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Abstract

Long noncoding RNA (lncRNA) is a kind of noncoding RNA with a length of more than 200 nucleotide units. Numerous research studies
have proven that although lncRNAs cannot be directly translated into proteins, lncRNAs still play an important role in human growth
processes by interacting with proteins. Since traditional biological experiments often require a lot of time and material costs to explore
potential lncRNA–protein interactions (LPI), several computational models have been proposed for this task. In this study, we introduce
a novel deep learning method known as combined graph auto-encoders (LPICGAE) to predict potential human LPIs. First, we apply
a variational graph auto-encoder to learn the low dimensional representations from the high-dimensional features of lncRNAs and
proteins. Then the graph auto-encoder is used to reconstruct the adjacency matrix for inferring potential interactions between lncRNAs
and proteins. Finally, we minimize the loss of the two processes alternately to gain the final predicted interaction matrix. The result in
5-fold cross-validation experiments illustrates that our method achieves an average area under receiver operating characteristic curve
of 0.974 and an average accuracy of 0.985, which is better than those of existing six state-of-the-art computational methods. We believe
that LPICGAE can help researchers to gain more potential relationships between lncRNAs and proteins effectively.
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Introduction
A considerable number of genes in the genome are transcribed
into RNAs that do not code for proteins in genetic regulation.
They are named as noncoding RNA (ncRNA) by researchers [1].
In the past few decades, ncRNA has been ignored by researchers
because it violates the central dogma. Nowadays, a growing num-
ber of evidence suggest that lncRNAs can participate in a series
of biological processes, such as genetic performance regulation
[2], disease progression [3], immune response [4], etc. Further-
more, one of the most important ways for lncRNA to perform
its biological function is interacting with relevant proteins. For
example, HOTAIR, one of the earliest known lncRNAs shown to
be associated with cancer, can interact with the polycomb group
protein PRC2 to participate in chromatin modification complexes
[5]. ANRIL is an antisense lncRNA upregulated in prostate cancer
that can interact with chromobox 7 protein [6]. In recent years, the
emergence of high-throughput technologies and the development
in various biological experimental approaches have led to the
expansion of the lncRNA world. This means that we can confirm
the relationships between certain lncRNAs and proteins through
high-throughput technologies such as RNA compete [7], RIP-Chip
[8], MS2 trapping [9], etc. However, the large-scale experiments to
identify lncRNA–protein interactions (LPIs) are often burdensome.
Fortunately, by taking advantage of the large amount of accu-
mulated experimental data and the rich property information
of lncRNAs and proteins, we are able to predict the potential
interactions between lncRNAs and proteins using computational
methods.

During recent years, many kinds of research studies such as
miRNA–lncRNA interactions prediction [10, 11], miRNA–disease
associations prediction [12–14], metabolite–disease associations
prediction [15] and circRNA-disease associations prediction [16,
17] have been carried out in bioinformatics. These studies have
promoted the development of methods for predicting LPI to a
certain extent. In 2011, Muppirala et al. developed a computational
model called RPISeq [18], which applied sequence features of
lncRNAs and proteins and made use of Support Vector Machine
(SVM) and Random Forests (RF) as its two subclassifiers. In 2013,
Lu et al. proposed a matrix computation method called LncPro for
LPI prediction [19], which integrated hydrogen-bonding features,
secondary structure features, Vander Waal’s interaction features,
and digitized these features by Fisher’s linear discriminant anal-
ysis. In 2015, Suresh et al. proposed RPI-Pred [20], a SVM-based
method that applies both RNA secondary structure features and
protein three-dimensional structural features for LPI prediction.
In 2017, Liu et al. developed a neighborhood regularized logis-
tic matrix factorization algorithm for LPI prediction named LPI-
NRLMF [21]. In 2018, Hu et al. integrated three models of SVM, RF
and eXtreme Gradient Boosting (XGB) [22] using a linear ensemble
strategy, and applied the sequence features extracted by three
different methods to construct the HLPI-Ensemble model [23]. In
the same year, Zhang et al. proposed a sequence-based feature
projection ensemble learning frame named SFPEL-LPI [24]. They
combined multiple lncRNA–lncRNA similarities, multiple protein–
protein similarities and multiple sequence features with a feature
projection ensemble learning frame. In 2019, Yi et al. proposed
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LPI-Pred [25], which used a word2vec model [26] to obtain word
embedding vectors of lncRNA sequences and protein sequences
as features, and also predicted potential LPIs by RF classifier.

