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Background: Radiation proctitis is a common complication after radiotherapy 

for cervical cancer. Unlike simple radiation damage to other organs, radiation 

proctitis is a complex disease closely related to the microbiota. However, 

analysis of the gut microbiota is time-consuming and expensive. This study 

aims to mine rectal information using radiomics and incorporate it into a 

nomogram model for cheap and fast prediction of severe radiation proctitis 

prediction in postoperative cervical cancer patients.

Methods: The severity of the patient’s radiation proctitis was graded according 

to the RTOG/EORTC criteria. The toxicity grade of radiation proctitis over or 

equal to grade 2 was set as the model’s target. A total of 178 patients with 

cervical cancer were divided into a training set (n = 124) and a validation set 

(n = 54). Multivariate logistic regression was used to build the radiomic and 

non-raidomic models.

Results: The radiomics model [AUC=0.6855(0.5174-0.8535)] showed better 

performance and more net benefit in the validation set than the non-

radiomic model [AUC=0.6641(0.4904-0.8378)]. In particular, we applied 

SHapley Additive exPlanation (SHAP) method for the first time to a radiomics-

based logistic regression model to further interpret the radiomic features 

from case-based and feature-based perspectives. The integrated radiomic 

model enables the first accurate quantitative assessment of the probability 

of radiation proctitis in postoperative cervical cancer patients, addressing the 

limitations of the current qualitative assessment of the plan through dose-

volume parameters only.
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Conclusion: We successfully developed and validated an integrated radiomic 

model containing rectal information. SHAP analysis of the model suggests that 

radiomic features have a supporting role in the quantitative assessment of the 

probability of radiation proctitis in postoperative cervical cancer patients.

KEYWORDS

radiomics, nomogram, radiation proctitis, SHapley Additive exPlanation (SHAP), 
microbiota

1. Introduction

Cervical cancer is a malignant neoplasm at the junction of the 
squamous epithelial cells of the vaginal or transitional zone of the 
cervix and the endocervical canal columnar epithelial cells. Cervical 
cancer is the fourth most common cancer worldwide (Sung et al., 
2021). Radiotherapy is one of the most effective methods for 
treating pelvic malignancies and has an irreplaceable role in treating 
cervical cancer at all stages. The main complication of radiotherapy 
for pelvic malignancies is radiation proctitis (Yeung et al., 2020). 
Fifty percent of patients with cervical cancer or endometrial cancer 
who received postoperative intensity-modulated radiotherapy 
developed acute rectal toxicity, and 5%–10% developed chronic 
rectal toxicity (Zelefsky et al., 2008; Yeung et al., 2020).

Unlike simple radiation damage to other organs, radiation 
proctitis is a complex disease closely related to the microbiota. A 
study using a rectal radiation mouse model showed that radiation 
affected both host and intestinal microbiota (Gerassy-Vainberg 
et  al., 2018). Radiation therapy could induce local microbial 
ecological dysbiosis, and the dysbiosis microbiota could exert a 
direct pro-inflammatory effect on epithelial cells. In another study 
of 32 female patients with chronic radiation proctitis, differential 
patterns of dysbiosis were observed after analyzing the gut 
microbiota of patients with or without hematochezia (Liu et al., 
2021). Gut microbiota could offer a set of biomarkers for radiation 
enteritis prediction, disease activity evaluation, and treatment 
selection (Wang et al., 2019).

However, the current prediction models of radiation 
proctitis were focused mainly on clinical and radiotherapy dose 
features. Several univariate and multivariate analyses showed 
that features, including tumor size, pathological characteristics, 
and radiological parameters, were significantly correlated with 
post-radiotherapy comorbidities in patients undergoing pelvic 
radiotherapy (Albert et al., 2008; Schmidt et al., 2022). A study 
by Fiorino et al. showed that rectal function was significantly 
correlated with treatment volume, PTV margins, radiation 

therapy dose, hemorrhoids presence, anticoagulant use during 
follow-up, and relative (%) and absolute (cm3) values of rectal 
V38Gy and V40Gy correlated with rectal bleeding (Fiorino 
et  al., 2008). A study by Mahal et  al. also noted that total 
radiation dose, dose per fraction, radiotherapy techniques, and 
treatment volume affected the rectum of patients (Mahal 
et al., 2014).

