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1. Introduction

The COVID-19 pandemic has imposed
unprecedented impediments on clinical
diagnostics and therapeutic paradigms,
attributable to its enhanced transmissibility
and diverse symptomatology.[1] This
scenario intensifies the quandary faced
by patients with common infectious dis-
eases competing for healthcare resources
and also amplifies the risk of nosocomial
infections.[2] Of particular note is the sus-
ceptibility of individuals infected with the
human immunodeficiency virus (HIV), a
cohort at high risk with impaired immune
systems, who grapple with considerable
threats and challenges in the context of
the pandemic.[3–5] Consequently, the
construction of reliable, portable point-
of-care testing (POCT) devices for home
use is paramount in mitigating infection
risks within outpatient care settings.

However, the progress of POCT technol-
ogies relies on the presence of specific
antigen–antibody markers, as demon-
strated by COVID-19 and syphilis POCT
assays.[6,7] Regrettably, not all infectious
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diseases exhibit easily identifiable, unambiguous antigen–
antibody markers. In HIV-related infections caused by
Talaromyces marneffei, the quantity of relevant antigens in the
bloodstream of HIV patients is strikingly low due to weakened
immune function, thereby hindering the production of swift
POCT screening tools.[8] Moreover, Talaromyces marneffei, a
dimorphic fungus, presents nonspecific clinical signs, often
manifesting as rashes, respiratory symptoms, fever, anemia,
and other systemic signals. Anticipating the onset of this disease
is arduous, and its diagnosis requires prolonged pathogen culti-
vation, frequently resulting in diagnostic lags and increased

mortality rates.[8–10] A multitude of severe illnesses face similar
obstacles, such as nonspecific clinical symptoms and challenges
in obtaining diagnostic gold standards, as noted in sepsis, which
typically employs the SOFA and APACHE IV scoring systems for
screening and diagnosis.[10,11] As a result, the creation of a dis-
ease screening method that is not dependent on specific antigen–
antibodies and is applicable to the early detection of critical
illnesses, carries significant clinical importance and the possibil-
ity for broad application.

The core objective of devising an early screening tool for diseases
that avoids reliance on specific antigen–antibodies is to identify a
set of biomarkers that demonstrate high sensitivity and disease
specificity. In recent times, machine learning techniques have seen
extensive application in the field of biomarker identification.[12–16]

Nonetheless, a large proportion of studies are devoid of sturdy
guidelines for choosing the most suitable data method for their
datasets, with selection outcomes often dependent on the perfor-
mance of different methods on a single dataset. This introduces
a degree of randomness into the final biomarker selection.[17,18]

To lessen the irregularity in such research findings, our study sug-
gests a more equitable feature selection process, subsequently
quantifying the selected features for integration into POCT assays.

Present clinical point-of-care testing (POCT) strips primarily
use colloidal gold assays, concentrating on specific antigen-
antibody interactions, and are therefore designed for qualitative
responses.[19] However, our ambition is to construct a disease-
screening approach that overcomes dependence on specific
antigen–antibody interactions, incorporating quantitative
assessments of clinical scores and disease-related indices.
Basic qualitative classification outcomes are insufficient to meet
our needs. As such, we have devised a series of colloidal gold
assay strips capable of semiquantitative measurements, allowing
their smooth integration with clinical scoring systems.[17]

Employing patients with Talaromyces marneffei infections within
the HIV-infected population as a multicenter cohort study, our
research suggests a selection strategy for nonspecific antigen–
antibody disease biomarkers. Through implementing a “from
weak to strong” feature selection approach, we have mitigated
biases arising from different selection methods and innovatively
applied the resultant selections to the fabrication of semiquantita-
tive colloidal gold assay strips. This integration enables the com-
bination of POCT detection and clinical scoring. Additionally, we
have established a dedicated website and an efficient mobile app
for AIDS patients and healthcare professionals to avail of early
screening for Talaromyces marneffei infections at no charge.

2. Result

2.1. Patient Clinical Data from Three Medical Centers

A total of 464 patients diagnosed with AIDS were assessed,
spanning from February 5th, 2014, to January 8th, 2022, across
three medical centers in China, Figure S1, Supporting
Information. These patients were methodically stratified into
four distinct cohorts: a model development cohort (n= 318)
and a holdout validation cohort (n= 45) from Wenzhou
Central Hospital; an external cohort designated for model opti-
mization (n= 49) from Hangzhou Xixi Hospital (external cohort
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1); and a final external validation cohort (n= 52) from the First
Affiliated Hospital of Zhejiang University School of Medicine
(External Cohort 2). The development cohort’s timeline encom-
passed the years 2014 through 2022, while the remaining cohorts
spanned 2016 to 2021.