In addition, network-based methods have also achieved effi-
cient advancements [27, 28]. In 2016, Ge et al. proposed LPBNI
[29], which predicted LPIs in matrix iterative form on bipartite
networks via a two-step propagation process. In 2017, Hu et al.
presented an eigenvalue transformation-based semi-supervised
link prediction approach (named LPI-ETSLP) to uncover the possi-
ble relationship between lncRNAs and proteins [30]. In 2018, Zhao
et al. developed a semi-supervised LPI predictive model based on
random walk called RWLPAP [31]. RWLPAP made full use of LPI
information, lncRNA similarity information and protein similarity
information to gain more accurate prediction. Soon afterwards,
Zhang et al. proposed a linear neighborhood propagation method
named LPLNP [32]. It calculated the linear neighborhood simi-
larity and transferred it into the interaction space. In the same
year, Zhao et al. proposed IRWNRLPI [33], which synthesized two
algorithms, random walk and neighborhood regularized logistic
matrix factorization, to obtain a potential LPI scoring matrix. Zhao
et al. also developed a bipartite network projection recommended
algorithm (named LPI-BNPRA) for this task [34]. Later, Zhang et al.
proposed LPGNMF [35], which added graph regularization to the
non-negative matrix factorization to further improve the model
performance for LPI prediction. In 2020, Zhou et al. proposed a
LPI prediction algorithm based on similarity kernel fusion and
Laplacian regularized least squares algorithm to predict potential
LPI interactions, called LPI-SKF [36].

Nowadays, deep learning methods are gradually surpassing the
original methods for LPI prediction due to their high efficiency
and high accuracy. In 2016, Pan et al. developed a computational
method named IPMiner [37]. It made use of a stacked autoencoder
to mine hidden features from sequence information of lncRNAs
and proteins, and sent the hidden features into RF models to gain
prediction results. In 2018, Yang et al. introduced a comprehen-
sive lncRNA identification and functional annotation tool called
LncADeep [38], which is based on deep neural networks using
both sequence and structural information to predict potential
LPI. In 2020, Zhang et al. proposed a deep learning model based
on convolutional neural networks called LPI-CNNCP [39], which
applied copy padding trick on sequence information to unify the
sequences to a fixed dimension. In 2021, Li et al. proposed a
LPI prediction model based on multi-channel capsule networks
called Capsule-LPI [40], which can integrate multiple features of
lncRNAs and proteins to participate in prediction. In the same
year, Jin et al. developed an end-to-end deep learning model based
on GAEs and collaborative training to predict potential interac-
tions between lncRNAs and proteins, called LPIGAC [41]. Not long
after this, Shen et al. proposed a GNN-based approach to predict
interactions between ncRNAs and proteins, called NPI-GNN [42].
This can make predictions based on sequence information and
network information. Later, Tian et al. introduced a deep forest
model with cascade forest structure named LPIDF to predict new
LPIs [43].

Generally, the traditional LPI prediction methods are divided
into two categories. The first category usually starts with
sequence information to extract high-dimensional digital feature
vectors, and then the sequence feature vectors are sent to
the machine learning classifier to obtain potential predictions.
The other type makes full use of interaction information
and similarity information for prediction by constructing a
heterogeneous network composed of an adjacency matrix
containing LPI information and similarity networks of lncRNAs

and proteins. However, there are some obvious disadvantages
in the previous methods. First, none of these methods fully
exploit the rich topological information in the lncRNA–protein
graph for label prediction [44]. Second, the feature extraction
process and the label prediction process of these methods are
divided into two separate parts and therefore lack connections.
To solve the existing difficulties, we propose a combined GAE
based method called LPICGAE to predict potential LPI. In our
study, we first send the extracted high-dimensional features
of lncRNAs and proteins into two variational GAEs (VGAEs) to
obtain effective representations, then use GAEs to implement the
label propagation process. Lastly, we optimize the losses in these
two processes alternately to gain the final predicted interaction
matrix. The reasons for using the combination of VGAE and
GAE are as follows: the interaction prediction task of lncRNAs
and proteins can be regarded as a label propagation problem
on a complex biological network [45], while GAE and VGAE are
presenting excellent performance in the feature representation of
nodes on graph structure data, leading to their wide application
in the graph structure data problem of bioinformatics [46, 47].
Additionally, we can deeply integrate the feature extraction
process and the label prediction process through this combined
model. After model construction, we conduct a 5-fold cross-
validation (5-fold CV) experiment to evaluate the performance
of LPICGAE and verify the robustness of LPICGAE on an external
validation dataset. Meanwhile, we also do case studies. All
the results show that LPICGAE is an efficient model for LPI
prediction task.

