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a b s t r a c t

The environmental temperature plays a critical role in the system functioning. In
biological organisms, there often exists an optimal temperature for the most effective
functions. In this work, we investigate the effect of temperature on the propagation
of firing rate in a feed-forward multilayer neural network in which neurons in the
first layer are stimulated by stochastic noises. We then show that the firing rate can
be transmitted through the network within a temperature range. We also show that
the propagation of the firing rate by synchronization is optimized at an appropriate
temperature. Our findings provide new insights and improve our understanding of the
optimal temperature observed in the experiments in the living biological systems.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The signal encoding, transmission and decoding play a crucial role in various neuron-related computation, learning
nd cognitive processing, and their various aspects have been investigated systematically by the researchers in neu-
oscience [1–4]. The stimulus information is encoded in the spike sequences when the total dendritic inputs reach a
hreshold. Two different encoding mechanisms including the firing rate and the spike timing are proposed to analyze
he neural information transmission. Accurate timing of the spikes, which is in a millisecond time-scale, is found to carry
nformation [5]. The firing rate encoding is statistically computed based on the numbers of spikes in a fixed time window,
nd the information about the stimulus is then encoded in the firing rate of the neuron [6].
It is generally expected the structure of feed-forward multilayer network might play a significant role in the signal

ransmission and information processing in nervous system. Many groups of neurons which deal with the computing
nformation together can form the functional cell assemblies. The information is transmitted from one assemble to
nother. It is sensible to apply a multilayer feed-forward network for investigating the information processing in nervous
ystems. The feedforward neuronal network which is called usually the artificial neural networks (ANNs), has been
mployed for information processing and data clustering of different systems due to the obvious feature of neuronal
etwork with the neurodes (neural nodes) and weighted connections (synapses). ANNs have been investigated extensively
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ue to its powerful ability in image processing, machine Intelligence, ECG signal diagnosis, health care organizational
ecision-making [7–11].
Recently, it is theoretically shown that the stable synchronous spiking which is closely related to the firing rate

ncoding can propagate in cortical neural networks [12]. The experiment also showed that the synchronous firing can be
enerated and the firing rate can be transmitted in a feed-forward multilayer network of neurons which were constructed
y an in vitro slice preparation of rat somatosensory cortex [13,14]. Nowotny explained the synchrony in feed-forward
etworks base on the probability distribution of the active neurons in each layer [15]. To elaborate on the mechanism of
ynchronization and propagation of the firing rate, many works have been done in the multiple layers of feed-forward
etworks [16–23]. For example, Wang et al. reported that the synchronous firings and propagation of the firing rate can
e observed in a feed-forward multilayer neuronal network when the number of layers is larger than six [24].
It is well known that the microenvironment plays a key role in the electrical activities of the neuron. For example, the

xtracellular ion concentrations, especially for potassium, are tightly associated with the neuronal behaviors [25–32]. The
bnormal extracellular potassium concentration plays an important role in depression, diabetes and arrhythmias [33]. The
ell volume and oxygen concentration can also play a relevant role in the physiological activity of the neurons [34–36].
change in the cell volume is closely related to the increased seizure susceptibility [37,38]. The relationship between
xygen concentration and the seizure patterns was also discussed [39–42]. Recently, the theoretical models revealed the
mportant effect of temperature on the transmission of action potentials along the axons, and there exists an optimum
emperature for action-potential propagation through myelinated axons [43]. The existence of optimal temperature for
iological organisms is a common knowledge since the maximum efficiency of the system functioning can be often
aintained only at the optimal temperature [44–46].
In the work, we investigated in detail the effect of temperature on the propagation of firing rate in a feed-forward

ultilayer neural network where the neurons in the first layer are driven by the stochastic noise. Similar works have
een performed without considering the effect of the temperature [18,22]. Here in particular we are interested in the
nvestigation of the effect of environmental temperature on the propagation of firing rate in the feed-forward multilayer
eural networks. To our knowledge, in all existing works, the effect of temperature on the propagation of firing rate
ere not considered. Interestingly, we found that the propagation of the firing rate by synchronization is optimized at an
ppropriate temperature, indicating that the temperature plays a critical role in the neuronal system.
Our simulation results indicate that there is an appropriate temperature range that can effectively enhance the

ropagation of firing rate by synchronization. We further show that the synchronous firing rate can be only developed at
he optimal temperature. The rest of the paper is organized as follows. The feed-forward network model is introduced in
ection 2. The numerical results are presented and discussed in Section 3. Finally, conclusions and discussion are drawn
n Section 4.