Another review also suggested features associated with 
radiation proctitis, including vascular diseases such as smoking, 
diabetes, hypertensive diabetes and atherosclerosis, collagen 
vascular disease, comorbid inflammatory bowel disease, and 
human immunodeficiency virus infection. Also, the review noted 
that specific underlying genetic changes could affect patients’ 
sensitivity to radiation. There was a correlation between genes and 
higher risks of gastrointestinal and genitourinary tract 
radiotoxicity after radiotherapy (Shadad et al., 2013).

The above studies have shown a strong correlation between 
patients’ oncologic features, pathologic features, and radiologic 
dose and the appearance of radiation proctitis in postoperative 
radiotherapy for pelvic cancer. However, the conclusions of these 
studies are inconsistent, and the accuracy of the prediction of 
radiation proctitis is unsatisfactory.

In recent years, computer-aided diagnosis, especially machine 
learning methods, has also been used for postoperative 
radiotherapy side effects and comorbidities prediction in oncology 
patients. Lee et al. applied machine learning methods such as 
random forest and bioinformatics to genome-wide data to predict 
and interpret advanced urogenital toxicity (Lee et al., 2018). They 
designed more robust predictive models and identified plausible 
biomarkers and biological processes associated with late urogenital 
toxicity. A study by Lewis & Kemp et  al. showed that the 
integration of machine learning and genome-scale metabolic 
modeling identified multi-group biomarkers of radiation 
resistance (Lewis and Kemp, 2021).

However, it should be noted that the machine learning models 
above were developed using clinical features only. It ignored the 
large number of features embedded in computed tomography 
images (CT) that are imperceptible to the naked eye. Moreover, in 
the process of treatment plan determination, physicians are more 
focused on extracting focal area information and lack awareness 
of pelvic rectal information. Therefore, a comprehensive model is 
urgently needed to deepen the understanding of patient rectal 
image information to accurately assess radiotherapy treatment 
plans and reduce severe complications of radiation proctitis.

Abbreviations: SHAP, SHapley Additive exPlanation; CT, computed tomography; 

ROI, Regions of Interest; LASSO, the least absolute shrinkage and selection 

operator regularization; DCA, decision curve analysis; AUC, area under curve; 

OR, odds ratio; ROC, receiver operating characteristic analysis; ECCR, Ethics 

Committee in Clinical Research; RTOG, Radiation Therapy Oncology Group; 

EORTC, European Organization for Research and Treatment of Cancer.
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Deep learning, as well as dynamical modeling, is demonstrating 
powerful feature extraction and modeling capabilities in various 
medical fields (Li et al., 2021; Qian et al., 2021; Chen et al., 2022; 
Hu et al., 2022; Li Y. et al., 2022; Li X. et al., 2022). In data-driven 
disease research, a graph neuro network was used to predict the 
potential associations of disease-related metabolites (Sun et al., 
2022). Deep learning can also be used to explore the identification 
of circRNA-disease associations (Wang et al., 2021) and predict the 
potential human lncRNA interactions (Zhang et al., 2021; Jingxuan 
et al., 2022; Wang et al., 2022). In drug metabolism research, deep 
learning can be  used to predict the ability of a compound to 
permeate across the blood–brain barrier (Tang et al., 2022) and 
drug response (Kuenzi et  al., 2020). At the same time, deep 
learning is also a popular tool for radiotherapy research. Zhong 
et al. developed a deep learning-based radiomic nomogram that 
could predict the prognosis of patients with different treatment 
regimens (Zhong et al., 2021). Qiang et al. established a prognosis 
prediction system based on deep learning for locoregionally 
advanced nasopharyngeal carcinoma (Qiang et  al., 2021). 
Although deep learning has been widely applied in the analysis and 
prediction of various diseases, the poor interpretability of the deep 
learning model makes it difficult for clinicians to understand and 
trust these tools (Huff et al., 2021).

