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A B S T R A C T

Information encoding and decoding by neurons is a fundamental process in neuroscience. Herein, we present a
statistical investigation of the first spike timing arising from the neuronal population in a small-world network
with the Hodgkin–Huxley model after a neuron has received current stimulation, including a transient or a
continuous stimulus. Regardless of how the interaction between neurons in the network was implemented, via
electrical coupling or chemical synapses, we found the same power-law statistics for the first spike timing,
independent of the topological structure of the neuronal network. We further suggest that such power-law
statistics can be a generalized feature for the first spike timing in the small-world and scale-free neuronal
networks. Our findings provide new insight into the coding mechanism for the first spike timing and improve
the understanding of the power-law behavior in nature.
1. Introduction

One of the most important research problems in neuroscience is un-
derstanding the coding mechanism. Stimulus information is encoded in
action potentials (AP) or spikes when the total dendritic input reaches a
threshold, and neurons exchange information via stereotyped pulses. It
is accepted that information may be encoded following two different
encoding mechanisms: the mean firing rate (firing rate coding) and
spike timing (temporal coding). The firing rate coding is statistically
computed based on the number of spikes in a fixed time window, and
the information about the stimulus is then encoded in the firing rate of
the neuron [1–3]. In the firing rate coding, the spike count is positively
correlated to the stimulus intensity, while this is not the case for the
temporal coding since the precise spike timing and coordination in
time are considered [4]. Although there is still a controversy about the
firing rate or temporal code, the spike timing has received increased
research attention over the past decades due to growing evidence of the
relation between synchronization in neural networks and higher brain
functions, such as memory, attention, and cognition [5,6]. Signal en-
coding, transmission, and decoding play a crucial role in neuron-related
computation, learning, and cognitive processing, and their various
aspects have been systematically investigated [7–12].
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Under strong temporal constraints, the first spikes per neuron could
also encode and process information [4]. The first-spike coding, using
the first-spike latency as an information carrier, was first proposed
by Hopfield [4], followed by many experiments performed in ver-
tebrates [13–15] and invertebrates [16,17]. The first-spike latency
is a robust and reliable measure of the neural response delay since
it carries more information than other spikes [18]. The important
findings supporting the neurophysiological meaning of first spike en-
coding are the experimental observations that neurons in the brain
exhibit temporal precision for their spiking patterns. For example,
neurons in the auditory system can detect differences in the timing
of sound stimuli with millisecond precision [19]. Similarly, neurons
in the visual system are able to encode information about the timing
of visual stimuli with submillisecond precision [20]. In addition, the
first-spike latency can also successfully identify the stimulus form in
auditory [21,22], visual [23,24] and somatosensory [25,26] systems.
The responding dynamics of the first-spike latency of neurons was in-
vestigated theoretically and computationally [27–29]. For example, an
analytical approach was provided to determine the spike timing from a
given initial state in two different neuronal models [30]. Pankratova
et al. studied the influence of noise on the spike timing of a single
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neuron subjected to a suprathreshold periodic forcing and found that
the mean latency nonmonotonically depends on the noise strength.
This phenomenon, named noise delayed decay (NDD) [31,32], was
then investigated widely under different conditions to explore the
biophysical mechanisms of the first-spike latency [33–39]. Further-
more, researchers have observed a fascinating phenomenon known as
‘‘chaos delayed decay’’ (CDD), whereby the first spike latency of a
deterministically forced Hodgkin–Huxley neuron exhibits a significant
delay that depends on the intensity of chaotic current. Interestingly, the
firing rate of the neuron demonstrates a non-monotonic relationship
with the intensity of the chaotic current [40].

In this work, we addressed how the information is estimated by
analyzing the distribution of first spike timing in the neural population.
Using Hodgkin–Huxley neurons with small-world coupling, we investi-
gated the probability distribution of first spike timing, which originated
from the neuronal network. Our results show that the probability distri-
bution follows a power law and exhibits universal features for the small
world network and scale free network with several parameter settings.
Remarkably, the distribution of first spike timing is independent of the
type of synapse, the type of stimulus, and the topological structure of
the network. This paper is organized as follows: Section 2 presents the
Hodgkin–Huxley neuronal network model and the analytical method.
Section 3 shows the main results under different conditions. Finally,
our conclusions are summarized in Section 4.