. Model and method

To investigate the effect of temperature on the transmission of firing rate, we construct a ten-layer feed-forward
etwork, where the modified HH neurons are used in each layer. The dynamical equations for the membrane potential
s [46],

Cm
dVi,j

dt
= −(gKni,j(Vi,j − VK ) + gNam3

i,jhi,j(Vi,j − VNa) (1)

+ gl(Vi,j − Vl)) + I0 − Isyni,j + ξ1,j(t),

here Cm is the capacitance, Vi,j stands for the membrane potential, gNa, gK , and gl represent the maximum conductance
f the sodium, potassium and leak currents, respectively. VK and VNa are K+ and Na+ reversal potentials, respectively,
l is the resting leakage potential for the leakage conductance, and I0 is a constant injected current. The Gaussian white
oise in the first layer satisfies ⟨ξ1,j⟩ = 0.0, ⟨ξ1,j(t1)ξ1,k(t2)⟩ = 2Dδj,kδ(t1 − t2). In some fundamental models of statistical
hysics, the strength of noise depends on the temperature, namely, D =

βkBT ′

m = k0T ′
= k0(273 + T ), where k0, T ′, and

stands ratio coefficient, Kelvin temperature, and Celsius temperature, respectively, and β , kB, and m are the damping
oefficient, the Boltzmann constant, and the mass of the particle, respectively [47–49]. Consulting the Ref. [50], k0 = 0.01
s chosen in our paper. The indexes (i, j) refer the location of the neuron, i.e., the jth neuron in the ith layer with i from
to 10 and j from 1 to N . Fig. 1 shows a ten-layer feed-forward network, there are N = 200 neurons in each layer. The

irst layer is simulated by the Gaussian white noise, the each neuron at i layer receives N × p synaptic inputs from i − 1
ayer, p represents the connection probability between the two nearest neighbor layers.

The gating variables for activation and inactivation of the sodium current are represented by mi,j and hi,j, respectively,
nd ni,j is the activation gating variable for the potassium current. These gating variables satisfy the following ordinary
ifferential equation,

dxi,j
=

1
(−xi,j + x∞

i,j ), xi,j = mi,j, ni,j, hi,j, (2)

dt τxi,j

2
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Fig. 1. A schematic of the model of a ten-layer feed-forward network with N = 200 neurons in each layer. Each neuron receives 200 × p inputs
from the previous layer. p denotes the connection probability between nearest layer. The two-frequency signals are only on the first layer.

where τxi,j =
1

αxi,j+βxi,j
, and x∞

i,j =
αxi,j

αxi,j+βxi,j
(xi,j = mi,j, ni,j), h∞

i,j =
1

1+e(Vi,j+60)/6.2 . These voltage-dependent rates αxi,j and βxi,j

x = m, n, h) are controlled by the temperature, which read

αmi,j = φ(T )
0.182(Vi,j + 30)
1 − e−(Vi,j+30)/8 , (3a)

βmi,j = −φ(T )
0.124(Vi,j + 30)
1 − e−(Vi,j+30)/8 , (3b)

αni,j = φ(T )
0.01(Vi,j − 30)
1 − e(−(Vi,j−30)/9) , (3c)

βni,j = −φ(T )
0.002(Vi,j − 30)
1 − e(−(Vi,j−30)/9) , (3d)

αhi,j = φ(T )
0.028(Vi,j + 45)
1 − e(−(Vi,j+45)/6) , (3e)

