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A B S T R A C T   

OpenSWATH is an analysis toolkit commonly used for data independent acquisition (DIA). Although the output 
of OpenSWATH is controlled at 1% false discovery rate (FDR), the output report still contains many peptide 
precursors with low similarity fragments. At the last step of OpenSWATH for peptide quantification, researchers 
usually need to manually check the similarity of the extracted ion chromatograms (XICs) of fragments to 
distinguish the high confidence and the low confidence peptide precursors. Here we developed an algorithm with 
a Graphic User Interface named MSSort-DIAXMBD, which combines the deep convolutional neural network (CNN) 
and the double-threshold segmentation process, to automatically recognize the high confidence precursors and 
low confidence precursors. To train the model of MSSort-DIAXMBD, we built a database contained about 50,000 
manually classified peptide precursors acquired from different instrument platforms and different species. With 
the double-threshold segmentation strategy, MSSort-DIAXMBD can reduce the number of the low confidence 
peptides required for manual inspections to less than 10% and be used as the last step of OpenSWATH to 
visualize and classify the MS/MS data of peptide precursors. 
Significance: Although the output of OpenSWATH is controlled at 1% false discovery rate (FDR), the output report 
still contains many peptide precursors with low similarity fragments. At the last step of OpenSWATH for peptide 
quantification, researchers usually need to manually check the similarity of fragment XICs to distinguish the high 
confidence and the low confidence peptide precursors. However, manual inspection is inefficient. For instance, it 
takes about 50 h to sort even a small dataset of 1000 MS/MS spectra manually. In this paper we developed a 
software named MSSort-DIAXMBD to automatically recognize the high confidence precursors. We manually 
classify 50,000 peptide precursors as training set to train a convolutional neural network. After training finished, 
MSSort-DIAXMBD takes only a few minutes to automatically classify 20,000 peptide precursors, leaving a small 
portion of fuzzy ones for manual inspection. On the benchmarked dataset, MSSort-DIAXMBD can significantly 
improve the efficiency and accuracy of recognition of high confidence peptide precursors.   

1. Introduction 

Mass spectrometry technology (MS) is widely used for peptide and 
protein identification/quantification. Data-independent acquisition 
(DIA) is a deterministic and reproducible strategy for peptide and pro-
tein quantification [1–3]. An implementation of DIA methods is named 
sequential window acquisition of all theoretical mass spectra (SWATH- 

MS) [3,4], which records all fragments from the corresponding precur-
sor isolation window with a large range of mass-to-charge ratio (m/z). 
Several software tools, such as OpenSWATH [5], Spectronaut [6], 
Skyline [7], Group-DIA [8], and DIA-NN [9], have been developed for 
DIA analysis. Also, QuantPipe is a graphic interface software for targeted 
analysis of DIA data [10]. OpenSWATH is a common toolkit to analyze 
SWATH-MS data, firstly extracting chromatograms from the spectral 
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library and then filtering peptide precursors according to the scoring 
algorithms. 

Although OpenSWATH includes PyProphet [11] and Percolator [12] 
for statistical validation, where the false discovery rate (FDR) could be 
controlled at 1% in the “global” context, there are still lots of peptide 
precursors with low confidence, because the shapes of the extracted ion 
chromatograms (XICs) of fragments show low similarity. These low 
confidence peptide precursors cannot be detected by statistic validation 
alone. Identifying the high confidence peptide precursors which display 
strong similarity of peak-shaped XICs is often required for peptide 
quantification. Therefore, there is a need to develop a software toolkit 
that can accurately and quickly classify the peptide precursors reported 
by OpenSWATH. 

