged inset illustrates the effect of 1db1
on trajectory, and the processed trajectory seems
like more smoothly. Likewise, we employ 2db1 to
denoise the same original velocities, and the results
are shown in figures 4(e) and (f). Comparing the
denoised velocities in figures 4(a) and (e), it is
evident that the 2db1 filters more velocity com-
ponents (not just noise). Thus, the 2db1 smooth
the trajectory more greatly, as shown by inset in
figure 4(f). Note that cell migration trajectories dis-
cussed here contains typically two kind of noises,

i.e. errors of observation and intrinsic part of their
dynamics [26].

For the migration velocities denoised by 1db1, we
follow the same procedure used above, namely fit-
ting local wavelet power spectra with LPS, to derive
time-varying motility parameters P and S. The result-
ing parameters are plotted in figures 4(c) and (d),
indicating P and S, respectively. The results for 1db1
are more accurate than these for original velocities
in figures 3(e) and (f), which directly highlights the
necessary of denoising. More importantly, we find
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Figure 5. Application of WDTL in deriving the accurate motility parameters following the quadratic functions. The captions are
identical with those in figures 1, 3 and 4.

that the fitted P are generally less than theoretical P,
while the fitted S greater than theoretical S. we guess
this ‘less and great’ is the consequence of insufficient
denoising, that is, the velocities denoised by 1db1
still contain some noise components, which decrease
the persistence of cell migration. Next, we repeat the
procedure but employing 2db1 to derive the motil-
ity parameters, as exhibited in figures 4(g) and (h).
The results for 2db1 also are more close to theoretical
values, but display opposite ‘great and less’. Thus, we
argue that the 2db1 is so ‘powerful’ that more veloc-
ity components are filtered. This excessive denoising
contributes to more persistent cell migration. We fur-
ther average these corresponding fitted parameters for
1db1 and 2db1, the averaged P and S are plotted in
figures 4(i) and (j), respectively. The averaged results
are more accurate than these for the original, 1db1
and 2db1. What’s more, the averaged results almost
mirror the linear functions.

In order to compare the accuracy of the fitted
parameters P and S based on different denoising
methods, respectively, the corresponding root mean
square errors (RMSEP and RMSES) of the fitted
parameters P and S are calculated independently, as
seen in figure 4(k). The bars indicate that both the

1db1 and 2db1 are better than the original, but the
average is better than 1db1 and 2db1. To be more
intuitive, overall RMSEPS are computed by multi-
plying RMSE (RMSEP and RMSES) of the fitted P
and S [see figure 4(l)], and it validates directly the
advantage of the average in improving the accuracy
of fitting motility parameters. Since the procedure
used above mainly involves WD, WT and LPS, we
abbreviate it as ‘WDTL’ for simplicity.

3.4. Two examples of ICSP/ECM with
time-varying characteristics
3.4.1. Dependency defined by quadratic functions
In the following, we discuss another two time-
dependent functions to illustrate the universality of
WDTL developed above. The functions for the first
example are defined as

P(t) = KP · t2 + P0, (24)

S(t) = KS · t2 + S0, (25)

which are graphically shown in figure 5(a).
Next, the corresponding quantities for original

migration velocities are computed and plotted in
figures 5(b)–(f). They are comparable with figures 1

9
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Figure 6. Application of WDTL method in deriving the accurate motility parameters following the cosine functions. The
captions are identical with those in figure 5.

Table 1. The changing rates of persistence time and migration speed.

Quantities Units
Group No.

1 2 3 4 5 6 7

KP ∗(10−4) 3.125 6.250 9.375 12.500 15.625 18.750 21.875
P0 min 0.3 0.3 0.3 0.3 0.3 0.3 0.3
PT min 0.6 0.9 1.2 1.5 1.8 2.1 2.4
KS ∗(10−4) 2.083 4.167 6.250 8.333 10.417 12.500 14.500
S0 μm min−1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
ST μm min−1 0.3 0.5 0.7 0.9 1.1 1.3 1.5
KPS ∗(10−4) 2.604 5.209 7.813 10.417 13.021 15.625 18.188

and 3. Further, we employ the WDTL to derive
the time-dependent motility parameters, the aver-
aged results are shown in figures 5(g) and (h). It is
noticeable that the final values are consistent well
with the theoretical values in figure 5(a). Figure 5(i)
compares overall RMSEPS of the fitted parameters
corresponding to the four denoising cases, which
also illustrates that the average shows a higher per-
formance in deriving the time-dependent motility
parameters.