βhi,j = −φ(T )
0.091(Vi,j + 70)
1 − e(−(Vi,j+70)/6) . (3f)

here φ(T ) = exp (T−23) lnQ10
10 in which the effect of temperature on gate rates is an exponential function [43]. T denotes for

the temperature in degrees of Celsius. Research findings revealed that the temperature can affect not only the timescale of
dynamics of gating variable, but also the conductance, timescale and conductance have different temperature dependence
due to the different Q10 that is temperature coefficient. Q10 is fitted usually by the experimental data [46,51]. For the
conductance, Q10 ∈ (1.2, 1.7), and for the timescale of gating, Q10 ∈ (1.5, 40) [52]. This temperature effect is different from
the neuron model which is presented by Huber–Braun. In this model, the temperature influences not only the dynamics
of gating variable but also the amplitude of ionic currents. Furthermore, there are four different kinds of ion currents,
including the classical Na and K currents, and the slow Na and K currents [53].

The synaptic current Isyni,j is given by

Isyni,j =
1
M

M∑
j=1

gsynα(t − ti−1,j)(Vi,j − Vsyn), (4)

with

α(t) =
t
e−

t
τ , (5)
τ

3
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Table 1
Parameter values.

Parameter Description Value

Cm Cell membrane capacitance 0.75 mF/cm2

gNa The maximum conductance for sodium 150.0 mS/cm2

gK The maximum conductance for potassium 40.0 mS/cm2

gl The maximum leakage conductance 0.033 mS/cm2

VK The reversal potential for potassium −90.0 mV

VNa The reversal potential for sodium 60.0 mV

Vl Leakage reversal potential −70.0 mV

I0 The constant stimulus current 0.0 µA/cm2

Vsyn The synaptic reversal potential 0.0 mV

τ The rising time of the synaptic input 2 ms

gsyn The synaptic weight 0.0–1.0 mS/cm2

k0 ratio coefficient between noise and temperature 0.01 µA/◦C

p The connection probability 0.1

Q10 The temperature coefficient 2.3 ◦C

T The Celsius temperature 0-50 ◦C

where M = N ×p. ti−1,j is the firing time of neuron at (i−1, j), gsyn stands for the synaptic weight, and τ is the decay and
rise time of synaptic input. Here we only consider the excitatory synapses with the synaptic reversal potential Vsyn = 0.0.
The description and value of the parameters [43] are given in Table 1.

To quantity the degree of synchrony between neurons in the ith layer, we calculate the average cross-correlation,
which is,

Ki =
1

N(N − 1)

N∑
j=1

N∑
m=1,m̸=j

Ki,j,m(γ ), (6)

where the pair coherence Ki,j,m between neurons (i, j) and (i,m) is defined as

Ki,j,m =

∑k
l=1 Xi,j(l)Xi,m(l)

[
∑k

l=1 Xi,j(l)
∑k

l=1 Xi,m(l)]1/2
, (7)

where k = 2000 is the number of time bin γ , the time interval T ′′
= 2s is divided into k (k =

T ′′

γ
) time bins with γ = 1 ms.

he parameter of Xi,j(l) = 0 or 1 and Xi,m(l) = 0 or 1 (l = 1, . . . , k) is determined by the membrane potential of neurons
(i, j) and (i,m), respectively, where 1 represents a spike in the bin, and 0 otherwise. For the numerical simulations, the
standard Euler algorithm with the fixed time step ∆t = 0.001 is applied. The initial conditions v0

i,j = −65.0, m0
i,j = 0.1,

n0
i,j = 0.3, h0

i,j = 0.6 are chosen.

3. Results and discussions

Firstly, as an illustration, the numerical results are provided in Fig. 2(a)–(c) where the firing patterns in different layers
(e.g., layer 1, 2, 5, 6, 9, 10) are plotted with different temperatures. For the different temperatures, neurons fire spikes
irregularly in the first two layers due to the white noise. With the increase of network’s layer, the synchronous spiking
gradually forms, and several clear columns of spikes appear in layer 5. However, the columns of spikes are blurry or
noncentralized for the low or high temperature [Figs. 2(a) and 2(c)], while the columns of spikes become clear for an
appropriate temperature range [Fig. 2(b)], indicating that the synchronous spiking may be well established only under
an appropriate temperature. Comparing any three subfigures in each row, interestingly, the number of columns of spikes
increases, implying that the firing rate increases with the increase of temperature.