Radiomics can extract biomedical images containing 
information reflecting the underlying pathophysiology and reveal 
the relationships through quantitative image analysis (Le et  al., 
2021; Lam et al., 2022). In previous studies, radiomics has been used 
to predict postoperative radiotherapy-induced toxicity in prostate 
cancer patients. Mostafaei et al. showed that models based on CT 
radiomics, clinical features, and dose-volume parameters could 
predict radiation toxicity. The combination of imaging and clinical 
features could improve the performance of radiotoxicity prediction 
models (Mostafaei et  al., 2020). However, no study has been 
performed to predict postoperative radiotherapy comorbidity in 
cervical cancer patients using radiomic features. Due to the limited 
resolution, the information on microbiota is almost impossible to 
extract directly by radiomics in theory, and no relevant studies have 
been reported. However, it is feasible that radiomics can indirectly 
reflect the effect of microbiota on the rectum.

Therefore, this study uses radiomics to extract the rectal 
information from medical images and improve the model 
performance and diagnostic accuracy through quantitative image 
analysis. Moreover, this study creatively introduces SHapley Additive 
exPlanation (SHAP)  values to explore the interpretability of 
nomogram to improve the clinicians’ understanding of the model 
and its radiomic features, which facilitates later clinical promotion.

2. Materials and methods

2.1. Patients

The study protocol was reviewed and approved by the Ethics 
Committee in Clinical Research (ECCR) of the First Affiliated 

Hospital of Wenzhou Medical University. It was conducted 
following the Declaration of Helsinki. The Transparent Reporting 
of Individual Prognosis or Diagnosis Multivariate Predictive 
Models (TRIPOD) guidelines and the Strengthening Reports of 
Observational Studies in Epidemiology (STROBE) statement were 
applied. As this study was a retrospective cohort study, informed 
consent was waived, and all patient data were anonymized 
and desensitized.

Patients with cervical cancer from 1st January 2015 to 31st 
December 2020  in the First Affiliated Hospital of Wenzhou 
Medical University were collected for this study. These patients 
received a cervical cancer diagnosis, oncological surgery, and 
postoperative radiotherapy at the First Affiliated Hospital of 
Wenzhou Medical University.

The inclusion criteria (Figure  1) include (a) no severe 
symptoms at the time of diagnosis and good general physical 
condition; (b) patients with relatively intact organ functions, 
basically standard hematological system, and no 
contraindications to treatment; (c) no previous history of 
other malignant tumor diseases and radiotherapy; (d) 
postoperative pathological examination results confirming the 
diagnosis of cervical cancer; (e) postoperative radiotherapy; 
(f) patients with postoperative treatment; (g) the patient had 
complete pathology, imaging, and radiation therapy dose 
information; (h) no intracavitary brachytherapy 
was performed.

The exclusion criteria include (a) no definite postoperative 
pathological findings; (b) no complete clinicopathological data; 
(c) no CT scan was performed before postoperative radiotherapy; 
(d) patient’s pathology, imaging, and radiation treatment dose data 
are missing; (e) intolerance to radiotherapy or chemotherapy, and 
treatment plan was not completed due to severe acute toxic 
reactions during treatment; (f) Have received 
intracavitary brachytherapy.

The Mann–Whitney U-test and the Chi-square test were used 
to evaluate the performance of clinical and dose-volume features. 
Patients were randomly divided into a training set and a 
validation set.