Patient selection and distribution among the cohorts were
meticulously designed to optimize model performance and
provide unbiased validation, ultimately bolstering the credibility
of the study’s conclusions. A set of four data distributions’
heatmaps is elegantly depicted in Figure S2a–d, Supporting
Information, while the precise data tables and intergroup
statistical tests can be found in Table S1, Supporting
Information. The interrelation among the attributes within each
cohort is discernibly illustrated in Figure S2e, Supporting
Information. The overall workflow and pipeline of the experi-
ments are illustrated in Figure S3, Supporting Information.

2.2. Classical Standardized Logistic Regression

After implementing Z-standardization, we conducted univariate
regression analyses on all 32 features within the logistic

regression model to pinpoint variables exhibiting significant
p-values. Subsequently, we carried out multivariate regression
analyses on these variables utilizing a forward selection method.
The performance at each stage of the stepwise forward logistic
regression is aptly demonstrated in Figure 1a. Results from both
univariate and multivariate regression analyses can be found in
the Table S2, Supporting Information.

The multivariate regression analysis delineated seven key fea-
tures, including rash (odds ratio (OR)= 5.712, 95% confidence
interval (CI): 2.057–15.862), splenomegaly (OR= 3.179, 95%
CI: 1.324–7.631), and D-dimer (OR= 22.458, 95% CI:
4.789–105.304), which were classified as risk factors for
Talaromyces marneffei infection. Conversely, protective factors
included age (OR= 0.635, 95% CI: 0.406–0.995), lymphocyte
count (OR= 0.564, 95% CI: 0.332–0.958), monocyte count
(OR= 0.287, 95% CI: 0.119–0.694), and CD4þ cell count
(OR= 0.066, 95% CI: 0.014–0.317). The most salient risk factor
was D-dimer, while the most potent protective factor was serum
CD4þ cell count.

A ranking of characteristics, based on the optimal model’s
standardized logistic regression coefficients (β), is vividly

Figure 1. Logistic regression experimental group visualization. a) The radar chart of the performance of each step of stepwise logistic regression. At
step= 1, all metrics are at their lowest values. When the stepwise forward method automatically concludes at step= 9, the AUC, accuracy, F1, and
sensitivity metrics all reach their peak values, which are 0.946, 0.896, 0.922, and 0.915, respectively. b) Feature ranking of β coefficients based on stan-
dardized logistic regression. The red and blue colors represent risk factors and protective factors, respectively, for predicting Talaromyces marneffei
infection. Among the risk factors, the variable “D-dimer” has the highest β coefficient value of 3.112. Conversely, among the protective factors, the
variable” CD4þ” has the largest coefficient of �2.720. c) Four-cohort ROC curves of the optimal model based on standardized logistic regression.
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portrayed in Figure 1b. The receiver operating characteristic
(ROC) curves for the four cohorts, derived from the optimal stan-
dardized logistic regression model, are displayed in Figure 1c.

2.3. Shapley Additive Explanations and Permutation Importance
of Machine Learning Models

The 12 machine learning models underwent a thorough process
of 50 iterations of grid hyperparameter tuning. Based on the opti-
mal parameters derived from this tuning, the models were sub-
sequently trained on the primary cohort. The area under the
curve (AUC) results for the 50 bootstrap resampling iterations
are detailed in the supplementary material, specifically Table
S3, Supporting Information, along with the optimal hyperpara-
meter combinations for the models in Table S4, Supporting
Information. The receiver operating characteristic (ROC) curve
outcomes for the three test cohorts using the 12 machine learn-
ing models are provided in Figure S4, Supporting Information.

Utilizing the 12 optimally tuned machine learning models, we
assessed and ranked the relative importance of all 32 predictor
variables in deductive Sections 2 and 3. This evaluation employed
the SHapley Additive exPlanations (SHAP) and permutation
importance (PI) methodologies. The specific results for SHAP
and PI can be inspected in Figures 2 and 3. Within each figure,
subplot a presents the feature importance results for the 32 char-
acteristics across the 12 machine learning models under both
SHAP and PI frameworks; subplot b showcases the structural
diagrams for SHAP and PI; subplot c illustrates the fluctuation
of feature importance relative to the overall average level after
adjusting the feature importance results of the 12 machine learn-
ing models under SHAP and PI frameworks by external cohort 1;
and subplot d portrays the variations in the importance ranking
of the final three features among the 32 features across the 12
machine learning models under both SHAP and PI frameworks.