3.4.2. Dependency defined by cosine functions
The time-dependent functions for the second
example are given by

P(t) = AP · abs
[
cos(2π · t/TP)

]
+ P0, (26)

S(t) = AS · abs
[
cos(2π · t/TP)

]
+ S0, (27)

where AP, AS are amplitudes, and TP is the period of
the cosine. The detail values are shown in figure 6(a).
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Figure 7. The effects of several factors on the performance of WDTL. (a)–(f) The effects of the changing rates of motility
parameters. (a) The RMSE of the fitted persistence time P and migration speed S as functions of the changing rates KP. The
orange denotes RMSEP of the fitted P, while the green does the RMSES of the fitted S. (d) The overall RMSEPS as a function of the
changing rates KP. The captions of (b) and (e) are identical with those for (a) and (d), but for the changing rates KS. (c) and (f)
The RMSEP and RMSES as functions of the overall changing rates KPS obtained by averaging the KP and KS. (g) and (j) The
RMSE as functions of the number of recorded cells NC. (h) and (k) The RMSE as functions of the total recording time T for
individual trajectories. (i) and (l) The RMSE as functions of the sampling time interval ΔT.

Different from the linear and quadratic functions, the
above functions not only contain the enhancement
of ICSP/ECM, but also the hindrance. Therefore, the
cosine function provide a more realistic description of
the real situations with complex time-varying proper-
ties. The corresponding results are shown in figure 6.
Figures 6(g)–(i) also show the advantage of the aver-
age, which contributes to deriving the parameters
reflecting the cosine dependencies.

Thus, we conclude that the WDTL can derive
more accurate motility parameters from migra-
tion velocities and further mirror the real-time
changing ICSP/ECM, which is also verified as a pow-
erful analytical tool for cell motility.

3.5. The effects of several factors on the
performance of WDTL

We develop a robust and accurate approach (WDTL)

to deriving the time-dependent motility parameters

for different time-dependent functions. In order to

further understand the limitations of WDTL, we con-

tinue to investigate the performance of WDTL under

the influences of more factors based on control vari-

able and the linear functions, including the changing

rates of motility parameters (KP, KS and KPS), the

number of the recorded cells (Nc), the total recording

time for individual trajectories (T ), and the sampling

time interval (ΔT).
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Figure 8. The time-dependent motility parameters of cell migration in micro-structural channel array. (a) Primary breast cancer
cells (MDA-MB-231) migration in micro-structure containing chambers and channels. For tracking cell’s position, cell nuclei are
stained with Hoechst and shown in red. The scale bar is 50 μm. (b) Single migration trajectory for cell numbered ‘5’. The time
interval between two frames is 5 min. (c) The time-dependent persistence time P for cell migration shown in (b). (d) The
time-dependent migration speed S for cell migration shown in (b). The data (b) and image (a) are reproduced from Refs. [63]
with permissions, respectively. Reproduced from [64]. CC BY 4.0.

In the previous sections, we only study the
performances of WDTL in the cases of three
time-dependent functions, which are generally not
sufficient to analyze the effects of various changing
rates. Thus, we define several different changing rates
(see table 1), to study the effects of ICSP/ECM on
the accuracy of fitting parameters. For simplicity, we
again introduce linear functions [cf equations (2)
and (3)], the corresponding quantities are com-
puted and listed in table 1. The indexes KP and
KS quantify the changing rates of parameters P
and S, respectively, while the KPS does the overall
changing rates obtained from the average of the KP

and KS.
Figures 7(a)–(f) exhibit the detail results.