Over the past several years, machine learning and deep learning 
techniques have made great progresses in dealing with classification 
problems [13–16]. The deep learning has been applied in mass spec-
trometry in recent years. Tran et al. proposed a deep neural network 
model for de novo peptide sequencing [17]. Zohora et al. designed 
DeepIso based on deep learning to detect peptide features [18]. Ma et al. 
used deep learning method to improve the prediction of peptide reten-
tion time [19]. He et al. have developed a library-free software com-
bined unsupervised deep learning and machine learning to directly 
analyze DIA data [20]. Wu et al. applied deep learning method as a 
substitute for the conventional manual peak picking pipeline of MS/MS 
data [21]. Xu et al. proposed a semi-supervised Convolutional Trans-
former for automated peak detection, in which prior information about a 
peptide precursor is used for multi-channel time series segmentation 
[22]. 

Manual inspection of MS/MS data filtered by OpenSWATH still 
serves as a required step in accurate quantification of peptide pre-
cursors. The typical procedure of manual inspection is to draw the 
fragment XICs of each peptide precursor and save it as a picture, and 
then researchers observe the similarity between the fragment XICs in 
each picture, and finally judge whether the inspected peptide precursor 
is high confident peptide or not. Researchers will discard peptide pre-
cursors with dissimilar fragment XICs. Manual inspection is a tedious 
work, and researchers can process about 20 images per hour. Computer 
vision with deep learning based methods can accelerate this process. 
MS/MS data visualization is a key part in the process of manual in-
spection, and there are some tools available to visualize chromatogram. 
Skyline [7], TAPIR [23], TRIC [24], and TOPPView [25] are familiar 
tools for raw chromatogram visualization. DrawAlignR is an interactive 
tool for cross-run chromatogram alignment visualization [26]. 

However, there is not any open-source tool combining deep learning 
method and spectra visualization for the confidence degree assessment 
of peptide precursors. Here we developed a toolkit named MSSort- 
DIAXMBD to classify the peptide precursor data filtered by OpenSWATH 
with deep learning method. It integrates a visualization plugin to locate 
and show the XICs of peptide fragments and then uses a deep convolu-
tional neural network (CNN) to speed up the confidence degree assess-
ment of the peptide precursor data. We created a database with about 
50,000 peptides, which are manually classified into two categories of 
high confidence and low confidence peptide precursors, to train the 
model of MSSort-DIAXMBD. Due to the strong ability of CNN in classifi-
cation, MSSort-DIAXMBD shows excellent performances in distinguishing 
high confidence and low confidence peptide precursors. MSSort- 
DIAXMBD is a useful open-source software that fulfil the need for elimi-
nating false identification of peptide precursors by OpenSWATH. 

2. Materials and methods 

2.1. The workflow of MSSort-DIAXMBD 

OpenSWATH-PyProphet-TRIC workflow is commonly used as a 
quantification workflow for DIA data. Although the FDR value is 
controlled at 1% by the algorithm, researchers usually need to manually 

inspect the similarity of the top 6 fragment XICs from the same peptide 
precursor. The manual inspection results contain high confidence and 
low confidence classes (Fig. 1 and Fig. 4D). MSSort-DIAXMBD can sub-
stitute for manual inspection to classify the top 6 fragment XICs of the 
same peptide precursor. MSSort-DIAXMBD calculates the similarity scores 
for each fragment XIC group. Researchers can set the upper similarity 
threshold and the lower similarity threshold to obtain the high confi-
dence peptide precursors that the 6 XICs show strong peak-shaped 
similarity and low confidence peptide precursors that the 6 XICs 
hardly display similarity in shapes, but with strong noises. We defined 
the peptide precursors with scores between the upper threshold and the 
lower threshold as fuzzy peptide precursors that the 6 XICs show certain 
similarity in peak-shaped curve but with high fluctuation. Researchers 
only need to manually check the fuzzy precursors instead of checking all 
the data. 