2. Models and methods

To simulate the time evolution of the action potential of a neuron
in the neuronal network, we employed the coupled Hodgkin–Huxley
neuron model [41–43]:

𝐶𝑚
𝑑𝑉𝑖
𝑑𝑡

= −(𝐺𝐾
𝑖 (𝑛𝑖)(𝑉𝑖 − 𝑉𝐾 ) + 𝐺𝑁𝑎

𝑖 (𝑚𝑖, ℎ𝑖)(𝑉𝑖 − 𝑉𝑁𝑎) + 𝐺𝐿
𝑖 (𝑉𝑖 − 𝑉𝑙)) (1)

+ 𝛿𝑖,𝑑𝐼𝑠𝑡𝑖𝑚 + 𝐼 𝑖𝑠𝑦𝑛,

where 𝑉𝑖 stands for the membrane potential of the 𝑖th neuron in
millivolts, 𝑖 = 1, 2,… , 𝑁 , and 𝐶𝑚 = 0.75 μF∕cm2 denotes for the
membrane capacitance per unit area. 𝑉𝑁𝑎 = 60.0 mV, 𝑉𝐾 = −90.0 mV,
and 𝑉𝑙 = −70.0 mV are the reversal potentials for sodium, potassium
and leak channels, respectively. In our model, the leak conductance 𝐺𝑖
is assumed to be constant (𝐺𝑖 = 𝑔𝐿 = 0.033 mS∕cm2), while the sodium
and potassium conductances depend on the gating variables according
to the following equations:

𝐺𝑁𝑎
𝑖 (𝑚𝑖, ℎ𝑖) = 𝑔𝑚𝑎𝑥𝑁𝑎 𝑚

3
𝑖 ℎ𝑖, 𝐺𝐾

𝑖 (𝑛𝑖) = 𝑔𝑚𝑎𝑥𝐾 𝑛𝑖, (2)

where 𝑔𝑚𝑎𝑥𝑁𝑎 = 150.0 mS∕cm2 and 𝑔𝑚𝑎𝑥𝐾 = 40.0 mS∕cm2 represent the
maximal sodium and potassium conductances, respectively. The gating
variable for activation and inactivation which regulates the sodium
current are denoted by 𝑚𝑖 and ℎ𝑖, respectively, and 𝑛𝑖 is the activation
gating variable for the potassium current. These gating variables can
be written unanimously as:
𝑑𝑚𝑖
𝑑𝑡

= 1
𝜏𝑚𝑖

(−𝑚𝑖 + 𝑚∞
𝑖 ), 𝜏𝑚𝑖

= 1
𝛼𝑚𝑖

+ 𝛽𝑚𝑖

, 𝑚∞
𝑖 =

𝛼𝑚𝑖

𝛼𝑚𝑖
+ 𝛽𝑚𝑖

, (3)

𝑑𝑛𝑖
𝑑𝑡

= 1
𝜏𝑛𝑖

(−𝑛𝑖 + 𝑛∞𝑖 ), 𝜏𝑛𝑖 =
1

𝛼𝑛𝑖 + 𝛽𝑛𝑖
, 𝑛∞𝑖 =

𝛼𝑛𝑖
𝛼𝑛𝑖 + 𝛽𝑛𝑖

,

𝑑ℎ𝑖
𝑑𝑡

= 1
𝜏ℎ𝑖

(−ℎ𝑖 + ℎ∞𝑖 ), 𝜏ℎ𝑖 =
1

𝛼ℎ𝑖 + 𝛽ℎ𝑖
, ℎ∞𝑖 = 1

1 + 𝑒(𝑉𝑖+60)∕6.2
,

𝑚𝑖
=

0.142(𝑉𝑖 + 30)
1 − 𝑒−(𝑉𝑖+30)∕8

, 𝛽𝑚𝑖
= −

0.097(𝑉𝑖 + 30)
1 − 𝑒−(𝑉𝑖+30)∕8

,

𝛼𝑛𝑖 =
0.0078(𝑉𝑖 − 30)
1 − 𝑒(−(𝑉𝑖−30)∕9)

, 𝛽𝑛𝑖 = −
0.00156(𝑉𝑖 − 30)
1 − 𝑒(−(𝑉𝑖−30)∕9)

,

𝛼ℎ𝑖 =
0.022(𝑉𝑖 + 45)
1 − 𝑒(−(𝑉𝑖+45)∕6)

, 𝛽ℎ𝑖 = −
0.0071(𝑉𝑖 + 70)
1 − 𝑒(−(𝑉𝑖+70)∕6)

.