2.4. From Weak to Strong Deduction and Consistency of the
Sorting Results

In the standardized logistic analysis (Deduction I, Figure 4a), the
uppermost seven features encompassed DD, CD4, rash, M,
splenomegaly, L, and age, with respective scores of 3.112,
2.720, 1.743, 1.249, 1.156, 0.572, and 0.454. In the 12 machine
learning models, we assessed and ranked the relative importance
of all 32 predictor variables in deductive Sections 2 and 3 using
SHAP and PI methods. In the SHAP analysis (Deduction II,
Figure 4b), the top seven features included D-dimer, CD4þ,
rash, blood platelet (PLT), splenomegaly, aspartate transaminase
(AST), and M, with scores of 873.84, 600.67, 480.20, 472.82,
449.11, 423.88, and 376.20. In the PI analysis (Deduction III,
Figure 4c), the top seven features comprised D-dimer, CD4þ,
AST, rash, PLT, M, and splenomegaly, with respective scores
of 799.39, 648.20, 432.93, 389.90, 370.55, 330.27, and 294.33.

We executed a comprehensive evaluation of the three indepen-
dent deductions, revealing that D-dimer, CD4þ, and rash consis-
tently ranked 1st, 2nd, 3rd, or 4th across the three deductions,
thereby, exhibiting high importance regardless of the data fitting
method employed. For instance, D-dimer accounted for 28.3%,
23.8%, and 24.5% of the total proportion of the top seven features

in standardized logistic regression, SHAP, and PI, respectively,
as depicted in Figure 4d–f. D-dimer, CD4þ, and rash together
constituted 68.8%, 28.8%, and 27.7% of the overall feature
importance in standardized logistic regression, SHAP, and PI,
respectively, as illustrated in Figure 4g.

Consequently, we selected these three features to streamline
our model. We reimplemented logistic regression using these
three features in the development cohort and tested it on the val-
idation, external cohort 1, and external cohort 2 datasets. The
acquired AUC values were 0.883, 0.822, and 0.728, signifying
that the discriminative prowess of this streamlined model was
not markedly inferior to the 32-feature model. The specific
results can be examined in Figure 4h. Therefore, developing
the most streamlined scoring system employing these three fea-
tures represents a robust approach.

2.5. The Establishment of the Simplest Scoring System and the
Evaluation of System Performance

To devise a robust risk scoring system founded on the initial three
characteristics, we harnessed the prowess of logistic regression
models’ beta coefficients. Abiding by well-established clinical
guidelines, we demarcated scoring thresholds for D-dimer,
CD4þ cells, and rash, adhering to these stipulations: D-dimer
<0.5mg L�1 yields 0 points, D-dimer >0.5mg L�1 awards
1 point, D-dimer >1mg L�1 grants 2 points, D-dimer
>2mg L�1 accords 3 points; CD4> 200� 106 L�1 merits 0 points,
CD4> 100� 106L�1 secures 2 points, CD4> 50� 106 L�1 earns
4 points, CD4< 50� 106 L�1 garners 6 points; rash’s absence
scores 0 points, while its presence bestows 2 points.[20–23] Our risk
scoring system manifested admirable discriminatory acumen
across diverse datasets, boasting AUC values of 0.91, 0.80, and
0.69 in the hold-out cohort, external cohort 1, and external cohort
2, respectively, as delineated in Figure 5h.

Furthermore, we conducted a meticulous examination of all
threshold points to ascertain the model’s precision, sensitivity,
and specificity. These findings can be scrutinized in
Figure 5a–e, while the data are accessible in Table S5,
Supporting Information. To validate our scoring system’s dis-
tinctiveness within the data, we implemented unsupervised clus-
tering through the K-means algorithm on the entire cohort of 464
patients, opting for the optimal cluster number k= 2 as recom-
mended by the elbow plot. Our analysis unveiled statistically sig-
nificant disparities between the scores of the autonomously
clustered group. Detailed outcomes can be perused in the f
and g subplots within Figure 5, and the elbow plot results are
available in Figure S5, Supporting Information.

2.6. The Reformation of POCT Test Strips

Our ingeniously devised POCT test strip reflects concentrations
of D-dimer and CD4þ through the number of red T-lines dis-
played on each strip, while the presence or absence of a rash
can be ascertained via visual examination. This POCT test strip
empowers clinicians and home-based patients to directly obtain a
risk score for Talaromyces marneffei infection. Patients amassing
scores of 7 or above are deemed high-risk candidates for
Talaromyces marneffei infection. This design expedites prompt
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bedside and community-based testing. The application protocol
of the test suite, along with the completed prototype experiments,
is depicted in Figure 6.

Figure 6a elucidates the workflow of the POCT test strip’s clin-
ical application, Figure 6b exhibits the colorimetric scoring inter-
pretation methodology for the test strip, Figure 6c unveils the
fundamental principle of the POCT test strip, and Figure 6d,e
portrays the intermediary procedures and outcomes of our test
strip fabrication. The specific chemical manufacturing process
can be accessed in the supplementary material.