2.2. The algorithms of MSSort-DIAXMBD in classification 

We applied CNN for classification in MSSort-DIAXMBD. CNN excels at 
processing multiple arrays [27], and can automatically learn the po-
tential spatial correlation of the given data according to its structure 
[28,29]. The LeNet-5 developed by LeCun which applied back- 
propagation algorithm performs well in recognizing hand-written digit 
characters with relatively few parameters [13,30,31]. Considering that 
LeNet can overcome the variance of XICs caused by normalization, we 
referred the structure of LeNet to design our model. We designed the 
rectangle convolutional kernel to adapt to the input matrix with a shape 
of 6 rows and 85 columns (Table. 1 and Fig. 2A). The rows of the input 
matrix represent the top 6 fragment XICs. The columns of the input 
matrix represent the length of XICs. To ensure that there is one peak 
included in the XIC, we take 42 points before and 42 points after the 
peak to obtain an XIC, which gives 85 points in total as the length of XIC. 
The time interval between each 2 points is 3.6 s. Therefore, with the 
column number of 85, the time interval is 85*3.6 = 306 s. According to a 
series of tests, in which the XIC length of 85 was proved to be the best 
among different intervals of 40, 55, 70, 85, 100, 115, and 130. 

When training our model, we randomly shuffled the order of 6 XICs 
for 4 times for data augmentation to avoid overfitting. And we employed 
the adaptive moment estimation (Adam) algorithm with batch size of 
256 peptides, beta1 of 0.9, beta2 of 0.999, epsilon of 1e-8, weight decay 
of 5e-4, and learning rate of 0.001. The number of training epochs was 
set to be 100. 

To further evaluate the proposed CNN model, we compared it with 
other methods, including the Pearson and the Spearman correlations, 
deep neural network (DNN), recurrent neural network (RNN), support 
vector machine (SVM), and random forest. The parameters of these 
models were obtained by manual testing. We tested a series of parameter 
combinations to obtain the final optimized parameters. 

For the Pearson and the Spearman correlations, we calculated the 
Pearson and the Spearman correlation coefficients of each two XICs and 
averaged them to get the final similarity scores. The formula of the 
Pearson correlation is given as follows: 

ρXY =
cov(X, Y)

σXσY
=

E(XY) − E(X)E(Y)
σXσY  

where X and Y represent two fragment XICs, the numerator is the 
calculation formula of covariance of X and Y, and σX and σY represent the 
standard deviation of X and Y, respectively. E(X) and E(Y) represent the 
mean values of X and Y, respectively. 

The formula of the Spearman correlation is given as follows: 

ρs = 1 −
6
∑n

i=1d2
i

n(n2 − 1)

where di
2 is the difference between the two ranks of each input fragment 

XIC, and n is the number of the input samples. 
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The input data of DNN, RNN, SVM and Random Forest are a one- 
dimensional vector spliced by the top 6 fragment XICs. Since the 
length of each XIC is 85, the length of input vector is 6 × 85 = 510. 

Our proposed DNN comprises four fully connected layers, including 
the input layer with 510 neurons, the first hidden layer with 516 neu-
rons, the second hidden layer with 256 neurons and the output layer 
with 1 neuron. The activation function of both hidden layer 1 and hid-
den layer 2 is ReLU, and the dropout parameter was set to be 0.3. The 
activation function of the output layer is Sigmoid (Fig. 2B). We 
employed the Adam optimizer with the batch size of 256, the weight 
decay of 5 × 10− 4, the learning rate of 0.001, and the training epoch of 
100. 

Our proposed RNN comprises 4 dense layers, including an input layer 
with the size of (6, 85), the first hidden layer with 256 neurons, the 
second hidden layer with 256 neurons, and the output layer with 1 
neuron. The activation function of the hidden layers is ReLU, and that of 
the output layer is Sigmoid (Fig. 2C). We employed the Adam algorithm 
with the batch size of 256, the learning rate of 0.001, and the number of 
training epochs of 100. 

SVM is a kind of machine learning algorithm which can maximize the 
margin between the training patterns and the decision boundary 
[32–35]. When training the SVM model in sklearn.svm.SVC package, we 
set the ‘regularization’ parameter to be 0.5, the ‘kernel’ parameter to be 
‘rbf’, and the ‘gamma’ parameter to be 0.1. 

Random Forest is an ensemble of classification and regression trees 

(CART) [36] trained on datasets, which are created from a random 
resampling on the training set itself [37]. When training the Random 
Forest model in sklearn package, we set the parameter ‘n_estimator’ to be 
250, for it had the best performance among parameters of 50, 100, 150, 
200, 250, 300, and 350. We set all the other parameters to be the default 
value based on empirical tests. 