𝐼 𝑖𝑠𝑦𝑛 in Eq. (1) is the total synaptic current received by neuron
𝑖. The coupling via electrical gap junctions and chemical synapses is
considered in our work. The interaction between neurons, whether it
2

is through electrical coupling or chemical synapses, plays a critical role
in the coding of neural information. The precise timing and strength of
synaptic connections between neurons can encode specific information,
such as sensory input or memory formation. Studies have shown that
the precise timing of action potentials and the strength of synaptic
connections can lead to the formation of spatiotemporal patterns of
activity, which are thought to be important for information process-
ing and computation in the brain [44,45]. The synaptic current via
electrical gap junctions is directly proportional to the difference in
action potential between neuron 𝑖 and that of the neighbored neuron,
averaged over neighbors:

𝐼 𝑖𝑠𝑦𝑛 = 𝜖
∑ 𝑔𝑖,𝑗

𝑘𝑖
(𝑉𝑗 − 𝑉𝑖), (4)

where 𝜖 is the conductance of the gap junction. For the chemical
synapses, the synaptic current is described as follows:

𝐼 𝑖𝑠𝑦𝑛 = 𝑔𝑐
∑ 𝑔𝑖,𝑗

𝑘𝑖
𝛼𝑠𝑦𝑛(𝑡 − 𝑡𝑗0)(𝑉𝑟𝑒𝑣 − 𝑉𝑖), (5)

here the alpha function 𝛼𝑠𝑦𝑛(𝑡) =
𝑡

𝜏𝑠𝑦𝑛
𝑒
− 𝑡

𝜏𝑠𝑦𝑛 is the synaptic conductance
unction, 𝜏𝑠𝑦𝑛 = 2 ms. 𝑔𝑐 is the maximal conductance of the synaptic
hannel, and 𝑡𝑗0 is the time when presynaptic neuron 𝑗 spikes. The
arameter 𝑉𝑟𝑒𝑣 is synaptic reversal potential, and it determines the type
f synapse. Herein, we only consider the excitatory synapses by setting
𝑟𝑒𝑣 = 0.0. The factors 𝑔𝑖,𝑗 are given by 𝑔𝑖,𝑗 = 1(𝑔𝑗,𝑖 = 1) when the neuron
is the neighbor of node 𝑖, and otherwise 𝑔𝑖,𝑗 = 0. The number of the
eighbor 𝑖 can be computed by 𝑘𝑖 =

∑𝑁
𝑗=1 𝑔𝑖,𝑗 . The stimulus current

𝑠𝑡𝑖𝑚 = 40 μA∕cm2 with a 2 ms duration time is sent to one randomly
hosen neuron. To avoid the influence of initial conditions on the spike
iming, the stimulus is added after the systems have evolved 200 ms.
he stimulus current is sent to a single neuron by setting 𝛿𝑖,𝑑 , where
is an index of the simulated neuron. 𝛿𝑖,𝑑 = 1 when 𝑖 = 𝑑, otherwise,

𝛿𝑖,𝑑 = 0.
We focus on the topology of the neurons with the small-world

networks, since the small-world properties are ubiquitous in the estab-
lished and reconstructed structural and functional brain networks [46–
51]. It was proposed by Watts and Strogatz, characterized by a high
clustering coefficient and short path length [52]. Small-world structure
is an excellent model for brain network due to the segregated and
distributed information processing [53,54]. We also used a standard
algorithm to build a small-world network, i.e., we started with a
neighboring-connected ring with periodic boundary conditions. With
the probability 𝑝𝑠, we disconnected an edge and reconnected it to a
vertex chosen uniformly from the entire ring; the process was then
repeated for each node [52].

To evaluate the response latency dynamics of neurons, we defined
𝑇𝑖 as the spike timing when an AP crosses a threshold, here equal
to 0 mV; then, the latency time 𝑡𝑖 of each neuron is defined as the
difference between the 𝑇𝑖 of each neuron and that of the stimulated
one. We analyzed the probability distribution of 𝑡𝑖. To evaluate the
probability distribution, a histogram was used first. Then, we used a
quantile–quantile plot which is a powerful technique for checking the
validity of a distributional assumption for a data set. The basic idea is
to compare the quantile of each data item with the theoretical quantile
based on the hypothetical distribution. If the data matches the assumed
distribution, the points should approximately approach a straight line
in the quantile–quantile plot. Finally, we conducted a Kolmogorov–
Smirnov test on the distribution. The return logical value ℎ = 1 or
0 stands for rejecting or accepting the null hypothesis, respectively.
The return 𝑝-value of the test is the probability of observing the test
statistics under the null hypothesis. The validity of the null hypothesis
is in doubt due to small p-values. The significance level 𝛼 is 0.05 [55].
The model was integrated numerically using the fourth-order Runge–
Kutta algorithm with a fixed temporal resolution of 0.01 ms. The initial
conditions 𝑣0𝑖 are chosen randomly from [−100, 20], 𝑚0

𝑖 , 𝑛
0
𝑖 , and ℎ0𝑖 are
chosen randomly from [0, 1].
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Fig. 1. (Color online) (a1)–(c1) The latency 𝑡𝑖 in the small-world neuronal network with 𝑁 = 200, 𝑝𝑠 = 0.3 for the coupling strength 𝜖 = 1.0, 2.0, and 3.0, respectively. (a2)–(c2)
he probability 𝑝 for the first spiking latency 𝑡 for different coupling strength. (a3)–(c3) The probability 𝑝 scales as a power law with 𝜏 (𝜏 = 1