Materials and methods
Data preparation
In this study, we adopt two datasets for model training and
testing. The first dataset which we call dataset1 is extracted
from the NPInter v2.0 database [48]. NPInter is a database that
integrates the experimental interaction of ncRNA and multiple
biomolecules, which covers the majority of known human LPIs.
Another dataset named dataset2 is extracted from the lncRNome
database [49]. It is used as an external validation dataset. The
lncRNome database is a comprehensive knowledge base for
human lncRNA. Beyond that, to enhance the persuasiveness
of using an external validation dataset, we remove the overlap
between dataset1 and dataset2.

Dataset1 includes 8112 interactions among 3046 lncRNAs and
136 proteins. Dataset2 includes 2729 interactions among 1184
lncRNAs and 9 proteins. The sequence information of lncRNAs
and proteins mentioned above are obtained from NONCODE v3.0
database [50] and UniProt database [51], respectively.

Adjacency matrix construction and feature
extraction
LPICGAE needs the adjacency matrix and feature matrix as input,
and then outputs the predicted interaction score of each lncRNA–
protein pair. The adjacency matrix stores the interaction informa-
tion between lncRNAs and proteins. Supposing that the number
of lncRNAs is m, and the number of proteins is n, we use Am×n

to represent the adjacency matrix. Aij = 1indicates that lncRNAi
has a known interaction with protein j, otherwise Aij = 0. Since
the sequence information can correspond to a unique lncRNA
(protein), we obtain the numerical feature vector of lncRNA or
protein through sequence information. For each lncRNA (protein),
we adopt a Doc2Vec model [52], which is widely used in the field
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Figure 1. The workflow of LPICGAE.

of natural language processing to generate its 300-dimensional
feature vector.

In the Doc2Vec model, feature representation of continuous
lncRNA (protein) sequences is based upon the assumption that
a set of lncRNA (protein) sequences comprises a document. In
particular, each sequence is considered as a sentence written
in a biological language, suggesting that the corresponding bio-
logical function can be semantically interpreted. As for train-
ing data (termed as corpus), we utilize non-redundant lncRNA
sequences and protein sequences from GENCODE v39 database
[53]. After collecting the training data, we break such biological
sequences into non-overlapping residue segments (k-mers) as
biological words. Then we use these k-mer residue segments
(words) and the complete sequences (sentences) to train the
Doc2vec model. All the word and sentence vectors are trained by
using stochastic gradient descent and backpropagation to update
weight parameters iteratively. After training, the output sentence
vectors are used as our lncRNA (protein) sequence features.

Combined graph auto-encoders to predict
potential human lncRNA-protein interactions
Our model consists of two main parts. The first part is the feature
reconstruction network, and the other part is the label prediction
network. For convenience, we name the feature reconstruction
network as FRN and the label prediction network as LPN. FRN is
used to capture efficient low-dimensional representation from
high-dimensional features through inferring representation from
the feature matrix of lncRNAs and proteins, respectively. In
our model, FRN is divided into lncRNA feature reconstruction
network FRNl and protein feature reconstruction network FRNp.
Meanwhile LPN is applied to infer unknown interactions from
known interactions. LPN is divided into lncRNA label prediction
network LPNl and protein label prediction network LPNp. FRN is
implemented with a VGAE [54], and the LPN is implemented with
a GAE [54]. The workflow chart of LPICGAE is shown in Figure 1.

Graph auto-encoder
The traditional auto-encoder (AE) is a neural network with an
encoder and a decoder. The encoder takes the high-dimensional
vector x as input and converts it into a low-dimensional rep-
resentation z, while the decoder extracts the low-dimensional
representation z and returns the reconstructed vector x̂. The loss
function measures information lost between x and x̂.