To show the effect of temperature on the synchronization of firing in the feed-forward multilayer neural network,
Fig. 3(a) illustrates the synchronous factor K versus layer i for different temperatures. One can see that, comparing the
three curves, the value of K for T = 15 becomes larger than those at T = 0 and 40, indicating that an appropriate
temperature can enhance the synchronizability of the neuronal network. Fig. 3(b) with the firing rate r against layer i for
the different temperature shows that the firing rate r increases and quickly gets to a saturation point, indicating that the
firing rate is successfully propagated in the feed-forward multilayer neuronal network.

To reveal further the critical role of temperature on synchronization, Fig. 4(a) shows the synchronous factor K against
the temperature T for different layers. The behavior that K increases with the increasing temperature T and then decreases

after reaching a maximum value, indicates an appropriate temperature for the optimum synchronization, which we term

4
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Fig. 2. (a)–(c) Dot-raster plots of spike times of the network for T = 0 ◦C, 15 ◦C, and 40 ◦C, respectively, showing spiking patterns in different
ayers with different temperature. For the rows from top to bottom, i = 1, 2, 5, 6, 9 and 10, respectively. For the columns from left, middle to right,
= 0 ◦C, 15 ◦C and 40 ◦C, respectively.

Fig. 3. (a) The synchrony measure K versus i for the different temperature. (b) The firing rate r against the layer i for different temperatures. The
dots, triangles, and squares represent T = 0 ◦C, 15 ◦C, and 40 ◦C, respectively.

the temperature-optimized propagation of synchronization. In our simulations, it is observed that the environmental
temperature also plays a critical role in the firing rate. Fig. 4(b) illustrates the firing rate r as a function of T for different
layer. One can observe clearly that r increases from zero with the increase of T for each layer, giving an exponential
relation between r and T for larger layers (i ≥ 5).

In order to gain more insight into the role of temperature on propagation of synchronization, we turn to investigate
the effect of others parameters on the temperature-optimized synchronization. Fig. 5(a) gives the dependence of
synchronous K on the temperature T for the different connection probability p, indicating that the phenomenon of
temperature-optimized propagation of synchronization is general. Compared four curves, we find interestingly that the
value of K monotonically increases with increasing p. To discuss systematically the effect of connection probability on
synchronization, Fig. 5(b) shows the optimal value of K at T ≈ 20 as a function of the connection probability p. The value
of K increases and saturates to 1.0 with the increase of p, indicating that the temperature-optimized synchronization is
enhanced largely by the connection probability p.

Further, we explore the effect of constant stimulus current I0 on temperature-optimized propagation of synchroniza-
tion. Fig. 6(a) shows the synchrony K for layer 6 as a function of temperature T for different I0. Similar bell curves of
factor K against current I0 for different I0, indicate clearly the phenomenon of temperature-optimized propagation of
synchronization. Interestingly, we find that the optimal value of synchrony K becomes larger with increasing I0. We also
calculate the optimal value of K at T ≈ 20. As shown in Fig. 6(b), the value of K increases with the increase of I0, indicating
that the constant stimulus current can also strength temperature-optimized propagation of synchronization.
5
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Fig. 4. (a) Synchrony factor K against the temperature T for different layers. (b) The firing rate r versus temperature T for the different layers. The
quares, dots, triangles, and stars represent i = 3, 5, 6, and 7, respectively.

Fig. 5. (a) Dependence of K at layer i = 6 on the temperature T for the connection probability p = 0.04, 0.07, 0.1 and 0.14. (b) The synchronous
actor K at layer i = 6 versus the connection probability p for T = 20 ◦C.

Fig. 6. (a) The synchronous factor K at layer i = 6 as a function of the temperature T for the stimulus current I0 = 0.0, 0.2, 0.6 and 2.0. (b) The
ynchronous factor K at layer i = 6 vs I0 for T = 20 ◦C.