The output of each model is a score representing the probability of 
the confidence degree assessment of peptide, and the predicted class of 
certain peptide is determined by the output score. 

2.3. Training settings 

The experiments in this paper were run under the software platform 
of Python with version of 3.7. The CNN, DNN, and RNN classifiers were 
implemented in deep learning framework of MXNet (version 1.5.0) [38] 
(https://mxnet.apache.org). The SVM and Random Forest classifiers 
were implemented in Scikit-learn (version 0.24.2, http://scikit-learn. 
org). 

3. Results 

3.1. Classified database and data processing of MS/MS 

We used the amino acid sequence of peptides and the charge value of 
precursor identified by OpenSWATH to distinguish the high confidence 

Fig. 1. The workflow of MSSort-DIAXMBD. The blue and yellow parts represent the manual inspection process and MSSort-DIAXMBD analyzing process, respectively. 
The colored Gaussian curve represents the fragment XICs of peptide precursors. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 1 
Detailed structure of our proposed CNN classifier. The size of the input data is (1, 6, 85) with the input format of (channel, height, width). Layer Conv1 is a con-
volutional layer with the kernel size of (2, 7), the output size of (5, 79), and the ReLU activation. Max pooling1 is a max-pooling layer with the kernel size of (2,2), the 
output size of (4, 78). Layer Conv2 is a convolutional layer with the kernel size of (2,3), the output size of (3, 76), and the ReLU activation. Layer Max pooling2 is a max- 
poling layer with the kernel size of (2, 2), the output size of (2, 75). Layer Conv3 is a convolutional layer with the kernel size of (2, 3), the output size of (3, 75), the 
spatial padding of (1,1), and the ReLU activation. Layer Max pooling3 is a max-poling layer with the kernel size of (2, 2), the output size of (2, 74). Layer Dense1 is a 
fully connected layer with 512 neurons, the dropout rate of 0.3, and the activation of ReLU. Layer Dense2 is a fully connected layer with 256 neurons, the dropout rate 
of 0.3, and the activation of ReLU. The output layer is a fully connected layer with one unit and the activation of Sigmoid.   

No. of filters Size of operators Padding Strides Size of outputs Activation function 

Conv1 64 filters (2, 7) – 1 (5, 79) ReLU 
Max pooling1 – (2, 2) – 1 (4, 78) – 
Conv2 128 filters (2, 3) – 1 (3, 76) ReLU 
Max pooling2 – (2, 2) – 1 (2, 75) – 
Conv3 256 filters (2, 3) (1, 1) 1 (3, 75) ReLU 
Max pooling3 – (2, 2) – 1 (2, 74) – 
Dense1 512 neurons – – – (1, 512) ReLU 
Dense2 256 neurons – – – (1, 256) ReLU 
Output 1 neuron – – – (1, 1) Sigmoid  
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peptides in our deep learning-based classifier. The benchmarked dataset 
includes SWATH-MS Gold Standard (SGS) human dataset, L929 mouse 
dataset [8], HYE110 dataset, HYE124 dataset, HeLa dataset, BGS mouse 
dataset and E. coli dataset. The SGS human dataset [5] was acquired 
from TripleTOF 5600 with 32 fixed windows and gradient length of 2 h. 
The L929 mouse dataset contains triplicate samples with 100 variable 
windows measured in SWATH mode on TripleTOF 5600 mass spec-
trometer. The HYE110 and HYE124 dataset [39] were acquired by 
TripleTOF 5600 or TripleTOF 6600 mass spectrometers with gradient 
length of 2 h, the window number of 32 or 64 and fixed or variable 
window sizes. The HeLa dataset [40] was acquired from Q Exactive HF-X 
mass spectrometer with 45 windows and gradient length of 2 h. The BGS 
mouse datasets [41] were acquired from Orbitrap Fusion Lumos mass 
spectrometers (Thermo Fisher Scientific, San Jose, CA) with 40 windows 

and gradient length of 2 h.The E. coli dataset [42] was acquired from 
TripleTOF 6600 mass spectrometer (SCIEX) with 100 variable windows 
on SWATH mode. 