2.2. Extraction of radiomic features

The entire rectal region on the patient’s CT image was defined 
as the Regions of Interest (ROI). Using ITK-SNAP software 
(Yushkevich et  al., 2006), a pelvic radiologist with 10 years of 
experience at the First Affiliated Hospital of Wenzhou Medical 
University outlined this target region manually. Another 
radiologist with 20 years of experience reviewed it. Extraneous 
components other than the rectum, such as peripheral vessels, 
peripheral tissues, and peripheral organs, were not outlined by 
radiologists to minimize interfering information. The two 
radiologists did not know the patient’s information. If the two 
doctors had the same opinion, the ROI would be included in the 
imaging data set.
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Quantitative radiological features were automatically 
extracted using a feature extraction platform based on the Python 
package PyRadiomics (van Griethuysen et  al., 2017). After 
segmentation and reconstruction of the patient CT, each patient 
extracted ROI was imported into Python in nrrd format. 
We extracted 1,409 radiomic features, including 8 feature classes 
used for further analysis and regression modeling. Radiomics 
features were dependent on the CT hardware, scanning 
parameters, and contrast agents. The process of generation and 
selection of radiomic features was illustrated in Figure 2.

2.3. Feature selection and model 
development

The variance equality of radiomics features was assessed by 
Levene’s test. Independent t-test or Wilcoxon’s test was used for 
feature selection. After standardizing the radiomic features using 
the z fraction transform, the high-dimensional imaging features 
extracted from the ROI were selected by the least absolute 
shrinkage and selection operator (LASSO) regularization 
algorithm. We performed univariate logistic regression on all 
features to screen out the key features significantly associated 
with the severity of radiation proctitis. The value of p was usually 
set at p < 0.2, but can also be set at p < 0.05 or p < 0.1. It requires 

the researcher to adjust the value of p according to the sample 
size. Due to the limited amount of data in this study, we set p < 0.2 
as the threshold. Features with p > 0.2 in the univariate logistic 
regression were excluded, and features with p < 0.2 were included. 
Finally, the features left after multiple screenings were introduced 
into a stepwise logistic regression analysis to build a 
comprehensive model.

2.4. Model simplification and model 
evaluation

The critical features remained after multiple screenings were 
included in the multivariate logistic regression model generated 
by the stepwise forward and backward methods. Finally, to 
transform the complex regression equations into simple and visual 
graphs and make the prediction models’ results more readable, a 
visual nomogram was constructed based on these features that can 
be stably present in the unified model. All model evaluations were 
performed on the unseen validation set. In addition, calibration 
curves were used to evaluate the model performance of 
the nomogram.

To further validate the performance of the radiomic features, 
we  built a simplified non-radiomic model by removing the 
radiomic features. To evaluate the performance of these two 

FIGURE 1

Flow diagram of the study enrolment patients.

https://doi.org/10.3389/fmicb.2022.1090770
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Wei et al. 10.3389/fmicb.2022.1090770

Frontiers in Microbiology 05 frontiersin.org

models, we  assessed the discrimination using the receiver 
operating characteristic (ROC) analysis. The area under the 
receiver operating characteristic curve (AUC) was used to assess 
the predictive discrimination of these two models. In addition, in 
order to verify the validity of the model from another perspective, 
a k-Nearest Neighbor (KNN) model was built using the same data 
as the radiomic nomogram. The root-mean-square error (RMSE) 
and 10-fold cross-validation were used to select the optimal 
hyperparameter of the KNN model. We  used decision curve 
analysis (DCA) to assess clinical validity by quantifying the net 
benefit at each threshold probability. All statistical analyses were 
performed using R (version 4.2.2), Python (version 3.9.12), and 

SPSS (version 24.0, IBM). The workflow of the model analysis 
process after modeling was shown in Figure 2.

2.5. Model interpretation

SHapley Additive exPlanation (SHAP) method is a game-
theoretic-based model interpretation method. From a game 
theory perspective, SHAP treats each feature variable as a player. 
The predicted outcome obtained by the model is considered as the 
gain from the cooperation of many players to complete a project. 
It connects optimal credit allocation with local explanations using 