2.7. The Establishment of a Free Internet Platform

In a bid to aid clinicians and patients in making well-informed
diagnostic assessments, a gratuitous open platform has been
meticulously constructed, which can be accessed at www.aoids-
diagnosis.com, as exhibited in Figure 7b. This considerately
designed website enables both physicians and patients to input
relevant clinical data, from which it subsequently yields reliable
forecasts. Concurrently, we have crafted a mobile application for
the Android platform, ensuring that users can access the system

Figure 2. Shapley additive explanations experimental group visualization. a) The heat map of the feature importance results of 32 features under SHAP
interpretation in 12 machine learning models. Colored bars indicate the varying magnitudes of feature values. We present the results for the top seven
features, as ranked by their cumulative SHAP values, from 12 machine learning models. b) The schematic diagram of SHAP. c) The comparative chart of
fluctuations of SHAP results after correction by external cohort 1. Comparison of SHAP results for 12 machine learning models before and after cali-
bration on external cohort 1. In comparison to the average AUC for each model on external cohort 1, blue signifies a relative decrease in model scores after
calibration, while red indicates a relative increase in model scores after calibration. The larger the circle, the greater the degree of change. d) The ranking
changes of the final three main features on 12 machine learning models under the SHAP explanation.
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irrespective of location, as demonstrated in Figure 7c. Figure 7a
outlines the exhaustive development process of the website,
application, and accompanying software.

3. Discussion

Dimorphic fungi, distinguished by their capacity to effectuate
morphological transitions in response to environmental stimuli,
are essential facilitators of adaptation throughout their life
cycles.[24] They transform from filamentous structures to
yeast-like forms within host organisms, thus initiating patho-
genic infections. The complex morphological transformations
exhibited by fungi such as Histoplasma, Talaromyces marneffei,
and Sporothrix, pose substantial challenges to the host immune
system. This complexity not only complicates the diagnosis and
treatment of infections but also significantly hinders accurate
and efficient therapeutic intervention.[24] Talaromyces marneffei
epitomizes this group of fungi, demonstrating intricate morpho-
logical changes, immunological hurdles, diverse infection sites,
and a broad range of infection severity, leading to a myriad of
atypical clinical manifestations that obstruct precise diagnosis
and effective therapy.[8]

In the present investigation, we employed an amalgamation of
conventional statistical methods, machine learning techniques,
advanced biomarker screening, clinical scoring, and point-of-care
testing (POCT) approaches to formulate an exhaustive early
screening tool development process. This process was
specifically designed for AIDS patients during the COVID-19
pandemic, with the goal of facilitating community and
home-based screening.

In clinical settings, when procuring gold standard pathogen
cultures is unfeasible, the identification of pertinent biomarkers
for infection screening becomes paramount. However, differen-
tiating high-diagnostic-value features from a multitude of com-
plex and variable characteristics is a significant challenge.
Predominant feature selection methods include logistic regres-
sion and machine learning.[25,26] Logistic regression, given its
superior interpretability, is frequently utilized in the creation
of clinical diagnostic models. Nonetheless, its linear fitting
model might overlook nonlinear and fundamental latent fea-
tures.[27] In contrast, machine learning provides flexibility and
adaptability in feature selection, exploring optimal fits through
a diverse array of algorithms.[25] However, during the develop-
ment of machine learning models, feature weights for a particu-
lar disease often exhibit variability depending on the algorithms

Figure 3. Permutation importance of experimental group visualization. a) The heat map of the feature importance results of 32 features under PI inter-
pretation in 12 machine learning models. b) The schematic diagram of PI. c) The comparative chart of fluctuations of PI results after correction by external
cohort 1. Comparison of PI results for 12 machine learningmodels before and after calibration on external cohort 1. In comparison to the average AUC for
each model on external cohort 1, blue signifies a relative decrease in model scores after calibration, while red indicates a relative increase in model scores
after calibration. The larger the circle, the greater the degree of change. d) The ranking changes of the final three main features on 12 machine learning
models under the PI explanation.
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utilized. Moreover, different feature weight calculation methods
within a single algorithm can lead to divergent rankings of
feature importance. This inconsistency necessitates attention
in current research, as the lack of standardization and distinct
outcomes arising from varying algorithms and feature impor-
tance ranking methods compromise the reliability of these
models.

To overcome these challenges, we propose an integrative strat-
egy that combines logistic regression with multiple machine
learning models, allowing for the ranking of feature importance
from multiple perspectives. Our method analyzes feature
importance through three separate aspects: standardized logistic
regression coefficients, SHapley Additive exPlanations (SHAP),
and permutation importance (PI). This “from weak to
strong” inductive process ultimately produces highly consistent
results.