The purpose of GAE is to apply traditional AE to graph structure
data and use GAE to reconstruct the input graph. GAE makes
use of graph convolution neural network (GCN) as an encoder to
obtain the latent representation of nodes in the input graph. The
embedding of all nodes Z can be expressed as

Z = GCN X, A = Ã ReLU
(
ÃXW0

)
W1 (1)

Ã = D− 1
2 AD− 1

2 (2)

where A is the adjacency matrix, Ã is the normalized adjacency
matrix, X is the feature matrix, D is the degree matrix obtained
from the adjacency matrix and W0 and W1 are the initialized
parameter matrix and the updated parameter matrix after the
GCN layer, respectively.

After getting the embedding Z from the encoder, GAE uses
an inner-product decoder to reconstruct the original graph. The
advantage of using the inner product decoder is that after obtain-
ing the hidden embedding Z, we want to find a way to learn
the similarity of each row in Z to generate the output adjacency
matrix. The vect or inner product can calculate the cosine similar-
ity of two vectors, which allows us to obtain a distance measure
when the vector size is unchanged. Therefore, we use vector inner
product to gain the reconstructed adjacency matrix by learning
the similarity of each row in Z.

Â = σ
(
ZZT)

(3)
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where σ ( ) denotes the nonlinear convolution layer and Â repre-
sents the reconstructed adjacency matrix. In this manner we can
get the reconstructed A after GAE.

Variational graph auto-encoder
The difference between variational auto-encoder (VAE) and AE
is that the input vector x in VAE is embedded as a distribution
rather than a fixed vector, so the embedding Z is taken from a
distribution rather than directly generated from the encoder. The
distribution obtained by the encoder is usually parameterized into
a normal distribution N(μ, σ 2). Then the following equation is
utilized to get embedding Z generated with μ and σ . This process is
called the reparameterization trick, and the reconstructed vector
x̂ is finally obtained through the decoder.

Z = μ + σ ∗ ε, ε ∼ N (0, 1) (4)

The purpose of VGAE is to apply the VAE to graph structure
data and use VGAE to construct new graphs or infer graphs.
The encoder of VGAE is usually composed of two layers of GCN.
An adjacency matrix and a feature matrix are used as input to
generate a low-dimensional representation in the first layer, while
the second layer catches the low-dimensional representation and
generates μ and logσ 2. Then the embedding Z can be calculated
using a reparameterization trick through Equation (4). This pro-
cess can be implemented by the following formulas:

X = GCN (X, A) = ReLU
(
ÃXW0

)
(5)

μ, log σ 2 = GCNμ,σ (X, A) = ÃXW1 (6)

where X is the representation obtained from the first layer of
encoder and GCNμ,σ is the layer that generates μ and σ . Similar
to GAE, we also define the decoder of VGAE by an inner-product
decoder according to Equation (3), after which we can get the
reconstruction graph.

Collaborative training and loss function
In the feature reconstruction process, we define FRNl and FRNp to
represent lncRNA feature reconstruction network and protein fea-
ture reconstruction network. We use Gl and Xl as the input of FRNl,
and Gp and Xp as the input of FRNp. The adjacency matrix of graph
Gl and Gp can be constructed through calculating the Euclidean
distance among feature vectors first and then finding 10-nearest
neighborhoods of each node. Xl and Xp represent the feature
matrix of lncRNA and protein, respectively. Naturally, we use X′

l

and X′
p to represent the reconstructed feature matrix after FRN.

Due to the fact that the FRN module is implemented with VGAE,
the loss function of FRN consists of two parts [54]. The first part is
feature matrix reconstruction loss Lossfr, while another part is KL
divergence LossKL. They are calculated by the following equations:

LossFRN = Lossfr + LossKL (7)

Lossfr = 1
2

∥∥X − X′∥∥2
F (8)

LossKL = −
∑

i,j

1
2

(
1 + 2 log σij − μ2

ij − σ 2
ij

)
(9)

Supposing that Zl and Zp are representations learned from
FRNl and FRNp, respectively, we use Lossc to represent the
collaborative training loss. Then we use Lossf defined by the
follow equations to represent the total loss of co-training feature
reconstruction module.