FIGURE 2

Workflow of the radiomic model development and model analysis process. The orange arrows in the flow chart represented the processing of the 
radiomic features. The radiomic features were generated by the PyRadiomics package after outlining the rectal region on the original image. After 
feature selection by T-test, LASSO and univariate logistic regression, multivariate logistic regression models were developed and visualized as 
nomograms. The model analysis consists of three parts: model simplification, model evaluation, and model interpretation. By comparing the 
performance change before and after model simplification, we could measure the importance of the radiomic features. In particular, we applied 
SHapley Additive exPlanation (SHAP) values for the first time to a radiomics-based logistic regression model to further interpret the radiomic 
features from case-based and feature-based perspectives.
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the classical Shapley values from game theory and their related 
extensions (Lundberg and Lee, 2017). We  used scikit-learn 
(Pedregosa et al., 2011) to build the logistic regression model and 
used the SHAP package to calculate the SHAP values for the 
logistic regression model and further analyze the SHAP values 
with the SHAP plot module. The decision process of each patient 
could be presented by force plot. By overlaying the force plots and 
sorting the output values, we could see how all patients made their 
decisions. In addition to analyzing the model from the patient’s 
perspective, we can also use SHAP to understand the model from 
the feature’s perspective. SHAP provides bar plots and scatter plots 
of features to help us understand which feature was most 
important to the model.

3. Results

3.1. Baseline information of patients

This study included 1,093 patients with cervical cancer who 
needed to initiate radiotherapy at the First Affiliated Hospital of 
Wenzhou Medical University between 1st January 2015 and 31st 
December 2020. After screening and exclusion, a total of 178 
patients were finally included in our study. The study included 40 
patients (22.5%) with a toxicity grade greater than or equal to 
grade 2 after radiation therapy and 138 patients (77.5%) less than 
grade 2 after radiation therapy. The patients were divided into a 
training set (n = 124) and a validation set (n = 54). Table 1 shows 
the baseline information of the patients.

3.2. Radiomic features selection and 
multivariate analysis

We extracted a total of 1,409 radiomic features from the 
patients’ CTs and selected them using the LASSO algorithm. 
Multivariate logistic regression analysis was performed on all 
features selected by LASSO and univariate logistic regression. The 
results of the multivariate logistic regression are shown in Table 2. 
Radiotherapy techniques [OR = 0.000 (0.000–0.086), p = 0.005], 
Maximum rectal dose [OR = 1.006 (1.001–1.011), p = 0.020], 
Contrast [OR = 0.000 (0.000–0.002), p = 0.046] were independent 
risk factors for severe radiation proctitis.

3.3. Establishment of nomogram and 
model evaluation

In order to develop a clinically applicable method to predict 
the occurrence of radiation proctitis, we constructed a radiomics 
nomogram. The results of the nomogram were shown in 
Figure 3A. All model evaluations were performed on the unseen 
validation set. The calibration curve of the combined radiomics 
nomogram was shown in Figure  3B. To further validate the 

performance of the radiomic features, we  built a simplified 
non-radiomic model based only on the clinical feature and dose-
volume feature by removing the radiomic feature and comparing 
its performance with the full radiomic model. The ROC curves 
for the two nomogram models (Figure  3C) showed that the 
prediction effect of the radiomic model [AUC = 0.6855 (0.5174–
0.8535)] performed better than the non-radiomic model 
[AUC = 0.6641 (0.4904–0.8378)]. The AUC of radiomic 
nomogram [AUC = 0.6855 (0.5174–0.8535)] was close to that of 
the KNN model [AUC = 0.7051 (0.5602–0.85)]. It illustrated the 
validity of the model from another perspective. The decision 
curve analysis (DCA; Figure 3D) was used to assess the utility of 
both prediction models by calculating the net benefit at various 
probability thresholds. According to the decision curves, the 
radiomic model showed more benefit in predicting the risk of 
radiation proctitis than the non-radiomic model. It suggested 
that radiomic features were supporting features for severe 
radiation proctitis prediction.

3.4. Model interpretation

3.4.1. Case-based model interpretation
To further understand how decision-making occurred for 

individual and entire patient populations, we used SHAP to analyze 
from a case-based perspective. Figure 4A represented the decision 
process for SHAP values across all patients, with the vertical axis 
representing the magnitude of the SHAP values. As the graph was 
ordered by model output, we could clearly see the boundary line 
between red and blue. Features pushing the prediction higher were 
shown in red, and those pushing the prediction lower were in blue.