In logistic regression, the regression coefficients indicate the
extent to which a feature influences the dependent variable.
However, direct comparisons between unique features’ regres-
sion coefficients are confounded by unit effects.[28,29] To mitigate
this issue, we utilize standardized regression coefficients,
derived from standardizing both the features and the dependent
variable. This standardization process eliminates disparities in
magnitude and scale, thereby facilitating the examination of
weight magnitudes across various variables.[26]

Furthermore, specific machine learning models typically
possess their own feature weight analysis methods, such as
the coefficients of Support Vector Machine (SVM) class models
and feature importance of tree models like Random Forest.
Nonetheless, these methods are primarily designed for internal
model analysis and prove inadequate for comparisons between
distinct algorithms. Directly comparing various algorithm

Figure 4. From Weak to Strong Deduction Group visualization. a) Histogram of weight for seven features with weak Deduction I (Standardized Logistic
Regression). b) Histogram of weight for first seven features with weak Deduction II (Shapley additive explanations). c) Histogram of weight for first seven
features with weak Deduction III (permutation importance). d) Pie chart of proportion of weight for seven features with weak Deduction I (Standardized
Logistic Regression). e) Pie chart of proportion of weight for first seven features with weak Deduction I (Standardized Logistic Regression). f ) Pie chart of
proportion of weight for first seven features with weak Deduction I (Standardized Logistic Regression). g) Bar chart of the percentage distribution of three
factors and the remaining factors. h) Boxplots of the AUC of machine learning algorithms and logistic regression. The red dot denotes the AUC of the three
features logical regression. The AUC of the logistic regression with three features demonstrates considerable competitiveness across four distinct cohorts.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300224 2300224 (7 of 13) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300224 by C

ochraneC
hina, W

iley O
nline L

ibrary on [25/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


models using disparate weight analysis methods risks introduc-
ing biases into the feature importance analysis.[20,21,29] To rectify
this issue, we employ two external perspective feature evaluation
techniques: SHAP and permutation importance. The SHAP
framework serves as an interpretive tool for machine learning
model predictions, ascertaining the contributions of individual
input features to prediction outcomes based on the Shapley value
concept from cooperative game theory and providing an inclusive
explanation of the model’s decision-making process.[29,30]

Permutation importance, a model-agnostic method, calculates
feature importance by assessing the extent to which performance
scores decrease when features are randomly permuted.[31] By
implementing these two independent feature evaluation
methods, we attain a unified perspective for evaluating feature
importance across a multitude of models.

The combination of classical statistics, machine learning algo-
rithms, and the “from weak to strong” inductive process resulted
in findings that highlight D-dimer, CD4þ T-cell count, and rash

as the most significant features in both development and valida-
tion sets. These three features received weight contributions of
68.8%, 28.8%, and 27.7% from standardized, PI, and SHAP eval-
uation methods, respectively. Ultimately, the simplest scoring
system attained 0.91, 0.80, and 0.69 AUROC in hold-out cohort,
external cohort 1, and external cohort 2, thus corroborating the
reliability and stability of our feature selection approach.

CD4 cells perform a pivotal role within the human
immune system. Gradual or irregular decreases in CD4 cells
among HIV-infected individuals denote serious immune system
impairment.[21] When CD4 cell counts fall below 200 cells mm�3,
numerous opportunistic infections or tumors can arise, particu-
larly in HIV-infected patients with CD4 cell counts below
100 cells mm�3, where T. marneffei activation becomes highly
probable.[20]

In addition, T. marneffei frequently compromises blood
vessels, creating fungal emboli, and disseminating throughout
the body. D-dimer, a product of cross-linked fibrin clot

Figure 5. Simplest scoring system experimental group visualization. a) 3D visualization of sensitivity, specificity, and accuracy on four cohorts with
different cut-off values. b) 3D visualization of sensitivity, specificity, and accuracy on development cohort with different cut-off values. c) 3D visualization
of sensitivity, specificity, and accuracy on hold-out cohort with different cut-off values. d) 3D visualization of sensitivity, specificity, and accuracy on
external cohort1 with different cut-off values. e) 3D visualization of sensitivity, specificity, and accuracy on external cohort 2 with different cut-off values.
f ) K-means plot. The patients were unsupervised and clustered based on 32 features. The number of clusters K= 2, as recommended by the elbow graph,
was used. g) Boxplots of the scores for the two clusters. Cluster 1 has statistically significantly higher scores than cluster 2 (n= 464, Mann-Whitney U test,
p< 0.001). h) AUC of the scoring system in the development cohort, hold-out cohort, external cohort 1, and external cohort 2.
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dissolution by plasmin, primarily reflects fibrinolytic function. It
can assist in predicting thrombosis, infection, tissue necrosis,
and AIDS-related complications, and to a certain degree, disease
progression and mortality rates.[28,32] Simultaneously, T. marnef-
fei infection can provoke inflammatory responses in the skin and
soft tissues, resulting in the development of rashes. Rashes often

present as erythema, papules, blisters, or ulcers and may be
accompanied by itching or pain. In cases of AIDS coinfected with
T. marneffei, the presence of a rash may suggest localized infec-
tion dissemination and deep tissue involvement. Therefore,
monitoring rash occurrence is vital for screening AIDS patients
coinfected with T. marneffei.[21]