Lossc = 1
2

∥∥∥ZlZT
p − A

∥∥∥
2

F
(10)

Lossf = ωLossfl + (1 − ω) Lossfp + ϕLossc (11)

Here, Lossfl and Lossfp are the loss of FRNl and FRNp computed

by Equation (7), respectively. ω ∈
(
0, 1

)
is the weight parameter

set for balancing the information between lncRNA and protein.
ϕ is the weight parameter representing the proportion of Lossc

in Lossf , which is initialized to 1e-3 and will be updated during
model training. FRNl and FRNp can be trained simultaneously by
optimizing Lossf .

Similarly, in the label prediction module, we apply Gl and A as
the input of LPNl, and Gp and AT as the input of LPNp. The total loss
of label prediction module Lossl can be calculated by the following
equation.

Lossl = ωLossll + (1 − ω) Losslp (12)

Here, Lossll and Losslp are the loss of LPNl and LPNp, respectively.
The LPN module is implemented with GAE, whose loss is usually
represented by the reconstruction loss [54]. In our model, we
not only use the reconstruction loss, but also add the manifold
loss when generating the loss of LPN. The manifold loss Lossm

is the mean square error between the hidden representations
of FRN and LPN. Previous research suggests that graph neural
networks are significantly correlated to label propagation [55].
Meanwhile, label propagation leads to a manifold regulariza-
tion problem, that is, samples with higher feature similarities
are closer on the manifold and tend to share the same labels.
This theory proves that representations learned by graph neu-
ral networks should follow manifold constraint. In addition, Xu
et al. proved that the representations of two GAEs which share
one same graph as input are often similar in manifold con-
straint [56]. Therefore, we add manifold loss to the total loss of
LPN, thus improving the efficiency of obtaining better feature
embedding:

LossLPN = Losslr + τLossm (13)

Losslr = −
∑

ij

Aij log Fij (14)

Lossm = 1
2

∥∥∥Z − Z’
∥∥∥

2

F
(15)

where Losslr represents the reconstruction loss between the
input adjacency matrix and the output adjacency matrix in
LPN. τ is the weight parameter representing the proportion
of Lossm in LossLPN, whose value is set equal to ϕ. Then, we
optimize Lossf and Lossl alternately to gain the final predicted
score matrix. In brief, LPNl products Fl, LPNp outputs Fp. Finally,
we generate the predicted interaction matrix by the following
equation:

F = ωFl + (1 − ω) FT
p (16)
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Table 1. The performance of LPICGAE under different values of hyperparameters

Hyperparameters AUC AUPR ACC F1-score Precision

lr
0.1 0.9576 0.5956 0.9729 0.4232 0.2118
0.01 0.9577 0.5609 0.9790 0.4141 0.1927
0.001 0.9453 0.5828 0.9805 0.4290 0.2123
num
128 0.9440 0.4923 0.9770 0.3892 0.1705
256 0.9577 0.5609 0.9790 0.4141 0.1927
512 0.9653 0.6611 0.9815 0.5185 0.2877
η

1e-4 0.8654 0.2872 0.9760 0.2222 0.0763
1e-5 0.9577 0.5609 0.9790 0.4141 0.1927
1e-6 0.9768 0.7419 0.9826 0.5845 0.3589
ω

0.3 0.9298 0.4713 0.9779 0.4028 0.1820
0.4 0.9431 0.5076 0.9781 0.4010 0.1809
0.5 0.9577 0.5609 0.9790 0.4141 0.1927
0.6 0.9625 0.5982 0.9799 0.4620 0.2348
0.7 0.9658 0.6556 0.9815 0.5338 0.2997

Table 2. The main hyperparameters of LPICGAE

Hyperparameters Values

Learning rate (lr) 1e-3
Number of nodes in the hidden layers (num) 512
Weight decay rate (η) 1e-6
Weight parameter (ω) 0.7

To summarize, in the loss function construction of LPICGAE,
we have used different losses to constitute the entire loss. The
feature reconstruction loss and KL divergence loss in FRN are used
to represent the loss in the feature reconstruction process; their
compatibility has been derived in the previous study [54]. The
collaborative training loss in the FRN module is used to realize col-
laborative training between the lncRNA feature extraction process
and the protein feature extraction process. The adjacency matrix
reconstruction loss in the LPN module is used to represent the loss
in the label prediction process. It has been derived in the previous
study [54]. The manifold loss between the feature representations
of FRN and LPN is used to deeply integrate the feature extraction
process and the label prediction process. It has been derived in the
previous study [55]. Each loss of function plays its own role. All the
losses are aimed at enhancing the ability of LPICGAE to gain more
efficient feature representations and realizing better predictions.