𝑡
) for different coupling strengths;

(a4)–(c4) The probability 𝑝 vs 𝜏 for 100 small-world network samples for different coupling strengths. The solid lines show the maximum likelihood fit while the dash lines are for
the least square method. For the columns from left, middle to right, 𝜖 = 1.0, 2.0, and 3.0, respectively.
t

3. Results for networks with a transient stimulus

Networks with electrical synapses
First, we consider that the neuronal network is stimulated by a

transient stimulus current with a 2 ms duration time, and one randomly
chosen neuron is activated. Figs. 1(a1)-(c1) show the response time 𝑡𝑖
n the small-world neuronal network for different coupling strengths.
he latency time 𝑡𝑖 is random for different coupling strengths. Also,
he smaller the coupling strength, the stronger the fluctuation. In
articular, Figs. 1(a2)-(c2) illustrate the probability distributions 𝑝 for 𝑡𝑖
ith 𝜖 = 1.0, 2.0 and 3.0, respectively, where the data 𝑡𝑖 is generalized
s 𝑡. These distributions are single-peaked and rightward. However,
rightward distribution model is rare. Then, we set 𝜏 = 1

𝑡 , and
probability 𝑝 for 𝜏 are shown in Figs. 1(a3)-(c3), now becoming left-
ward. Strikingly, the probability distributions show an excellent fit to a
power law, validated by the test of the maximum likelihood estimator
(the solid line in Figs. 1(a3)-(c3)). To test the power law of proba-
ility distributions, 100 small-world networks with 𝑁 = 200 samples
ere generated, and a stimulated neuron was randomly chosen. Then,
0,000 records for 𝑡𝑖 were generated. The probability distributions 𝑝 for
are presented in Figs. 1(a4)-(c4), respectively. The leftward probability
istribution can be clearly observed from the three subfigures. The
umerical experiments show a clear power law relation between ln 𝑝
nd ln 𝜏, i.e.,

ln 𝑝 ∝ 𝛼 ln 𝜏. (6)

So far, all these findings indicate the power law of probability dis-
ributions, which was considered ubiquitous in physics and life sciences
or a long time. However, the nature of the probability distribution
odel, in Fig. 1, remains unanswered, and it is not known whether all
ata follow the same probability model. To answer these equations, we
irstly tested the distribution of these data by plotting quantile–quantile
igures. Figs. 2(a)–(f) illustrate quantile–quantile plots for matching
he actual value with the Exponential, Normal, Lognormal, Weibull,
amma, and Generalized extreme value (GEV) distributions, respec-

ively. Comparing these quantile–quantile plots clearly shows that the
ata approach to the Exponential distribution and GEV distribution (the
3

ed line indicates a perfect correlation), while many data deviate (the
Fig. 2. (Color online) (a)–(f) Quantile–quantile plots that match the actual values with
the following distributions respectively: Exponential (The probability density function
𝑝(𝑥) = 𝜆𝑒−𝜆𝑥), Normal (The probability density function 𝑝(𝑥) = 1

√

2𝜋𝜎
𝑒−

(𝑥−𝜇)2

2𝜎2 ), Lognormal

(The probability density function 𝑝(𝑥) = 1
√

2𝜋𝜎𝑥
𝑒−

(ln 𝑥−𝜇)2

2𝜎2 ), Gamma (The probability density

function 𝑝(𝑥) = 𝜆𝛼

𝛤 (𝛼)
𝑥𝛼−1𝑒−𝜆𝑥 𝜆 is the scale parameter, 𝑘 is the shape parameter 𝛤 (𝑥) is

he 𝛤 function), Weibull (The probability density function 𝑝(𝑥) = 𝑘
𝜆
( 𝑥
𝜆
)𝑘−1𝑒−(

𝑥
𝜆
)𝑘 𝜆 is the

scale parameter, 𝑘 is the shape parameter), and Generalized extreme value distribution
(GEV) (The probability density function 𝑝(𝑥) = 𝑒𝑓 (𝑥)𝑓 ′(𝑥), 𝑓 (𝑥) = −(1+𝑘 𝑥−𝜇