Figure 6. POCT test strips experimental group visualization. a) Flowchart of the procedure for using the POCT strip. b) Method for calculating the POCT
strip scores. When only a distinct purple band appears on the control line (C line), D-dimer can be read as 0 points, and CD4 can be read as 6 points.
When both the control line (C line) and the test line (T line) display distinct purple bands simultaneously, D-dimer can be read as 1 point, and CD4 can be
read as 4 points. Proceeding in this manner, the scores for D-dimer and CD4 can be determined. The presence or absence of the rash will be adjudged as 2
points and 0 points, respectively. c) Schematic diagram of the POCT strip. d) A sample of colloidal gold solution. e) Results of the POCT strip. We present
the colloidal gold test strip samples produced, categorized as: one control line (C line); one control line (C line) and two test lines (T lines); one control
line (C line) and three test lines (T lines).
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Based on this feature consensus, to circumvent complex
model computations, the study transforms the features into a
clinical scoring system, enabling calculation by healthcare profes-
sionals and promoting early screening indicator dissemination.
However, as the serum markers incorporated in this model
necessitate laboratory testing, the required facilities and testing
times preclude rapid home testing for HIV patients. By
determining D-dimer and CD4 cell concentrations, we convert
existing coronavirus POCT test strips from qualitative to
semiquantitative testing. A scoring model directly related to
semiquantitative testing estimates the risk of T. marneffei
infection in HIV patients based on test outcomes. POCT test
strip-displayed scores can indicate whether an individual is part
of a high-risk group for T. marneffei infection. This semiquanti-
tative POCT test strip, in conjunction with clinical scoring incor-
porating serological markers (e.g., Alvarado score, International
Prognostic Index (IPI), Systemic Inflammatory Response
Syndrome (SIRS) score, etc.), enables swift disease risk

assessment without dependence on laboratory testing. This
innovative development holds the potential for extension to other
studies.

Despite the promising results of this study, several limitations
must be acknowledged. The model, founded on a retrospective
cohort, specifically targets HIV-infected patients in China, poten-
tially resulting in variations in disease prevalence and clinical
characteristics in other countries. Further research is required
to establish the generalizability of our findings to diverse popu-
lations and to validate the model’s performance in a prospective
setting.

In conclusion, our research presents a novel risk assessment
system, developed through a feature selection strategy termed
“from weak to strong” deduction. The performance and gener-
alizability of our model were evaluated using multicenter
cohorts, revealing promising outcomes for the early diagnosis
of opportunistic Talaromyces marneffei infections in AIDS
patients. By incorporating logistic regression and machine

Figure 7. Web and app development result diagram. a) The workflow of creating the web and app page. b) Display of our free web platform. Building upon
our preliminary infection screening model, we have devised a complimentary web-based platform to facilitate early detection of Talaromyces marneffei
infection among medical professionals and patients alike. c) Display of our free app platform. To overcome constraints related to time, location, and
equipment, our team has developed a versatile mobile application. This application is specifically designed for seamless integration and use within the
Android operating system.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 2300224 2300224 (10 of 13) © 2023 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300224 by C

ochraneC
hina, W

iley O
nline L

ibrary on [25/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


learning models, our methodology streamlines biomarker
screening “from weak to strong” and facilitates the development
of a composite biomarker scoring system. Ultimately, to foster
community outreach, we efficiently integrated the clinical scor-
ing system into semiquantitative test strips, offering expansive
potential applications across a range of clinical assessment
domains. If the scores comprise segmented serological bio-
markers, such test strips can be produced.

4. Experimental Section
Ethical Principles and Group Access Criteria: The current investigation
adheres to the stipulations of the Declaration of Helsinki, obtaining ethical
committee consent from Wenzhou Central Hospital (L2021-03-082),
Hangzhou Xixi Hospital (2020 Ethics Approval No. 34), and the First
Affiliated Hospital of Zhejiang University School of Medicine (2021-II
T-599). All participating investigators signed agreements to maintain
the confidentiality of medical information, thereby ensuring patient pri-
vacy. Personal data were anonymized through established deidentification
protocols. The study’s flowchart, detailed in the supplementary materials,
demarcates the inclusion and exclusion criteria for participant selection
and provides a comprehensive guide for the research process.

Diagnostic Criteria and Clinical Data Acquisition: Diagnoses of AIDS were
in strict accordance with the 2021 edition of the World Health
Organization (WHO) AIDS Diagnosis and Treatment Guidelines.
Classifications and diagnoses of HIV opportunistic infections were per-
formed following the recommendations of the Centers for Disease
Control and Prevention (CDC). Patients in each cohort were stratified
based on the presence or absence of a confirmed Talaromyces marneffei
infection. The experimental group consisted of individuals with positive
Talaromyces marneffei culture results. The standards for data management
are outlined in the supplementary materials. Clinical data were systemati-
cally collected from the inpatient diagnosis and treatment system data-
bases of each participating medical center.