Results
Performance evaluation
We choose the 5-fold CV to evaluate the performance of LPICGAE
on our dataset. In this method, the known LPIs are randomly
divided into five equal parts and one of them is selected as a
testing set each time while the remaining four parts are used
as the training set. In this study, we use area under receiver
operating characteristic curve (AUC), area under PR curve (AUPR),
accuracy (ACC), f1-score (F1) and precision (Pre) to measure the
performance of LPICGAE. Among them, the ROC curve is receiver
operating characteristic curve, whose abscissa and ordinate are
FPR (false positive rate) and TPR (true positive rate), respectively.

The PR curve is precision-recall curve, whose abscissa and ordi-
nate are precision rate and recall rate, respectively. The formulas
of these metrics mentioned above are as follows:

TPR = TP
TP + FN

(17)

FPR = FP
TN + FP

(18)

Precision = TP
TP + FP

(19)

Recall = TP
TP + FN

(20)

ACC = TP + TN
TP + TN + FP + FN

(21)

F1 = 2 × TP
2 × TP + FP + FN

(22)

In the above formulas, TP and TN represent the number of
positive and negative samples that are correctly predicted, respec-
tively. FP and FN indicate the number of positive and negative
samples that are wrongly predicted, respectively.

In LPICGAE, we apply several hyperparameters during the
model construction process, including lr for learning rate, η

for weight decay rate, num for number of nodes in the hidden
layers and ω for weight parameter to balance the importance of
information obtained from lncRNA space and protein space.

We investigate the impact on the performance of LPICGAE
by controlling the hyperparameters mentioned above within a
certain range. With the adjustment of the hyperparameters, the
performance of LPICGAE is presented in Table 1. Finally, we get
the optimal hyperparameter values combination after multiple
experiments, which are shown in Table 2.

Comparison with other methods
To assess the performance of LPICGAE, we compare LPICGAE
with six current state-of-the-art LPI prediction models, namely
LPISKF, LPBNI, LPICNNCP, HLPI-Ensemble, LPI-NRLMF and LPIDF.
In order to enhance the persuasiveness of the comparative exper-
iments, our comparative models cover network-based methods,
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Table 3. The performance of LPICGAE and six comparison methods in 5-fold CV under dataset1

Method AUC AUPR ACC F1-score Precision

LPICGAE 0.9740 0.7688 0.9851 0.6397 0.4238
LPISKF 0.9650 0.6080 0.8488 0.6410 0.5960
LPBNI 0.8382 0.6716 0.8211 0.6960 0.6144
LPICNNCP 0.9492 0.9441 0.9104 0.9194 0.8669
LPIDF 0.9694 0.9583 0.9344 0.9374 0.8965
LPI-NRLMF 0.9606 0.9596 0.8289 0.8480 0.8644
HLPI-Ensemble 0.9644 0.6312 0.9100 0.9085 0.9096

machine learning-based methods and deep learning-based meth-
ods. Table 3 shows the performance of each model in 5-fold CV
under dataset1.

• LPISKF [36] is a LPI prediction algorithm based on similarity
kernel fusion and Laplacian regularized least squares algo-
rithm to predict potential LPI.

• LPBNI [29] constructed an lncRNA–protein bipartite network
inference to predict LPIs.

• LPICNNCP [39] is a novel convolutional neural network
method with a copy-padding trick for LPI prediction.

• HLPI-Ensemble [23] employed three mainstream machine
learning algorithms of SVM, RF and XGB by ensemble strategy
to predict LPIs.

• LPI-NRLMF [21] mapped the LPI matrix to the lncRNA simi-
larity matrix and the protein similarity matrix to predict the
possibility of LPIs.