In addition to the model interpretation for all cases, we could 
also provide a clearer picture of the decision-making situation for 
individual patients through the waterfall or force plot. For 
example, by selecting the patient on the far right of Figure 4A, the 
decision-making process could be  visualized in Figure  4B or 
Figure  4C. Although the presentation was different, the 
information in Figures  4B,C was consistent. These two plots 
indicated the proportion and absolute SHAP value of various 
features in the decision-making process for that patient. SHAP 
could provide a quantitative and visual representation of the 
decision mechanisms of the radiomics model for any patient.

3.4.2. Feature-based model interpretation
We calculated and visualized the SHAP values for each feature 

in the radiomics model. The beeswarm plot (Figure  5A) 
demonstrated an overview of the feature contribution of all 
patients. In the beeswarm plot, features were sorted by the sum of 
SHAP value magnitudes over all samples, and SHAP values were 
used to show the distribution of each feature’s impacts. The bar plot 
shown in Figure 5B demonstrated the mean absolute value of the 
SHAP values for each feature. The plot showed that radiotherapy 
techniques and the maximum rectal dose have a high mean value. 
Since SHAP values represented a feature’s responsibility for a 
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change in the model output, Figures  5A,B indicated that the 
radiotherapy technique and the maximum rectal dose 
were essential.

To understand how each feature affected the model’s output, 
we plotted gray bar plots to show the SHAP values for each feature 
and scatter plots to show the SHAP values of the other features 
most relevant to that feature (Figures 5C,D).

4. Discussion

With the advancement of radiotherapy techniques, the 
postoperative survival rates of cancers such as cervical cancer 
have increased dramatically (Citrin, 2017). However, 
complications and side effects caused by postoperative 
radiotherapy or chemotherapy are difficult to avoid. Radiation 
proctitis is one of the most common complications of 

postoperative radiotherapy in patients with pelvic tumors 
(Rustagi et al., 2015; Qian et al., 2021), with mild diarrhea or mild 
rectal exudate in mild cases and even intestinal necrosis or 
bleeding in severe cases, endangering patients’ lives (Citrin, 
2017). In clinical practice, doctors currently rely on the dose-
volume features of radiotherapy plans to assess the risk of 
radiation proctitis. However, there is a lot of valuable information 
in pathology and clinical imaging that is not considered by 

TABLE 2 Result of multivariate logistic regression.

Features B P OR (95% CI)

Therapy −8.225 0.005 0.000(0.000–0.086)

Maximum rectal dose 0.006 0.020 1.006(1.001–1.011)

Contrast −349.316 0.046 0.000(0.000–0.002)

Constant −23.030 0.026 0.000

TABLE 1 Baseline information of all patients.

Variables Primary queue (n = 178)

<grade 2 (n = 138) ≥grade 2 (n = 40) p-value

Age (years) 53.5 (46–61) 52(47.75–60.75) 0.957

Therapy 3D-CRT 53 (63.9%) 30 (36.1%) <0.001

VMAT 85 (89.5%) 10 (10.5%)