A standard numerical form was designed to consolidate data regarding
patient characteristics, including demographic factors (age and sex), clini-
cal manifestations (fever, cough, rash, gastrointestinal hemorrhage), lab-
oratory parameters, and radiological features. The data, collected from
each medical center, were systematically entered into the standard form.

Statistical Analysis and Standardized Logistic Regression Coefficients: Data
processing was conducted using Microsoft Excel 2019. To preserve data
integrity, missing values for continuous variables in both positive and neg-
ative patients in the development cohort were filled using imputation via
the series mean method in Statistical Package for the Social Sciences
(SPSS) (version 24.0, IBM). The compositional differences of variables
between the experimental and control groups were investigated using
the Mann–Whitney U test for continuous variables and the Pearson
chi-squared test for categorical variables. Univariate and multivariate logis-
tic regression analyses were executed in SPSS, utilizing forward selection
for feature selection and the likelihood ratio test for model fit assessment.
Two-tailed p-values were computed, with a statistical significance thresh-
old of 0.05. Z-standardization was implemented to normalize discrepan-
cies in dimensions and scales, thereby facilitating the comparison of
diverse variables. The standardized regression coefficients, or beta coef-
ficients, were generated by the logistic regression equation.

Machine Learning Models and Feature Importance Ranking
Methodologies: To address potential bias from dataset-specific character-
istics during feature selection with a single machine learning algorithm, 12
representative classifiers were integrated. Additionally, two external evalu-
ation methods for assessing feature importance were adopted, thus pro-
viding a balanced evaluation of different machine learning selection
outcomes.

The 12 classifiers comprised AdaBoost Classifier, Gradient Boosting
Classifier, Random Forest Classifier, Decision Tree Classifier, Extra Tree
Classifier, Stochastic Gradient Descent Classifier (SGDC), Passive
Aggressive Classifier (PAC), Perceptron, Support Vector Classifier

(SVC), Linear Support Vector Classifier (Linear-SVC), Bernoulli Naive
Bayes Classifier, and Ridge Classifier. All algorithms were implemented
using the Scikit-learn package (version 1.2.0) in Python 3.9.13. A five-fold
cross-validation technique was applied to assess the model’s perfor-
mance. This cross-validation procedure was conducted 50 times to ensure
robust estimates of model performance, with the random seed set to 1. A
grid search method was employed to determine the optimal hyperpara-
meter combination for the model. The area under the receiver operating
characteristic curve (AUROC) of the cross-validated model served as the
objective for hyperparameter optimization.

Two external feature importance ranking methods were employed:
Shapley additive explanations (SHAP) and permutation importance
(PI). SHAP, a method grounded in cooperative game theory, provided
a measure of a feature’s relative influence over the entire prediction
process, represented by the mean SHAP value. Conversely, PI measured
the contribution of a feature to the model prediction error by randomly
permuting one feature while maintaining the order of all others.

To address the issue of differing scales across machine learning mod-
els, MinMaxScaler was applied to the SHAP and PI outputs of all models,
constraining the range for each feature between 0 and 100. Scores for each
feature across the models were subsequently computed and accumulated
to derive an overall ranking for each feature. However, all information
sources in this process originated solely from the development cohort
and did not improve the model’s performance on other cohort datasets.
Therefore, a calibration method employing the AUROC performance of an
independent external validation dataset (Xixi Hospital) was proposed. The
original feature scores were multiplied by the AUROC index of the external
dataset to derive the adjusted scores. This method uses the external data-
set’s AUROC to calibrate the model weights derived from the development
cohort, thereby enhancing the generalizability of the final model.

From Weak to Strong Deduction and Feature Selection: To circumvent
limitations and biases associated with feature selection via a single
data-fitting method, a “From weak to strong” deduction-based feature
selection strategy was devised, ensuring the stability of the final feature
selection results across different fitting methods and data distributions.
This strategy integrated feature selection outcomes from three indepen-
dent derivation methods to obtain highly reliable and generalizable repre-
sentative features. Initially, standardized regression coefficients were
employed to rank feature importance within the logistic models.
Subsequently, PI was utilized to rank feature importance within the
machine learning models. Lastly, SHAP was employed to rank feature
importance within the machine learning models. The ranking outcomes
from these three methods were analyzed, deriving higher levels of
evidence, and informing feature selection.

Simplified Model Construction: A streamlined clinical scoring model was
devised based on the stable features identified through the selection pro-
cess. To generate scores, each feature’s beta coefficient value was divided
by the smallest constant and rounded to the nearest whole number. This
scoring methodology was then employed to predict the risk of Talaromyces
marneffei infection and validated within an external validation cohort at the
First Affiliated Hospital of Zhejiang University.

