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A control scheme is applied between two different oscillators to study their phase synchroniza-
tion. It utilizes unidirectional signal coupling and only measures the time interval when the
trajectories to the two oscillators’ attractors cross the Poincaré surfaces respectively. By using
this scheme, phase synchronization (without 2π phase slips) can be obtained between two differ-
ent chaotic systems whose signal variables have large amplitude mismatch. This unidirectional
signal coupling also provides a minimum information flow from the driving system to the re-
sponse system. Therefore it can be used in synchronizing systems with substantially different
dynamics via a channel with low information rate.
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The study of synchronization is a fundamental re-
search interest with applications in a variety of
fields [Pikovsky et al., 2001; Boccaletti et al., 2002].
In general, this phenomenon is usually obtained
through proper control schemes that utilize cou-
pling among elements. Various control schemes are
investigated in order to apply the synchronization
in engineering fields [Pecora & Carroll, 1990; Dai
& Ma, 2001; Murakami & Ohtsubo, 2001; Xiao
et al., 1996; Chen, et al., 1999]. Moreover, several
types of synchronization have been investigated ex-
tensively, including complete synchronization [Xiao
et al., 1996; Chen et al., 1999], generalized syn-
chronization [Abarbanel et al., 1996; Lewis et al.,
2001; Zheng et al., 2000], and phase synchroniza-
tion (PS) [Chen et al., 2001, 2002a, 2002b; Tang &
Heckenberg et al., 1997; Liu et al., 2001; Shuai &
Durand, 1999; Maza et al., 2000; Parlitz et al., 1996;
Schäfer et al., 1998]. In particular, PS corresponds
to an entrainment of the phases of chaotic oscilla-

tors, whereas their amplitudes remain chaotic and
noncorrelated. This phenomenon is also closely re-
lated to phase-locked loop that is highly relevant to
engineering applications [Roland, 1997]. To investi-
gate PS, a well-defined phase variable φ1,2 has to
be measured in both coupled systems. In classical
definition, PS occurs if the difference |φ1 − φ2| be-
tween the corresponding phases is bounded within
a chosen value. A weaker synchronization, referred
to as imperfect PS [Rosenblum et al., 1996, 1997;
Zaks et al., 2000], is the coincidence of the aver-
age frequencies defined as Ω1 = Ω2 with Ω1,2 =
limt→∞ φ1,2(t)/t while their phase differences are
unbounded.

The results of PS studies may be applied in
technical and experimental fields where a coher-
ent superposition of several chaotic output chan-
nels is desired. PS has been found useful in natural
systems such as extended ecological system [Bla-
sius et al., 1999, 2000], magnetoencephalographic
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activity of Parkinsonian patients [Tass et al., 1998],
electrosensitive cells of the paddlefish [Neiman
et al., 1999], and solar activity [Palus et al., 2000],
as well as laboratory experiments such as circuits
[Parlitz et al., 1996], lasers [Allaria et al., 2001;
Lariontsev, 2000; Kozyreff et al., 2000], and plas-
mas [Ticos et al., 2000]. In laser systems, PS among
lasing elements can be achieved using proper con-
trol scheme of coupling in an array of semiconduc-
tor lasers as it is important to obtain a large out-
put power concentrated in a single-lobed far field
pattern [Kozyreff et al., 2000].

In order to uncover the properties of PS ex-
tensively, numerous direct signal couplings, such as
one way coupling [Pazó et al., 2000] and asymmet-
ric coupling [Zheng et al., 2000], have been stud-
ied. However, most of these couplings can only be
used in two slightly nonidentical systems. If they are
adopted in two different systems where interactive
dynamics are substantially different, only imperfect
PS can be found. By this means, it is necessary to
find an effective control scheme of coupling that can
achieve PS in this case.

Besides direct signal coupling, bidirectional sig-
nal coupling has also been investigated in two
chaotic high-dimensional systems whose dynamics
are substantially different [Boccaletti et al., 2000].
With this type of coupling, PS can be obtained even
with a small noise perturbation. The result has po-
tential application in the control of chaos. On the
other hand, due to the weak synchronization nature
of PS, it is easy to be achieved by partial signals.
An example is the binary coupling that takes only
two possible values {−1, 1} and provides a minimal
information flow from the drive subsystem to the
response one [Parlitz & Wedekind, 2000]. However,
only imperfect PS is obtained between two different
oscillators using the binary coupling.

In this article, we propose a unidirectional sig-
nal coupling method to synchronize two different
systems. Similar to binary coupling, it also uses rel-
ative strong coupling, but with only a small amount
of information to be transmitted. Moreover, PS
(without 2π phase slips) can be obtained between
two different chaotic systems with substantial dif-
ference in their amplitudes. The coupling term ap-
pears in intermittent coupling when the coupling
strength exceeds the PS transition value. We will
also give a detailed analysis on the mechanism that
results in PS between different coupled systems.

We study the unidirectional coupling with the
interaction of the hyperchaotic and the chaotic
Rössler oscillators [Rössler, 1979]. The drive–
response system is governed by the following
equations.

ẋ1 = −y1 − z1 ,

ẏ1 = x1 + 0.25y1 + w ,

ż1 = 3.0 + x1z1 ,

ẇ = −0.5z1 + 0.05w ,

ẋ2 = −ωy2 − z2 + C ,

ẏ2 = ωx2 + 0.15y2 ,

ż2 = 0.2 + z2(x2 − 10) .