Vascular invasion 48 (69.6%) 21 (30.4%) 0.043

FIGO Staging 2(1–2) 1(1–2.75) 0.800

Total rectal volume 65.937 (51.421–94.235) 69.422 (51.921–89.546) 0.875

Minimum rectal dose 1320.85 (417.6–2205.55) 583.35 (407.775–1817.025) 0.189

Maximum rectal dose 4907.35 (4145.175–5293.575) 4187.7 (4136.525–4819.25) 0.038

Average rectal dose 3958.55 (3738.35–4144.6) 3928.8 (3831.325–3996.2) 0.289

V5Gy(cm3) 63.444 (47.286–89.492) 69.422 (51.921–89.546) 0.427

V5Gy(%) 100 (98.148–100) 100(99.555–100) 0.987

V10Gy(cm3) 62.984 (47.127–90.466) 69.422 (53.625–92.057) 0.260

V10Gy(%) 99.95 (95.415–100) 99.245 (98.365–100) 0.976

V15Gy(cm3) 62.511 (46.688–90.466) 69.422 (53.625–91.919) 0.283

V15Gy(%) 99.18 (93.693–100) 98.52 (97.268–100) 0.837

V20Gy(cm3) 62.511 (46.234–89.878) 69.422 (53.625–90.757) 0.274

V20Gy(%) 97.755 (92.235–100) 97.855 (95.11–99.743) 0.705

V25Gy(cm3) 61.865 (45.854–87.485) 68.366 (53.122–88.878) 0.240

V25Gy(%) 95.475 (89.273–99.065) 96.645 (92.355–98.093) 0.304

V30Gy(cm3) 59.571 (42.243–80.618) 67.518 (52.789–87.533) 0.181

V30Gy(%) 90.145 (84.488–95.985) 95.06 (87.873–97.298) 0.028

V35Gy(cm3) 56.05 (39.968–76.027) 61.987 (48.092–86.923) 0.203

V35Gy(%) 83.955 (75.073–91.188) 92.34 (84.098–95.993) 0.001

V40Gy(cm3) 42.149 (27.754–60.107) 50.823 (33.909–65.466) 0.108

V40Gy(%) 59.66 (50.4–70.375) 65.595 (58.38–76.108) 0.035

V45Gy(cm3) 16.175 (0–30.87) 0(0–15.492) 0.003

V45Gy(%) 26.465 (0–38.913) 0(0–16.76) 0.001
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clinicians. Moreover, the sensitivity of the rectum to radiotherapy 
radiation also varies significantly between individuals.

To further refine the assessment of radiation proctitis, 
we selected radiomic features associated with radiation proctitis 
by univariate regression and the LASSO algorithm. Radiotherapy 
techniques (OR = 0.000 (0.000–0.086), p = 0.005), Maximum 
rectal dose (OR = 1.006 (1.001–1.011), p = 0.020), Contrast 
(OR = 0.000 (0.000–0.002), p = 0.046) were independent risk 
factors for radiation proctitis. Finally, we developed an integrated 
prediction model based on clinical and radiomic features 
[AUC = 0.6855 (0.5174–0.8535)]. Current studies of radiation 
proctitis had mainly focused on local radiotherapy dose limits 
rather than comprehensive predictive models (Snyder et  al., 
2001; Huang et  al., 2004). There was only one study using 
radiomics to build a predictive model for radiation proctitis 
(Mostafaei et al., 2020). In gastrointestinal toxicities modeling, 
the AUC of radiomic model of their study was 0.71, which was 
relatively higher compared with our study. However, the study 

was conducted based on data from only 64 patients and was only 
suitable for patients with prostate cancer.

The radiomic features of the model potentially incorporated 
the effect of microbiota on rectal radiosensitivity. The model 
without radiomic features showed lower validity, while the model 
containing both radiomic features and clinical features showed 
better performance on the ROC curve. The change of net benefit 
in Figure  3D suggested that radiomic features had played a 
supporting role in predictive models. And as a measure of the 
local intensity variation, a larger contrast correlated with a greater 
disparity in intensity values among neighboring voxels. In our 
study, the contrast suggested that a lower tissue density compared 
to the surrounding tissue was associated with 
higher radiosensitivity.

In most cases, PyRadiomics followed the image biomarker 
standardization initiative (IBSI)'s definition of features. 
PyRadiomics development was also involved in the 
standardization effort by the IBSI team. Still, there were some 

A

B C D

FIGURE 3

Nomogram for severe radiation proctitis prediction in postoperative cervical cancer patients, calibration of the nomogram, and decision curves in 
the overall patients. The combined nomogram (A) incorporated clinical, dose-volume, and radiomic features. By accumulating the points for each 
feature, we could quickly calculate the probability of radiation proctitis. All model evaluations were performed on the validation set. The 
Calibration curves of the combined radiomics nomogram (B) illustrated the relationship between the observed outcome frequencies and the 
predicted probabilities. The ROC curves (C) demonstrated the accuracy of the radiomic and non-radiomic models and KNN radiomic model. The 
DCA curves (D) demonstrated the net benefit of the radiomic and non-radiomic models.
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differences between PyRadiomics and feature extraction as 
defined in the IBSI documents. Most notably were the 
differences in gray value discretization (just for the fixed bin 
size type) and resampling. In summary, the definitions of 
PyRadiomics and IBSI were slightly different, but did not 
represent one over the other. Moreover, IBSI was only an 
initiative, not a standard. For these reasons, IBSI would not 
significantly impact the reproducibility and validity of 
this study.