We now consider the effect of synaptic weight gsyn on the temperature-optimized propagation of synchronization. In
ig. 7(a), the dependence of K for layer 6 on T for different gsyn is exhibited. One can notice that K = 0 is for weak synaptic

weight. Therefore, there is a threshold for gsyn beyond which the resonance-like behavior can be obtained. Fig. 7(b) shows
K for layer 6 versus the synaptic weight g at T ≈ 20. As a result, K changes from zero to a large value with increasing
syn

6
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Fig. 7. (a) The synchronous factor K at layer i = 6 vs T for the coupling weight gsyn = 0.1, 0.4, 0.6 and 0.9. (b) The synchronous factor K at layer
= 6 as a function of the coupling weight gsyn for T = 20 ◦C.

Fig. 8. (a) The synchronous factor K at layer i = 6 against the temperature T for the ratio coefficient of noise k0 = 0.01, 0.03, 0.05 and 0.10. (b)
he synchronous factor K at layer i = 6 versus the ratio coefficient of noise k0 for T = 5 ◦C, 20 ◦C and 35 ◦C.

syn, implying that the coupling strength must exceed a certain value to obtain synchronous propagation of the firing rate
hrough the whole network.

Fig. 8(a) presents the synchronous factor K against T for different ratio coefficient k0. Some nonmonotonic curves
an also be observed, indicating that the temperature-optimized propagation of synchronization can also be obtained
or different ratio coefficient. However, one can observe that these three curves are almost overlapping, indicating
hat temperature-optimized synchronization does not results form the temperature-dependent noise, but temperature-
ependent ion channels. Fig. 8(b) shows the optimal value of K at T = 5, 20, 35 as a function of k0, giving that K increases
lightly with the increase of k0, indicating the temperature effect of noise on the synchronization is not obvious.
To reveal the mechanism of the temperature-optimized synchrony, we apply the idea of probability distribution pA for

he number Ai of spiking neurons in layer i, as proposed in Ref. [15]. We uniformly divide the interval [0,N] (N = 200 is
he number of neurons in each layer) into 10 sub-intervals, and compute the probability distributions pA in the interval
k − 1)20 < Ai ≤ 20k, k = 1, 2, . . . , 10. We first count the number (Ai) of spiking of each layer at 1 ms time bin for the
volution time [0, 2000 ms]. Then, we can get 2000 Ai (1 ≤ Ai ≤ 200). 1 ms time bin is sufficiently small to ensure that
here are not two successive spikings in this time bin, therefore, Ai = 200 indicates that these neurons in i layer spikes
ynchronously. Finally, we calculate the frequency pik for Ai ∈ (k − 1)20 < Ai ≤ 20k, and we have pA =

pik
pi1+pi2+,...,pi10

.
The probability distributions for different layers are shown in Fig. 9. It is found that pA = 1 in the interval [0, 20] for
the first layer with different temperatures; while pA = 0 in the interval [180, 200], indicating a small number of neurons
spiking simultaneously. With the increase of the layer in the network, pA decreases to zero for the interval of [0, 20];
while pA increases for other intervals, especially for the interval of [180, 200]. The development of synchronization in the
neuronal network can also be seen by the evolution from layer to layer. The synchronized events are those with pA = 1
for the interval of [180, 200]. Comparing three subfigures in each row for layer 9 and 10, it is seen that p is maximal in
A

7
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Fig. 9. (a)–(c) The probability distribution pA for the number of spikes collected at the output of the summing center per unit time in each layer
with T = 0 ◦C, 15 ◦C and 40 ◦C, respectively. For the rows from top to bottom, i = 1, 2, 5, 6, 9 and 10, respectively. For the columns from left,
iddle to right, T = 0.0 ◦C, 15.0 ◦C and 40.0 ◦C, respectively.

he interval [180, 200] with temperature T = 15. Therefore the comfortable temperature contributes to the synchrony
vents.
Finally, we present that the probability pA for the interval of [180, 200] versus T in Fig. 10 for different layers. The

robability pA non-monotonically depends on the temperature T , indicating that there is an optimal temperature for
ynchronous spiking. The strengthen effect of temperature on the synchronization of the neuronal network is verified
gain. Furthermore, we can observe that the values of pA in the optimal windows become larger with the increase of the
umber of layers in the network by comparing three subfigures, indicating that the feed-forward neuronal network is
onducive to synchronous spiking.