• LPIDF [43] is a deep forest model with cascade forest structure
designed to find new LPIs.

From Table 3 we can see that the performance of LPICGAE
outdoes the other six methods under dataset1. LPICGAE yields
an average AUC of 0.9740, which is 0.9%, 13.58%, 2.48%, 0.46%,
1.34% and 0.96% higher than that of LPISKF, LPBNI, LPICNNCP,
LPIDF, LPI-NRLMF and HLPI-Ensemble, respectively. We also show
the ROC curves of LPICGAE and the other six methods in 5-
fold CV under dataset1 in Figure 2. The average ACC of LPIC-
GAE is 0.9851, which is 13.63%, 16.4%, 7.47%, 5.07%, 15.62% and
7.51% higher than that of LPISKF, LPBNI, LPICNNCP, LPIDF, LPI-
NRLMF and HLPI-Ensemble, respectively. However, LPICGAE does
not outperform other methods on AUPR, F1-score and Precision.
This may be due to an imbalance in the adjacency matrix graph
made by dataset1, in which most edges tend to connect with
a small part of nodes. It is difficult for the graph neural net-
work method to perform its best performance on the imbalanced
graph.

Performance on external validation dataset
To verify the robustness of LPICGAE, we do the same 5-fold
CV experiment under dataset2, which is used as an external
validation dataset in our work. The performance comparison of
LPICGAE and other models in 5-fold CV under dataset2 is shown in
Table 4.

From Table 4, it can be concluded that LPICGAE exhibits a
robust performance on the external validation dataset. Specifi-
cally, LPICGAE achieves an average AUC of 0.9734, which is 1.13%,
23.55%, 12.3%, 5.95%, 3.7% and 15.42% higher than that of LPISKF,
LPBNI, LPICNNCP, LPIDF, LPI-NRLMF and HLPI-Ensemble, respec-
tively. The average AUPR of LPICGAE is 0.9421, which is 28.2%,
38.44%, 11.01%, 4.2%, 0.45% and 34.17% higher than that of LPISKF,

Figure 2. ROC curves of LPICGAE and six comparison methods in 5-fold
CV under dataset 1.

LPBNI, LPICNNCP, LPIDF, LPI-NRLMF and HLPI-Ensemble. Simi-
larly, we can figure out that the ACC and F1-score of LPICGAE
are also higher than those of all other models. Significantly, the
AUPR of LPICGAE under dataset2 is much higher than that under
dataset1. This is due to data in dataset2 being more balanced with
a positive and negative sample ratio of 1:2.9. In contrast, the ratio
in dataset1 reaches 1:50.

Case study
To further prove the ability of LPICGAE in identifying novel LPIs,
our model is implemented on several case studies. The bench-
mark dataset which we use during model training and testing is
NPInter v2.0 database. FUS (fused in sarcoma) is a kind of pro-
tein integrally involved in amyotrophic lateral sclerosis and fron-
totemporal dementia, which can be searched in UniProt database
by index P35637 [57]. We take the top 10 possible lncRNAs related
to protein FUS with the highest probability from the predictive
results by LPICGAE. It is important to note that these 10 interac-
tions are not included in the NPInter v2.0 database.

Table 5 shows that the existence of these 10 interactions is con-
firmed in the NPInter v4.0 database [58] updated in 2019, which
is direct evidence proving the utility of LPICGAE. For example,
the interaction between lncRNA NONHSAG026396 and protein
P35637 predicted by LPICGAE is not recorded in the NPInter v2.0
database, but it is complemented in NPInter v4.0 database by
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Table 4. The performance of LPICGAE and six comparison methods in 5-fold CV under dataset2

Method AUC AUPR ACC F1-score Precision

LPICGAE 0.9734 0.9421 0.9305 0.8534 0.7871
LPISKF 0.9621 0.6601 0.7461 0.7079 0.8418
LPBNI 0.7379 0.5577 0.7888 0.3852 0.7050
LPICNNCP 0.8504 0.8320 0.7474 0.6443 0.6578
LPIDF 0.9139 0.9001 0.8457 0.8495 0.8289
LPI-NRLMF 0.9364 0.9376 0.8070 0.8167 0.8506
HLPI-Ensemble 0.8192 0.6004 0.7643 0.7787 0.7340