When only increasing KP from 3.125 × 10−4 to
21.875 × 10−4 and keeping KS 2.083 × 10−4, the
RMSEP of fitted P increase and the fitted S almost
does not be affected [see figure 7(a)]. The overall
RMSEPS increase, as seen in figure 7(d). When
increasing KS from 2.083 × 10−4 to 14.5 × 10−4 and

keeping KP 7.292 × 10−4, only the RMSES of fitted
S increase [see figure 7(b)]. The overall RMSEPS also
increase [see figure 7(e)]. If we increase the KP and
KS simultaneously, both the RMSE (RMSEP and
RMSES) of P and S increase, as seen in figures 7(c)
and (f).

Inversely, we find the overall RMSEPS decrease
when increasing the number of the recorded cells [see
figures 7(g) and (j)] or increasing the total record-
ing time for individual trajectories [see figures 7(h)
and (k)]. When keeping the total recording time
T = 960 min constant but increasing the sampling
time interval ΔT from 0.2 min to 2.0 min, the
overall RMSEPS first decrease and then increase [see
figures 7(i) and (l)].

We conclude that the slowly changing motility
parameters (ICSP/ECM) (∼0), more recorded cells
(>250), longer recording time (>600 min) and suit-
able sampling time interval (∼0.6 min) will con-
tribute to a better performance of our approach in
fitting the time-dependent motility parameters.
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Figure 9. The time-dependent motility parameters revealing significant correlations of cells pairs migrating on collagen gel.
(a) The time-lapsing images indicating a pair of cells migration on collagen gel. (b) Migration trajectories of the pair-wise cells.
The scale bar is 30 μm. (c) The time-dependent persistence time P of the pair-wise cells. (d) The time-dependent migration speed
S of the pair-wise cells. (e) Spearman’s correlation coefficients for motility parameters of the pair-wise cells. The orange bar
denotes coefficient for persistence time, while the green bar denotes that for migration speed. (f) The confocal image explaining
strongly correlated pair-wise cellular migration regulated by fiber bundles. The scale bar is 25 μm.

4. Extracting the time-dependent
motility parameters for in vitro cell
migration regulated by complex
microenvironment

4.1. The time-dependent motility parameters of
cell migration in micro-structural channel array
In section 3, we develop an approach to derive the
time-varying motility parameters and further ana-
lyze the effects of several factors on this approach.
Here, in order to illustrate experimentally the util-
ity of this approach, we continue to extract the time-
dependent motility parameters of in vitro cell migra-
tion. Firstly, we obtain the corresponding experimen-
tal data [63] of cell migration in a micro-structural
channel array containing chambers and channels and
primary breast cancer cells (MDA-MB-231) migrate
through the array. For accurately tracking the cells,
cell nuclei are stained with Hoechst and shown in red,
as seen in figure 8(a). Here, we plot the migration
trajectory of cell numbered ‘5’, which contains 590
frames [see figure 8(b)]. Then, we extract the time-
dependent motility parameters, using the WDTL
method, as shown in figures 8(c) and (d).

In figure 8(c), the time-dependent persistence
time exhibits many ‘irregular’ values, which are
mainly the consequence of motility noises, e.g.
the intrinsic noise and the positioning noise. Nev-
ertheless, the time-dependent persistence time
still shows an obvious characteristics, i.e. the

persistence time possesses a smaller value in the
interval 0–800 min, while possesses a greater value
in the interval 800–3000 min, which mean that cell
first migrates in a more random manner, and then in
a more persistent manner. Different from the char-
acteristics of the time-dependent persistence time,
the time-dependent migration speed S gradually
decreases with time lapsing [see figure 8(d)]. The
results above illustrate that the WDTL method is effi-
cient in studying the time-dependent characteristics
of cell migration in confined environment.

4.2. The time-dependent motility parameters
revealing strong correlation between cell pairs
regulated by remodeled collagen fiber bundles
To further demonstrate the utility of our approach,
we obtain in vitro migration trajectories of MCF-
10A cells on 3D collagen I hydrogel with a collagen
concentration 2 mg ml−1 and thickness of approxi-
mately 2 mm by randomly distributing the MCF-10A
cells on collagen-based ECM with a low cell density
104 cells/cm2, and we record the migration trajec-
tories in sampling time 2 min for every frame. The
details of the experimental procedure were reported
in references [65, 66] and will be not repeated here.