While SHAP was often used to explain features in machine 
learning algorithms and neural network models (Bang et al., 
2021; Park et al., 2022; Shaji et al., 2022; Shi et al., 2022), SHAP 
analysis of logistic regression models had not yet been 
mentioned. Although logistic regression algorithms were 
simpler and more explicit than other machine learning 
algorithms and neural networks, logistic regression models 
were more challenging to understand than they may seem. 
Users could not directly measure the importance of features 

between continuous and categorical variables through odds 
ratio (OR) or coefficients (Table 2). In particular, for radiomic 
models, the significant variation in the magnitude of radiomic 
features made it more challenging to understand the actual 
decision-making process of the model through the coefficients 
and OR values of logistic regression. We wanted to help users 
better understand each feature’s role in the model. In 
subsequent clinical treatment, model users can further 
quantify the contribution of radiomic features in each 
model output.

To address this issue, we introduced SHAP for the first time 
to a radiomics-based logistic regression model, which further 
revealed the model’s decision-making mechanism (Figure 4A). 
The total contribution of SHAP for each feature included in the 
model was analyzed (Figure 5B). Radiotherapy techniques and 
the maximum rectal dose occupied vital positions in the model 
contribution. Notably, the SHAP value of the radiomic feature 
was the lowest. It suggested that the radiomic feature was 

A

B

C

FIGURE 4

SHAP plots demonstrated SHAP values from a case-based perspective. Sampled by model output, the overall SHAP plot (A) showed the decision 
process of all patients. The force plot (B) and the waterfall plot (C) demonstrated the proportion and absolute SHAP value of various features in the 
decision-making process for a single patient.
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weaker than the clinical feature and dose-volume feature. The 
SHAP could also analyze correlations between variables 
(Figures 5C,D). Correlations in SHAP values were observed 
between the three features. It may suggest an inter-collaborative 
relationship between variables in the model. However, this can 
only indicate a correlation between SHAP values, not between 
the values of the variables. In the subplot of therapy (Figure 5C), 
we can find that the most relevant variable was the maximum 
rectal dose. There was a harmful effect of maximum rectal dose 
in the decision-making process of these VMAT therapy samples. 
However, no fixed pattern was observed in the subplot of 
contrast (Figure 5D).

SHAP had a unique role in radiomics-based logistic models 
as a game-theoretic approach. SHAP helped us understand 
radiomic features that vary significantly in magnitude. 
Furthermore, SHAP provided a quantitative and visual 
representation of the decision mechanisms within the model for 
each patient.

We recommend that clinicians can reduce the value of the 
maximum rectal dose by modifying the plan when the model 
suggests that the current radiotherapy plan has a high probability 
of radiation proctitis. Clinicians can rely on interpretable models 
to precisely control the risk of the final plan to an acceptable level. 
Patients with cervical cancer can reduce unnecessary radiation 
doses and the incidence of radiation proctitis with the help of the 
comprehensive model.

5. Conclusion

We successfully developed and validated an integrated 
radiomic model containing rectal information in this study. The 
integrated radiomic model enables the accurate quantitative 
assessment of the probability of radiation proctitis in 
postoperative cervical cancer patients, addressing the 
limitations of the current qualitative assessment based on dose-
volume parameters only. Based on the model output and SHAP 
values analysis, we  suggest that clinicians can adjust the 
radiation dose to minimize the occurrence of severe radiation 
proctitis while not compromising the effectiveness of 
radiation therapy.
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