The labeled datasets consist of 51,358 peptide precursors, which 
have been classified into two categories: high confidence and low con-
fidence peptide precursors. We assume that the peptide precursor is 
highly confident if its 6 XICs of peptide fragments in the dataset coincide 
well with each other at the crest. On the contrary, a peptide precursor is 
considered to be low confident if the 6 curves don't coincide well at the 
crest [43]. After manually checking, we obtained 29,387 high confi-
dence peptide precursors and 21,971 low confidence peptide precursors. 

We randomly selected 17,631 high confidence and 13,183 low 
confidence peptide precursors as the training set, and 5878 high confi-
dence and 4394 low confidence peptide precursors as the cross- 

Fig. 2. The proposed neural networks and machine learning models. (A) The model of the proposed CNN. “C” represents the convolutional layer, “M” represents the 
max pooling layer, and “D” represents the dense layer. The number inside the bracket represents the output size of the corresponding layer. (B) The model of the 
proposed DNN. The output sizes of the input layer, hidden layer1, hidden layer2, and output layer are set to be 510, 512, 256, and 1, respectively. (C) The model of 
the proposed RNN. “x” is the value of the input layer, “h” is the value of the hidden layer, “o” is the value of output layer, “U” is the weight matrix from the input layer 
to the hidden layer, “V” is the weight matrix from the hidden layer to the output layer. “t” is the depth of RNN model on the time dimension. The number inside the 
bracket represents the output size of the corresponding layer. (D) The model of SVM. The solid line represents the classification hyperplane. “w→” and “b” are the 
weight and bias. “x” is the input vector. The input vectors located in margin hyperplanes are support vectors. (E) The model of Random Forest. The blue circles and 
red circles represent all paths and the selected path in decision trees, respectively. Each decision tree predicts the labels for input samples. Random forest integrates 
the voting results of all decision trees to predict the label of the sample. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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validation set, and 5878 high confidence and 4394 low confidence 
peptide precursors as the testing set. As a result, the ratios of training set, 
cross validation set and testing set are 6:2:2. 

During the process of building the spectral libraries, the raw files of 
mass spectrometry data were converted to profile mzXML files using 
MSConvert (V.3.0.19311) and then a pseudo-DDA mgf file was gener-
ated using DIA-Umpire [44]. The mgf files were converted to mzXML 
files using TPP (Trans-Proteomic Pipeline, Version 5.1.0) software for 
analysis. A database search of the UniprotKB/Swiss-Prot database for 
mzXML files was performed using Comet [45] (Version 2017.01) and X! 
Tandem [46] (Version 2013.06.15.1, native and k-score). The pep.xml 
search results were validated and scored using PeptideProphet [47] with 
parameters -p0.05 -l7 -PPM -OAdPE -dDECOY and combined by iPro-
phet [48] with parameters DECOY=DECOY. Mayu [49] (version 1.07) 
was used to determine the iProphet probability corresponding to 1% 
peptide FDR. The peptide ions passing the 1% FDR were input into 
SpectraST for the library building with CID-QTOF setting. The retention 
time of peptides in sptxt file was replaced with iRT time using spec-
trast2spectrast_irt.py script (downloaded from www.openswath.org), 
and the iRT peptides used for retention time normalization were 
endogenous peptides. The sptxt file was made as the consensus non-
abundant spectral library with the iRT retention time using spectraST 
[50]. The consensus sptxt files were converted to tsv using spectrast2tsv. 
py script which was then converted to TraML file for OpenSWATH- 
PyProphet-TRIC workflow. The spectrast2tsv.py script set six 

transition ions in TraML file with the corresponding parameters. 
OpenSWATH-PyProphet-TRIC workflow was used to quantify peptides 
and proteins in spectral libraries. The search parameters are shown in 
Supplementary Fig. S1 and Fig. S2. 