In experiment, we observe strongly correlated
pair-wise migrations for cells on collagen gel, i.e.
a pair of cells move quickly toward to each other,
when the initial distance between the cells is roughly
within ∼80 to 120 μm, as shown in figure 9(a). We
further apply the WDTL method to the migration
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trajectories [see figure 9(b)] of the cell pair, and
the resulting motility parameters are exhibited in
figures 9(c) and (d). Qualitatively, it is interesting that
the time-dependent persistence time for one cell is
almost identical with that for another cell, and the
migration speed for the cell pair is almost identical
with each other. In order to quantify the correlation
between the cell pair, we calculate the Spearman’s cor-
relation coefficient for persistence time (r = 0.80)
and migration speed (r = 0.95), respectively [see
figure 9(e)]. Here, Spearman is chosen because the
data does not satisfy the normality criteria, even after
transformation. The coefficients above indicate that a
strong correlation between cell pair does exist, which
means that the cell pair possesses the similar migra-
tion characteristics.

In order to analyze the mechanism underlying
the strong correlations between cell pairs, we subse-
quently obtain the confocal image [see figure 9(f)],
which clearly indicates that a pair of cells migrate
toward to each other, along the collagen fiber bun-
dle. The correlations between cell–cell, cell–fiber are
mainly due to the dynamically re-arranged collagen
bundles between the two migrating cells. Recent stud-
ies suggested that the remodeling of collagen fibers is
mainly due to the active tensile forces generated by the
migrating cells, and the bundles bridging the two cells
typically carry tensile forces which in turn regulate
the cell migration and lead to the observed strongly
correlated migration [31, 33, 65, 67, 68].

5. Conclusions

Cell migration, which is of importance for the nor-
mal development of organisms and cancer metas-
tasis, and is affected strictly by ICSP and ECM. In
this paper, we develop an approach (WDTL) to ana-
lyze the time-varying characteristics of cell migration,
namely deriving the time-dependent motility param-
eters to reflect the changes of ICSP/ECM with time to
some extent.

As a result, the cell motility parameters are the
functions of time due to the influences of ICSP/ECM,
in the TPRW. Based on trajectories simulated by
TPRW model, we calculate MSD, VAC and FPS and
further derive three sets of motility parameters from
the fits to the corresponding physical quantities.
Although the three quantities can derive three sets
of motility parameters, all of them only quantify the
overall averaged cell migration capability instead
of the time-dependent characteristics. We then
introduce the WT to compute the local wavelet power
spectrum at each moment and obtain the time-
dependent motility parameters by employing the
LPS. However, the fitted results only roughly reflect
the time-varying motility parameters with large
deviations from the time-dependent functions. In
order to improve the accuracy of fitting motility
parameters, we apply WD based on 1db1 and

2db1 to filter the migration velocities before
implementing the WT. The results show clearly that
the averaged parameters based on 1db1 and 2db1 can
significantly decrease the errors between the fitted
and the theoretical motility parameters, mirroring
the time-dependent functions.

In order to verify our approach, we further ana-
lyze the cases described by quadratic and cosine func-
tions, the results show that the approach still exhibits
higher performance in fitting motility parameters. In
addition, we continue to study the effects of several
factors on the performances of WDTL, for instance,
the changing rates of motility parameters, the num-
ber of the recorded cells, the total recording time for
individual trajectories and the sampling time interval.
The studies figure out the limitations of the WDTL
developed, which also provide a guidance when pro-
cessing the cell migration in Lab. Finally, we also
employ our approach to experimental data of in vitro
cell migration, including primary breast cancer cells
migration through a micro-structural channel array
and MCF-10A cells migration on collagen gel. The
analysis shows that our approach can be as a powerful
tool to derive accurately the time-dependent motility
parameters, and further analyze the time-dependent
characteristics of cell migration.
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