𝜎
)−

1
𝑘 , 𝜇 is the

location parameter, 𝜎 is scale parameter, and 𝑘 is the shape parameter).
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Fig. 3. The probability 𝑝 versus 𝜏 in different settings. (a1) different size 𝑁 (𝑁 = 400
the purple points) and 600 (blue squares)) with 𝑝𝑠 = 0.3, ⟨𝑘⟩ = 4. (b1) different connect
robability 𝑝𝑠 (𝑝𝑠 = 0.1 (red points), 0.5 (green squares)) with 𝑁 = 600, ⟨𝑘⟩ = 4. (c1)
ifferent average degree ⟨𝑘⟩ (⟨𝑘⟩ = 2 (the dark-yellow points) and 6 (cyan squares))
ith 𝑝𝑠 = 0.3, 𝑁 = 600. (a2)-(c2) The dashed lines show the power law function by the

least square method. The quantile–quantile plots for the hypothesis of GEV distribution
correspond to (a1)-(c1), respectively. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

red line for other distribution assumptions). We used the Kolmogorov–
Smirnov test to check whether the data obey the GEV distribution or
Exponential distribution. A logical value ℎ = 0 and a 𝑝 value 𝑝 >
0.98 with a significance level 𝛼 = 0.05 were obtained for the GEV
distribution hypothesis, while ℎ = 0 and 𝑝 = 0.0001 with the same
significance were obtained for the Exponential distribution. Therefore,
we reasonably reject the Exponential distribution hypothesis and accept
the GEV distribution hypothesis.

To check the universal scaling of the latency in small-world neu-
ronal networks, many examples were tested, including the small-world
networks with different sizes 𝑁 , different connect probabilities 𝑝𝑠, and
different average degrees ⟨𝑘⟩. These results are shown in Figs. 3 (a1)-
(c1). These power law behaviors are universal for the small-world neu-
ronal network, as several system parameters have been systematically
tested and all qualitative results were unchanged. These results indicate
a universal form of the first spiking timing latency which emerging from
the small-world neuronal network with electrical synapses.

To further assess our assumption about the GEV distribution, Figs. 3
(a2)-(c2) present the best matching between the GEV distribution and
the actual values for the small-world networks of different sizes, con-
nect probabilities, and average degrees. The subfigures show that the
data fully approach the respective straight line for the different net-
work structures, where only some of them deviate, indicating that the
random latency 𝑡𝑖 in the small-world neuronal network obeys the same
probability distribution (the GEV distribution). Using the Kolmogorov–
Smirnov test to check the data in Fig. 3, we get ℎ = 0 and a large return
𝑝-value [See Table 1]. Thus, we tested the hypothesis that all data
follow the GEV distribution and validated the hypothesis. Hence, we
conclude boldly that the distribution for the latency, as the first spiking
originating from the small-world network with an electrical synapse
type, exhibits a power-law property and obeys the GEV distribution.
The probability density function of the GEV distribution is given as
follows:

𝑝(𝜏) = 𝑒𝑓 (𝜏)𝑓 ′(𝜏), 𝑓 (𝜏) = −(1 + 𝑘
𝜏 − 𝜇

)−
1
𝑘 , (7)
4

𝜎

Fig. 4. The power exponent 𝛼 which is fitted by the least square method against the
oupling strength 𝜖, the connection probability 𝑝𝑠, and the average degree ⟨𝑘⟩ of a

small-world network, respectively. In (a) 𝑁 = 200, ⟨𝑘⟩ = 4, the dark cyan and pink line
corresponds to 𝑝𝑠 = 0.3 and 0.7, respectively, In (b) 𝑁 = 200, ⟨𝑘⟩ = 4, the dark yellow
and orange line corresponds to 𝜖 = 0.5 and 2.5, respectively, In (c) 𝑁 = 200, 𝑝𝑠 = 0.3, the
purple and green line corresponds to 𝜖 = 0.5 and 2.5, respectively. (For interpretation
f the references to color in this figure legend, the reader is referred to the web version
f this article.)

Table 1
The return 𝑝-value for KS test.

Synapse type 𝑁 = 400, 600 𝑝𝑠 = 0.1, 0.5 < 𝑘 > = 2, 6

Electrical junction 𝑝 = 0.98, 0.92 𝑝 = 0.87, 0.89 𝑝 = 0.90, 0.73
Chemical synapse 𝑝 = 0.79, 0.91 𝑝 = 0.83, 0.95 𝑝 = 0.72, 0.99

where 𝜇 is the location parameter, 𝜎 is the scale parameter, and 𝑘 is the
shape parameter. Consequently, we can get the distribution of the first
spiking timing based on the 𝜏 = 1

𝑡 . The probability density function for
the spiking timing 𝑡 is shown as

𝑝(𝑡) = 𝑒𝑓 (𝑡)𝑓 ′(𝑡) 1
𝑡2
, 𝑓 (𝑡) = −(1 + 𝑘

1
𝑡 − 𝜇

𝜎
)−

1
𝑘 , (8)

Finally, we checked the power exponent 𝛼 computed by the least
square fitting under different conditions. Figs. 4 (a)–(c) show the power
exponent 𝛼 against the coupling strength 𝜖, the connection probability
𝑝𝑠, and the average degree ⟨𝑘⟩ of the small-world network, respectively.
The 𝛼 decreases with 𝜖, indicating that the coupling strength can
enlarge the probability of a small latency [ Fig. 4(a)]; when the average
degree ⟨𝑘⟩ and the connection probability 𝑝𝑠 increase, the value of 𝛼
decreases first and then oscillates with a small amplitude, implying that
the large average degree and connection probability may not influence
the latency distribution.