The input of our model consists of the top 6 fragments XICs, and we 
fixed the length of XIC to be 85 scans based on the window size and our 
experience. Supplementary Fig. S2 shows the examples of originally 
high confidence and low confidence peptide precursors. 

MSSort-DIAXMBD analyzes the similarity of the extracted ion chro-
matograms (XICs) of fragments. Different cycling times and mass reso-
lutions influence the process of the XIC similarity extraction. We 
calibrated for these variations in the data preprocessing stage. To 
eliminate the effect of different cycling times, we set the time interval of 
XIC to about 300 s to ensure that each XIC generated by different in-
struments contains one peak. According to the results of several tests, we 
set a reasonable binning size of m/z to eliminate the impact of different 
mass resolutions. 

Before training our models, we first applied minmax scale method in 
sklearn.preprocessing package provided by Scikit-learn library (http 
://scikit-learn.org) to normalize each curve. This standardization is to 
scale the intensity of XIC to lie between zero and one with the trans-
formation formula given as follows: 

Xscale =
X − min(X)

max(X) − min(X)

Fig. 3. The ROC curves of different classifiers and the losses of CNN model on the training set and cross validation set. (A) The ROC curves of different classifiers on 
the training set. (B) The ROC curves of different classifiers on the cross validation set. (C) The ROC curves of different classifiers on the testing sets. (D) The losses of 
CNN model on the training set and cross validation set. The x-direction is the training number of times. 
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where min(X) and max(X) are the minimum and maximum of each XIC. 
Fig. S1B shows the images of peptide precursors of different classes after 
normalization. 

3.2. ROC curves of different classifiers 

To compare the performances of CNN model with other four models 
on binary classification, we computed the evaluation scores including 
the true high confidence rate and the low confidence rate under different 
thresholds with the range from 0 to 1, and then compared the ROC 
curves of the training set, the cross validation set, and the testing set for 
different classifiers (Fig. 3). 

On training set, each classifier has good performance with Area 
Under Curve (AUC) close to 1 (Fig. 3A). Therefore, all the five classifiers 
are well-trained without under fitting. As for the Random Forest clas-
sifier which performs the best on the training set with the AUC of 0.999, 
the overfitting is observed for its bad performance on the testing set with 
the AUC of 0.951. 

The ROC curves on validation set and testing set reflect the gener-
alization performance of the classifiers (Fig. 3B and Fig. 3C). According 
to the AUC results in Fig. 3C, the CNN classifier shows the best gener-
alization performance with the AUC of 0.988 on the testing set, indi-
cating that CNN performs best accuracy for classification. Also, the rank 
of AUC value on the testing set is the same as that on the cross validation 
set, proving that our training set is large enough for MS/MS classifier. 

The losses of CNN model on both training set and cross validation set 
are also plotted in Fig. 3D, showing that the CNN model was well trained 
without overfitting. 

3.3. Probability distribution histogram of CNN 

According to the ROC curves, the CNN model is proved to be the best 
in classification. To further evaluate the performances of CNN classifier 
in distinguishing between the high confidence and low confidence 
peptide precursors, we plotted the frequency distribution histogram of 
the predicted score on testing set (Fig. 4A). CNN shows a strong ability in 
distinguishing the high confidence and the low confidence peptide 
precursors. As for CNN model, most of the predicted scores are close to 
either 0 or 1, and only a small part of the predicted scores are in the 
middle intervals. For the XICs in the middle intervals, although these 
XICs show certain similarity in peak-shaped curves, but the curves 
display strong enough fluctuation. As a result, we defined these peptide 
precursors as the fuzzy peptide precursors, and furthermore employed 
the bilevel thresholding segmentation method to distinguish the fuzzy 
peptide precursors with the predicted score in middle intervals. 