. Conclusion

In conclusion, we investigated in detail the transmission firing rate in a biologically plausible neural network, where
he environmental temperature is also considered. It is found that the synchronous firings can develop gradually within
he network model, and an appropriate temperature can effectively improve the transmission of synchronous firings. The
emperature-optimized propagation of synchronous firing rate is universal. Simulations with several other parameters,
ncluding connection probability, constant stimulus current, synaptic weight, and the strength of noise, have been
ystematically suggesting the generalization of the temperature-optimized propagation of synchronous firing rate. The
nderlying mechanism of propagation of the firing rate is verified by the theory of probability distribution for active
eurons in each layer.
Below it is necessary to give some further discussions with different conditions. It is also interesting to compare the

esults of the present work with an exponentially correlated noise. The dynamical equation is given by

Cm
dVi,j

dt
= −(gKni,j(Vi,j − VK ) + gNam3

i,jhi,j(Vi,j − VNa) (8)

+ gl(Vi,j − Vl)) + I0 − Isyni,j + x1,j(t) (9)

For the color noise in the first layer, x1,j possesses the following correlation:

⟨x1,j(t)x1,k(s)⟩ =
D
τ
exp−|t−s|/τ δj,k, (10)

nd it satisfies the following dynamical equation,

ẋ1,j = −
x1,j
τ

+

√
2D
τ

ξ1,j(t),

where ξ (t) is a Gaussian white noise with correlation ⟨ξ1,j(t)ξ1,k(s)⟩ = δ(t − s)δj,k and D = k0(273 + T ) denotes the noise
strength.

Fig. 11 shows the numerical results of the dependence of the synchronous factor K on T at layers 6 and 7 with the
color noise, including each layer with the same temperature and each layer with different temperature. From these
8
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Fig. 10. (a)–(c) The probability pA for the number of spikes per unit time in [180, 200] as a function of T with layer i = 6, 7 and 8, respectively.

Fig. 11. The synchronous factor K at layers i = 6 and i = 7 as a function of T for each layer with the same temperature (a) and different temperature
(b). In (b), Ti, i = 1, . . . , p are chosen randomly for [T − δ, T + δ], δ = 0.5. τ = 2.0. .

lots, we can clearly see that K non-monotonically depends on the value of temperature T , indicating the occurrence
f temperature-optimized propagation of synchronous firing, and this phenomenon is general.
The environmental temperature critically determines the normal functions of the biological organisms. For example, it

as shown experimentally that low temperature can lead to conduction failure due to the reduce of the firing frequency
f myelinated and unmyelinated axons [54]. Temperature can change the property of ion channel of neurons including the
onductance, activation, and inactivation [55]. It is well known that there exists an appropriate temperature range for any
iological system, and high or low temperatures are not conducive to the normal function of organisms. Motivated by the
xperiment on the modulation of temperature on the neuronal firing [56–59], we investigated the effect of temperature
n the propagation of firing rate in the neuronal network which is an important topic in neuroscience. Although the
inding of temperature-optimized propagation of synchronous firing is based on a purely numerical study in the paper,
ur findings provide new insights and improve our understanding of the optimal temperature observed in the experiments
9
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n the living biological systems. The autapse is a special synapse which a neuron connects to itself by an axon, it has been
ound first in neocortex by Van der Loos and Glaser [60]. Research findings revealed that the autapse exists in 80% of
ortical pyramidal neurons [61]. Although the biological roles of autapse have been investigated and discussed extensively
n the neural systems [62,63], the functions of the autapse in the information encoding are still not completely clear.
hese prospects could be helpful for further investigation on the information encoding and the relevant neurodynamics
roblems.
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