Table 5. The top 10 predicted results of protein FUS related lncRNAs based on LPICGAE

Species lncRNA ID Protein ID Confirmed PMID

Homo sapiens NONHSAG026396 P35637 Yes 23023293
Homo sapiens NONHSAG005685 P35637 Yes 23023293
Homo sapiens NONHSAG035903 P35637 Yes 23023293
Homo sapiens NONHSAG000047 P35637 Yes 23023293
Homo sapiens NONHSAG020957 P35637 Yes 22081015
Homo sapiens NONHSAG035788 P35637 Yes 23023293
Homo sapiens NONHSAG012986 P35637 Yes 23023293
Homo sapiens NONHSAG039294 P35637 Yes 23023293
Homo sapiens NONHSAG022006 P35637 Yes 23023293
Homo sapiens NONHSAG048962 P35637 Yes 23023293

PMID 23023293. Therefore, we believe that LPICGAE has the ability
to discover new LPIs.

Discussion and conclusion
With the rapid development of biomedicine during recent
decades, researchers have gained a broader understanding of
the molecular functions of lncRNAs. More and more studies
have shown that lncRNAs are closely related to many human
complex diseases. It is worth noting that lncRNAs usually exert
their biological functions by interacting with related proteins
rather than translating into fixed proteins following the central
dogma. High-throughput sequencing technologies and large-scale
biological experiments have been developed to help researchers
explore the molecular functions of lncRNAs. However, how to
obtain more LPI information efficiently and quickly has still been
a difficult problem.

In this study, we introduce a novel deep learning framework
(LPICGAE) based on combined GAEs to predict potential LPI inter-
actions. First, we send the feature networks and similarity graphs
of lncRNAs (proteins) into VGAE to implement the feature recon-
struction. Second, the lncRNA–protein adjacency matrix and the
similarity graph mentioned above are sent into GAE to recon-
struct the adjacency matrix. Finally, we alternately perform the
two processes and optimize the manifold loss between the two
hidden layer embeddings to strengthen the ability of our model
to acquire higher quality prediction. In the training process of
LPICGAE, we also take the lncRNA space and the protein space
as two independent processes and perform collaborative training
to make full use of existing information. After model training,
we can obtain the predictive score of each lncRNA–protein pair
from the final adjacency matrix. We compare LPICGAE with six
classical LPI prediction methods in 5-fold CV. We also apply an
external validation dataset to verify the robustness of our model.
The results show that LPICGAE exhibits the best comprehensive
performance.

The ideal predictive ability of LPICGAE mainly depends on
the following factors. First, none of the previous methods pro-
posed for this task fully exploit the topological information in
the stage of feature extraction, while LPICGAE makes full use
of the sequence feature information of lncRNAs (proteins) and
topological information on the LPI graph by applying VGAE for
feature extraction. Second, the feature extraction process and
the label prediction process of previous methods are divided into
two separate parts and therefore lack of connections. LPICGAE
can deeply integrate the feature extraction process and the label
prediction process, and obtain higher quality feature embeddings
by optimizing the manifold loss between two GAEs. Third, we
apply collaborative training in LPICGAE, which helps gain bal-
anced information between lncRNA space and protein space.

However, LPICGAE also suffers from some limitations. First,
there is still a gap between the performances of LPICGAE under a
balanced dataset and a highly unbalanced dataset, which results
in some metrics in our study that are not ideal. Second, LPIC-
GAE needs to be retrained when the dataset expands with new
lncRNAs (proteins), which will affect the efficiency of LPICGAE. In
the future, we will focus on collecting higher quality LPI datasets
and exploring better feature extraction methods to improve the
prediction performance of LPI.

Key Points

• We present a new deep learning algorithm (LPICGAE)
based on combined graph auto-encoder methods for
predicting potential lncRNA-protein interactions.

• We apply collaborative training in LPICGAE, which help
gain balanced information between lncRNA space and
protein space.

• LPICGAE can obtain higher quality feature embeddings
by optimizing the manifold loss between two kinds of
graph auto-encoders.
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• Compared with existing state-of-the-art methods, LPIC-
GAE achieves higher predictive accuracy.

Data availability
The source code and datasets are available online at https://
github.com/zhaoqi106/LPICGAE.
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