The output of our model is a probability P(X) of the peptide precursor 
X, which is an index of confidence degree of peptide precursor. By 
setting the bilevel threshold values with Tlower and Tupper to denote the 
lower and upper threshold, respectively, an original peptide with the 
probability P calculated by the model can be assigned into one of the 
following three classes: 
⎧
⎨

⎩

Low confidence if P(X) ≤ Tlower
Fuzzy if Tlower < P(X) ≤ Tupper

High confidence if P(X). > Tupper 

According to the inflection points of the smoothing curve of distri-
bution histogram (Fig. 4A), we set the upper threshold to be 0.92 and the 
lower threshold to be 0.08. Because the smoothing curve is steep at both 
ends and flat in the middle, the small change of the two threshold values 
barely affects the number of predicted fuzzy peptides in the middle 
range. 

3.4. The changes of fuzzy set under different thresholds 

Next, we evaluated the proportion changes of fuzzy data in the 

testing dataset when the bilevel threshold values were changed. Fig. 4B 
shows the proportions of fuzzy set under different lower thresholds and 
upper thresholds. The proportion of fuzzy peptide precursors that need 
to be manually checked is between 1% and 10%. Thus, MSSort-DIAXMBD 

can reduce the number of manual inspections by more than 90%. The 
lower threshold and the upper threshold are adjustable parameters, and 
so the users can change the thresholds according to their requirement. If 
the upper threshold is increased and the lower threshold is decreased, 
the percentage of the fuzzy peptide precursors will increase, and 
therefore a relatively high percentage of fuzzy set is obtained at the 
expense of increasing confidence degree. If the upper threshold is 
decreased and the lower threshold is increased, the percentage of fuzzy 
peptide precursors will decrease at the expense of decreasing confidence 
degree. Our default values of upper and lower thresholds are 0.08 and 
0.92, respectively, which are proved to be the best combination based on 
our tests. 

According to the ROC curves and probability distribution histograms 
(Fig. 4A and Fig. 4C), we suggest CNN as the best model, for its strong 
ability to distinguish the high confidence and low confidence peptide 
precursors with high stable results. As examples, Fig. 4D shows some 
predicted peptide precursors obtained by CNN with the upper threshold 
of 0.92, and the lower threshold of 0.08. In the fuzzy XICs in the middle, 
the parts that do not contain peaks (retention time of 2400–2550 and 
2600-2700) are like the low confidence ones, and the parts that contain 
peaks (retention time of 2550-2560) are similar to the high confidence 
ones (Fig. 4D). Therefore, the fuzzy one in the middle is hard to be 
classified to either high confidence or low confidence. The noise comes 
from the residual pollutants in the sample and the experimental in-
strument. In the fuzzy XICs, the intensity of peak is relatively low, and 
the signal-to-noise ratio of peak is relatively low, which is lower than 
that of high confidence one and higher than that of low confidence one. 

3.5. The application of MSSort-DIAXMBD 

Finally, we designed a user-friendly GUI for MSSort-DIAXMBD, which 
has two main modules: MS/MS data visualization and classification. The 
users need to pass the profile mzXML file, window configuration file, 
and the output of OpenSWATH (version 2.2.0) to MSSort-DIAXMBD for 
MS/MS data visualization. Then MSSort-DIAXMBD will output the XICs of 
the fragments of the quantified peptide precursors found by Open-
SWATH, and the users can select a certain peptide precursor for XICs 
visualization. Next, MSSort-DIAXMBD can classify the quantified peptide 
percursors and output the classification result based on the chosen 
thresholds. It can also report the numbers and the percentages of the 
predicted high confidence, fuzzy, and low confidence peptide pre-
cursors. The users can modify the values of the two thresholds in order to 
obtain a satisfied classification (Fig. 5 and Note S1). 

4. Discussion 

In this work, we developed a tool of MSSort-DIAXMBD combined CNN 
algorithm and bilevel thresholding method to automatically classify the 
MS/MS data obtained in the last step of the quantitative analysis of 
protein by OpenSWATH. To train the model, we generated a database 
including high confidence peptides and low confidence peptide pre-
cursors, which were manually classified from real experiments, to 
ensure the classifiers can learn the features of the high confidence and 
low confidence peptide precursors. This database can also be used to 
train other kinds of neural networks. 