Networks with chemical synapses
Our results show that the latency distribution, as the spiking of

electrical synapses, exhibits a power-law property and obeys the GEV
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Fig. 5. (Color online) (a)–(f) Quantile–quantile plots that match the actual values with the following distributions, respectively: Exponential, Normal, Lognormal, Weibull, Gamma
and Generalized extreme value distribution (GEV). The data for the first spiking were obtained by sampling from a small-world network with chemical synapses under the following
conditions: 𝑁 = 200, 𝑝𝑠 = 0.3, ⟨𝑘⟩ = 4, and 𝑔𝑐 = 1.5.
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istribution. A further question arises, whether this feature exists for
he small-world neuronal network with chemical synapses. To de-
ermine the optimal distribution for matching the actual values, we
enerated quantile–quantile plots that compared the data to six candi-
ate distributions: Exponential, Normal, Lognormal, Weibull, Gamma,
nd Generalized Extreme Value (GEV), as shown in Fig. 5. Upon
omparing these subfigures, it became clear that the GEV distribu-
ion produced the best match with the data (indicated by a perfect
orrelation represented by the blue line). Conversely, deviations were
bserved for other distribution assumptions (indicated by the blue line
or those distributions). Further numerical results confirm this, and
he power law distribution for 𝜏 in the small-world neuronal network
ith chemical synapses (𝜏 is the inverse of first spiking timing 𝑡) is

hown in Figs. 6(a1)-(c1) for different chemical synapse weights. Unlike
lectrical synapses, chemical synapses can lead to delayed interaction,
hile the coupling of electrical synapses is instantaneous. The chem-

cal synapses may influence the spiking distribution of the neuronal
etwork. The pattern in Fig. 6, however, indicates a surprising result,
.e., the probability scales with the latency following a power law in
he same magnitude and obeys the GEV distribution. We also checked
hree sets of data by using the Kolmogorov–Smirnov test and obtained
he logical value ℎ = 0 and the return 𝑝-value 𝑝 = 0.98, 0.77, and 0.71
ith the significance level 𝛼 = 0.05, with all datum following the GEV
istribution.

To verify the universality of power laws for the spike latency in a
mall-world network with chemical synapses, Figs. 7 (a1)-(c1) show
he probability 𝑝 as a function of 𝜏 for different network sizes, con-
ection probabilities, and average degrees of the small-world network,
espectively. The probability also scales by a power law with 𝜏 for
he different parameter settings, indicating a universal form of the
robability distribution of the spike latency in the small-world network
ith chemical synapses. Actually, the quantile–quantile plot for the best
atching between the GEV distribution and the actual values in Figs. 7
a2)-(c2) is more convincing for probing the universality of the power
aw distributions of the spike latency as the spiking in the small-world
etwork with chemical synapses. Using a Kolmogorov–Smirnov test to
heck the data in Fig. 7, we get the logical value ℎ = 0 and the return
5

-values are large for all data [See Table 1]. Therefore, we infer that n
Fig. 6. (Color online) (a1)–(c1) The probability 𝑝 versus 𝜏 for the latency as the first
spike in the small-world neuronal network with chemical synapses for the coupling
weight 𝑔𝑐 = 0.5, 1.0, and 1.5, respectively, 𝑁 = 200, ⟨𝑘⟩ = 4. The solid line is
he maximum likelihood fit. (a2)–(c2) The quantile–quantile plots for the best match
etween the GEV distribution and the actual values which correspond to (a1)–(c1),
espectively.