Chemicals and Materials: The absorbent pad used is an AN3 absorbent
pad (0.6 mm thick), and both the sample pad and gold label pad consist of
glass fiber membrane number 8,975 (0.5mm thick). These materials were
procured from Hangzhou Bulus Trading Co., Ltd (www.bulus.com.cn).
The nitrocellulose membrane used is a pure nitrocellulose blotting
membrane P/N 66 485 (0.22 μm thick), purchased from Nanyang
Ruitai Biotechnology Co., Ltd.

Colloidal Gold Solution Preparation: An aqueous solution of chloroauric
acid (HAuCl4) at 0.01% concentration was prepared using 200mL of
water, heated to boiling, and maintained for 3 min. An equimolar amount
of 1% trisodium citrate was rapidly added to the solution, and the mixture
was heated and stirred for an additional 30min. Upon turning wine-red,
the solution was purified, concentrated, and the gold nanoparticle solution
was obtained through multiple centrifugation steps.

Colloidal Gold Modification with Antibodies: The colloidal gold solution
was adjusted to pH 9.0 using a 0.2mol L�1 Na2CO3 solution, and 1mL
was transferred into a centrifuge tube. Concurrently, 0.1 mL of a
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200 μgmL�1 antibody solution was added to the tube, and the mixture was
agitated for 40min. Subsequently, a 6% BSA solution was added to
achieve a 1% concentration, and the mixture was shaken for an additional
20min. The solution was then centrifuged at 12 000 rpm for 10min, the
supernatant was discarded, and the concentrate was resuspended in
0.1 mL of 0.01 mol L�1 Tris-HCl solution (containing 1% BSA and 1%
sucrose). This resuspension produced the immunocolloidal gold solution.

Strip Preparation: The sample pad, gold label pad, and nitrocellulose
membrane were pretreated by soaking in a solution of 1% BSA, 2% glu-
cose, pH 7.2, 0.1 mol L�1 PBS buffer for 12 h. They were then dried in a
37 °C incubator for 12 h and set aside.

The colloidal gold semiquantitative test strip components were sequentially
adhered to a PVC board (7 cm� 0.5 cm): the sample pad (2 cm� 0.5 cm), the
antibody colloidal gold pad (1 cm� 0.5 cm), the nitrocellulose membrane
(2 cm� 0.5 cm), and the absorbent filter paper (2.5 cm� 0.5 cm).

An antigen solution was prepared by combining 50 μL of antigen
(Native Human D-Dimer protein ab35949-100ug) with 450 μL of 1%
PBS to achieve a 1% concentration of Solution A. Solution B was prepared
by combining 100 μL of Solution A with 300 μL of 1% PBS solution to cre-
ate a 1.25% concentration. T1, T2, and T3 lines were drawn on the pre-
treated nitrocellulose membrane using 0.1 μL of Solution A, maintaining a
3mm interval between each line. The quality control line was drawn using
0.1 μL of secondary antibody (AffiniPure Rabbit Anti-Mouse IgG (Hþ L)
(min X Hu Sr Prot) 315-005-045), positioned 3 mm after T3. After com-
pleting the lines, the membrane was dried in a 37 °C incubator for 2 h. This
process was repeated three times to produce three identical test strips.

Web Platform and Mobile Application Development: The construction of
a comprehensive web-based platform was undertaken to facilitate the
utilization of the clinical scoring model. Advanced technologies and
methodologies were utilized, ensuring the platform’s functionality, perfor-
mance, and security. The structure, esthetic, and interactivity of the plat-
form were designed using HyperText Markup Language 5 (HTML5), CSS3,
and JavaScript. Asynchronous JavaScript and XML (AJAX) techniques were
implemented, enabling real-time communication between client-side and
server-side components.

The management of data storage and processing was achieved through
PHP and MySQL. Optimization strategies were incorporated to ensure the
performance of the website. Adherence to web security best practices was
maintained throughout the development process. Cross-browser compat-
ibility testing was conducted to ensure a consistent user experience across
various platforms.

Simultaneously, the development of the Clinical ScoringModel Android
application was undertaken. The application was designed using Java,
Android Jetpack, and the Gradle toolkit, which resulted in an efficient,
visually appealing, and user-friendly interface. Components such as
Responsive Design, LiveData, and ViewModel were integrated to enhance
accessibility and handle user input effectively.

Communication with the back-end server was facilitated through HTTP
client libraries via a RESTful API. Server-side data storage, processing, and
retrieval were managed effectively using PHP and MySQL. Performance
optimization strategies were implemented, and Android security best prac-
tices were adhered to throughout the development process. Compatibility
testing was conducted across various Android versions and devices to
ensure a consistent user experience. The culmination of this comprehensive
and methodical approach was the creation of a user-friendly platform
designed to accurately predict the risk of Talaromyces marneffei infection.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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