As a comparison with other deep learning and machine learning 
methods including DNN, RNN, SVM, and Random Forest, we show that 
the performances of CNN in all aspects are good enough for classification 
application. According to the ROC curves on training, validation and 
testing sets, the CNN classifier presents a good generalization perfor-
mance. Especially, CNN was proved to have a strong ability in dis-
tinguishing the high confidence and the low confidenve peptide 
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Fig. 4. Results on the testing set. (A) Distribution histogram of the predicted probability of CNN model on testing set. The vertical axis represents the proportions of 
peptides at a certain bin size of 0.025, while the horizontal axis represents the predicted poss Zibility of confidence assessment of peptide precursor. (B) The changes 
of fuzzy set under different thresholds. (C) Distribution histograms of the predicted probability of RNN, DNN, SVM, and Random Forest models on testing set. The 
vertical axis represents the proportions of peptides at a certain bin size of 0.025, while the horizontal axis represents the predicted possibility of confidence 
assessment of peptide. (D) The top part shows the predicted high confidence peptide by CNN with the probability of 0.997. The middle part shows the predicted fuzzy 
peptide precursor by CNN with the probability of 0.533. The bottom part shows the predicted low confidence peptide precursor by CNN with the probability of 0.001. 
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precursors based on the distribution histograms on testing set. 
Based on the proposed CNN classifier, we designed a software tool 

named MSSort-DIAXMBD to visualize and automatically classify the MS/ 
MS data filtered by OpenSWATH. After inputting the MS/MS data by 
users for classification, MSSort-DIAXMBD can output the name-list of all 
the peptide precursors from the input. Meanwhile, users can select any 
peptide precursors and draw the corresponding XIC curves on the 
interface. If the upper threshold and the lower threshold are given, the 
software can classify and package the input dataset into three files for 
high confidence peptide precursors, low confidence peptide precursors 
and fuzzy peptide precursors, respectively. Besides, it will output an 
excel file to describe the original file name with the predicted score and 
the predicted classification where letter N represents the low confidence 
class, letter F represents the fuzzy class, and letter P represents the high 
confidence class, for all the peptides in the input dataset. 

As a result, the peptides in the file of “low confidence peptide pre-
cursor” can be discarded, and the peptides in the file of “high confidence 
peptide precursor” can be used for further calculation. What left for 
biologist to manually check are those peptides in the files of “fuzzy 
peptide precursor”. The ratio of the fuzzy peptide precursors can be kept 
within a certain small range, leaving the manual workload greatly 
reduced. As a fact, if we set the lower threshold equal to the upper 
threshold, one classifies the peptide precursors only into the two types of 
low confidence and high confidence peptide precursors. 

As for MSSort-DIAXMBD, setting suitable combination of upper and 
lower thresholds is still a challenge, and we are exploring other deep 
learning methods to automatically predict the combination of upper and 
lower thresholds. MSSort-DIAXMBD automatically checks and filters the 
low confidence peptides included in the OpenSWATH output files. 

However, it does not restrict the source of the input spectral library of 
OpenSWATH. Currently, MSSort-DIAXMBD supports the spectral library 
built from DIA-Umpire or DDA. In the future, MSSort-DIAXMBD could 
become compatible with other open-source DIA tools, such as DIANN or 
MaxDIA, giving its great potential in the field of DIA analysis. 

5. Conclusion 

We developed MSSort-DIAXMBD for MS/MS data visualization and 
classification, which performs superior in classifying MS/MS data 
filtered by OpenSWATH. It can directly acquire the picture of XICs of 
fragments of certain peptides precursors and replace manual inspection 
in data-independent acquisition proteomics. 

Code availability 

The program of MSSort-DIAXMBD is available at https://github.com/ 
jianweishuai/MSSort-DIA-XMBD. 
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[5] H.L. Röst, G. Rosenberger, P. Navarro, L. Gillet, S.M. Miladinoviä, O.T. Schubert, 
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