he first spike latency distribution in a network with chemical synapses
xhibits power-law characteristics and obeys the same distribution with
lectrical gap junctions. Fig. 8 also shows the power exponent 𝛼 for
hemical synapses against the coupling strength 𝑔𝑐 , the connection
robability 𝑝𝑠, and the average degree ⟨𝑘⟩ of the small-world neuronal
etwork. Similar functional relationships can be observed between 𝛼
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Fig. 7. (a1)–(c1) The probability 𝑝 as a function of 𝜏 in small-world neuronal networks
with chemical synapses of: (a1) different size 𝑁 (𝑁 = 400 (the purple points) and 600
(blue squares)) with 𝑝𝑠 = 0.3, ⟨𝑘⟩ = 4; (b1) different connect probability 𝑝𝑠 (𝑝 = 0.1 (red
points), 0.5 (green squares)) with 𝑁 = 600, ⟨𝑘⟩ = 4; and (c1) different average degree
⟨𝑘⟩ (⟨𝑘⟩ = 2 the (dark-yellow points) and 6 (cyan squares)) with 𝑝𝑠 = 0.3, 𝑁 = 600.
𝑐 = 1.0. (a2)–(c2) The quantile–quantile plots for the hypothesis of GEV distribution
orrespond to (a1)–(c1), respectively. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

Table 2
The return 𝑝-value for the KS test with 5 spikes.

Synapse type i = 1 i = 2 i = 3 i = 4 i = 5

Electrical junction 𝑝 = 0.90 𝑝 = 0.57 𝑝 = 0.8 𝑝 = 0.59 𝑝 = 0.92
Chemical synapse 𝑝 = 0.88 𝑝 = 0.76 𝑝 = 0.98 𝑝 = 0.98 𝑝 = 0.98

and 𝜖, 𝑝𝑠, and ⟨𝑘⟩ as for electrical synapses, indicating that chemical
synapses may not influence the distribution type of the spiking of
neuronal networks. However, we also find that the value of 𝛼 for
chemical synapses is higher than that of electrical synapses.

4. Results for networks with a continuous stimulus

Actually, it is worth noting that the time-varying stimulus is im-
portant for the coding mechanism, and is also an object of interest
in several other important fields [56–58]. In particular, we want to
study the first-spiking coding mechanism underlying the time-varying
stimulus, and to verify whether the universality of power laws for the
latency which is induced by the time varying stimulus also holds in this
case. With this aim, we consider a stimulus in the form 𝐴 cos(𝜔𝑡) + 𝐼0 +
𝜉(𝑡) where 𝐴 cos(𝜔𝑡) is a weak signal with an amplitude of 𝐴 = 0.3 and a
frequency of 𝜔 = 2𝜋

100 , 𝐼0 = 5.0 is a direct current, and 𝜉(𝑡) is the Gaussian
white noise which satisfies ⟨𝜉(𝑡)⟩ = 0.0, ⟨𝜉(𝑡1)𝜉(𝑡2)⟩ = 2𝐷𝛿(𝑡1 − 𝑡2), 𝐷 is
the strength of noise. The stimulus neuron is chosen randomly.

Figs. 9(a) and (b) show the firing patterns in the small-world
network with electrical coupling and chemical synapses, respectively.
It can be observed that the neurons spike irregularly, and the spike
latency per neuron is random. As an example, we first check the latency
of the first spiking. The probability 𝑝 as a function of 𝜏 is presented in
Figs. 9(c) and (d) for different types of synapses. Clearly, 𝑝 scales by a
power law with 𝜏. The quantile–quantile plot also checks the probabil-
ity distributions for the best match between the GEV distribution and
6

Fig. 8. Comparison of the power exponents 𝛼 fitted by the least square method versus
the coupling strength 𝑔𝑐 , the connection probability 𝑝𝑠, and the average degree ⟨𝑘⟩
of small-world networks, respectively. In (a) 𝑁 = 200, ⟨𝑘⟩ = 4, the dark cyan and
ink line corresponds to 𝑝𝑠 = 0.3 and 0.7, respectively, In (b) 𝑁 = 200, ⟨𝑘⟩ = 4,
he dark yellow and orange line corresponds to 𝑔𝑐 = 0.5 and 2.5, respectively, In
c) 𝑁 = 200, 𝑝𝑠 = 0.3, the purple and green line corresponds to 𝑔𝑐 = 0.5 and 2.5,
espectively. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

he actual values in Figs. 9(e) and (f), respectively. In order to deter-
ine the best fit distribution for the data, Figs. 10(a)–(f) also present

uantile–quantile plots that compare the actual values to six candidate
istributions: Exponential, Normal, Lognormal, Weibull, Gamma, and
eneralized Extreme Value (GEV). The blue line in the plots represents
erfect correlation between the actual values and the corresponding
istribution. Comparing these plots, it is evident that the data most
losely approximate the GEV distributions. However, some data points
xhibit deviations from the other distribution assumptions. Further, we
ave applied the Kolmogorov–Smirnov test to check the latencies with
rbitrary 5 spikes for both electrical junction and chemical synapse, all
he logical values h return to 0 with a large 𝑝-value under a significance
evel of 𝛼 = 0.05 [See Table 2], and all data for spike latency follow
he GEV distribution. Therefore, we know that the distribution of the
pike latency in neuronal networks may have a power law property and
bey the same distribution with the features independent of the type of
timulus. These power law behaviors are universal for the stimulus, as
everal system parameters of stimulus have been systematically tested
nd all qualitative results were unchanged.

. Conclusions and discussions

In this paper, we investigated the probability distribution of the first
pike timing latency, originating from the neuronal populations in the
mall-world network, either with electrical or chemical synapses after a
euron has received a stimulus current, including a transient or a con-
inuous stimulus. We found that the distribution of the random latency
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Fig. 9. (Color online) Dot-raster plots of spike times ((a)–(b)), probability ((c)–(d)),
and quantile–quantile plots ((e)–(f)) of the latency as the first spiking of small-world
neuronal network with time-varying stimulus for 𝑁 = 400, 𝑝𝑠 = 0.3, 𝐷 = 5.0, 𝜖 (𝑔𝑐 ) =
.5, respectively. The left and right columns correspond to the electrical coupling and
hemical synapses, respectively.

ollows a rightward power law and becomes leftward while reversing
he random spike timing. To test the data distribution, we used the
uantile–quantile plot, which is a powerful statistical tool to compare
he actual data with some classical probability model, including the Ex-
onential, Normal, Log-normal, Weibull, Gamma, and GEV distribution.
he best matching occurred between the GEV distribution and the ac-
ual values, while the data largely deviated in other distributions. Using
he Kolmogorov–Smirnov test for all data, we determined that all data
bey the GEV distribution, validating the hypothesis. We also assessed
he probability of first spike latency of a scale-free network. Unlike the
mall-world network, the scale-free network exhibited a singularity in
he degree distribution (data not shown here). The scale-free network
howed a smaller clustering coefficient and larger hubs than the small-
orld network. Intuitively, the latency distribution in the scale-free
euronal network was different from that of the small-world network.
owever, a completely opposite result occurred (data not shown here),

.e., the probability scaled as a power law with the latency in the
ame magnitude in different network parameter settings, also obeying
he GEV distribution. Remarkably, this power law behavior appears to
e universal. We systematically tested several parameters, including
ifferent stimulus currents, stimulus durations, noise strengths, and
mall-world network structures with varying parameters. Despite these
ariations, we found that the distribution type remained unchanged,
ndicating the robustness of the observed power law behavior.

Power law is a statistical concept that describes a functional rela-
ionship between two variables where one variable varies as a power
f the other. One of the remarkable features of power law is its ability
o show the universal characteristics across different systems and dis-
iplines. For example, it has been found that the degree distribution of
any real-world networks follows a power law distribution, including

he internet, social networks, and biological systems [59,60]. This
ndicates that there may be potential mechanisms or principles that
ontrol the structure and behavior of these systems. Moreover, the
ower law has been used to study the dynamics of complex systems,
7

P

uch as the spread of infectious diseases, the occurrence of financial
rises, and the evolution of biological systems [61,62]. Researchers can
ain insights into the fundamental principles that govern their behavior
nd make predictions about their future evolution when the universal
haracteristics of these systems are identified. Power law statistics and
ts associated universal characteristics have proven to be powerful tools
or understanding complex systems in a wide range of disciplines, and
urther research in this area is likely to yield important insights into
he behavior of these systems. Therefore, we believe that our findings
re not only of interest to researchers in neuroscience but also valuable
n statistical physics.

Although the encoding mechanism used by neurons is still unclear,
t is widely accepted that coding is based on action potentials or
pikes. This work addresses how to estimate the latency information
rom the distribution of spike timing when one of the neurons in the
eural population is stimulated. Understanding the coding mechanism
s an important question in neuroscience, essential to shed light on
ow the cortex processes and transmits information. Interestingly, the
elationship between the coding mechanism and low power consump-
ion has attracted the attentions of researchers in various fields such
s computer science, engineering, biology, and physics. Nature has
volved mechanisms for coding information and performing complex
omputations with minimal energy consumption. This has inspired the
evelopment of new approaches in engineering and computer science
hat aim to emulate nature’s efficient coding mechanisms to achieve
ow power consumption. One example of such mechanisms is the use
f spiking neural networks, which are based on the communication
etween neurons in the brain. Spiking neural networks are highly
fficient in terms of energy consumption, and they have been used in
arious applications, including robotics and machine learning.
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Fig. 10. (Color online) (a)–(f) Quantile–quantile plots that match the actual values with the following distributions respectively: Exponential, Normal, Lognormal, Weibull, Gamma
and Generalized extreme value distribution (GEV). The data for the first spiking were obtained by sampling from a small-world network with chemical synapses under the following
conditions: 𝑁 = 400, 𝑝𝑠 = 0.3, ⟨𝑘⟩ = 4, and 𝑔𝑐 = 0.5.
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