(1)

where the parameter ω is the natural frequency
of the Rössler oscillator. As the mean frequency
Ω2 ≈ ω for the Rössler oscillator, various values
of Ω2 can be obtained by changing ω. A typical and
extensively-discussed scheme of direct signal cou-
pling can be expressed as:

C(t) = ε(x1(t) − x2(t)) (2)

where ε is the coupling constant. If the trajectory
has a rotation center, we can choose a Poincaré
section in a proper way. As a result, the number
of times q crosses the Poincaré section can be ob-
tained. Thus, we can develop a unidirectional signal
coupling method:

C(t) = ε[x2(t) − x2(t − τ)] tanh[q1 − q2] (3)

with τ as a small time delay. In this example, we
select yi = 0 (i = 1, 2) as the Poincaré surfaces.
They are shown in Figs. 1(a) and 1(b). Only when
the trajectories cross the Poincaré surface would qi

be incremented by one. The function tanh() is used
to obtain the boundary values of C.

With the coupling term stated in Eq. (3), only
the number of crossing times in the Poincaré sec-
tion, but not the amplitude, is used in the coupling.
By this means, their amplitudes can maintain non-
correlation with each other at various strengths of
coupling. This control method is especially useful
for the coupling of two different systems whose sig-
nal variables have large amplitude mismatch. For
the system described by Eq. (1), the maximum am-
plitude of x corresponding to the hyperchaotic and
the chaotic Rössler attractors are about 130 and 25,
respectively. Although the size of the hyperchaotic
Rössler attractor is about five times larger than that
of the chaotic Rössler, the unidirectional coupling
scheme can still yield PS.
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Fig. 1. The phase portrait of (a) hyperchaotic and (b) chaotic Rössler oscillators on the x–y plane. Here, ω = 1 and C = 0.
Throughout this article, Eq. (1) is numerically solved using the fourth-order Runge–Kutta method. The initial conditions of
the hyperchaotic Rössler oscillator are set to x1(0) = −20.0, y1(0) = 0.0, z1(0) = 0.0, and w(0) = 15.1.

To observe PS we must define a suitable phase
for the oscillators. Since the phase portraits of the
hyperchaotic and the chaotic Rössler oscillators in
the x − y plane explicitly show a rotational trajec-
tory around the center (x0, y0), as found in Fig. 1,
the phases can be conveniently defined as

φi = tan−1

[

yi − yi(0)

xi − xi(0)

]

i = 1, 2 (4)

where the center of hyperchaotic Rössler oscillator is
(x1(0), y1(0)) = (−15, 0) and that of chaotic Rössler
oscillator is (x2(0), y2(0)) = (0, 0). Although the ro-
tation center of the hyperchaotic Rössler attractor is
small, the trajectory runs strictly around the small
rotation center and no funnel shape is found [Kim
et al., 2000]. Figure 1 shows the case when φi in-
creases by π as yi crosses zero. This corresponds
to the increment of qi by one. By this means, qi

has the same trend of increment as φi, i.e. qi ∝ φi

except that the increment of qi is discrete and
fixed at each step. This measurement is similar to
the phase measured from Poincaré points [Pikovsky
et al., 1997; Hu & Zhou, 2000]. In the latter case,
the phase increases by 2π each time when the tra-
jectory passes through the Poincaré point. However,
the former method requires more selected positions
to sense the frequency of the trajectory. It is not
necessary to obtain the exact phase value when the

trajectory passes the selected values, only the ratio
of increment is required.

Simulation results corresponding to the two
coupling methods governed by Eqs. (2) and (3)
are shown in Fig. 2. Figures 2(a) and 2(c) show
the results of Eq. (1) with direct signal coupling
[i.e. Eq. (2)]. In Fig. 2(a), the difference between
two mean frequencies, i.e. ∆Ω = Ω1 − Ω2, is found
with small agitation. When ε = 0.005 and 0.01,
there is no strict flat region at ∆Ω = 0, as marked
by a dotted line. The two ∆Ω curves are either
above or below zero. The clear agitation at some
particular points on the dotted line ∆Ω = 0 indi-
cates that the PS is not stable. The phase difference
∆φ (= φ1 − φ2) is plotted in Fig. 2(c) whose situa-
tion corresponds to ∆Ω ≈ 0. It has intermittent 2π
phase slips with a long phase locking duration be-
tween two adjoining slips. Evidently, Figs. 2(a) and
2(c) show that Eq. (1) with direct signal coupling
can only lead to imperfect PS. If ε increases, the sin-
gle center of Rössler oscillator is destroyed and the
oscillator becomes funnel in shape. This is due to
the fact that the two different oscillators in Eq. (1)
have large amplitude mismatch from each other.
However, with the coupling defined in Eq. (3), PS is
found. The results are shown in Figs. 2(b) and 2(d).
In Fig. 2(b), it is clear that a large flat region of
coupling is obtained for ∆Ω = 0. This phenomenon
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Fig. 2. Mean frequency difference ∆Ω and phase difference ∆φ for the system described by Eq.(1) using two coupling schemes
governed by Eqs. (2) and (3), respectively. ∆Ω versus parameter ω at several values of the coupling strength ε using (a) the
signal coupling scheme in Eq. (2), and (b) the unidirectional signal coupling scheme in Eq. (3). The time series of ∆φ in Eq. (1)
under the condition (c) ε = 0.01, ω = 0.915 using the signal coupling, and (d) ε = 0.4, ω = 0.915 using the unidirectional
signal coupling. The time delay is τ = 0.1 for (b) and (d).

indicates that the PS is stable. Traditionally, the
PS is bounded with |∆φ| < π, as observed from
Fig. 2(d). In this case, their amplitudes are still non-
correlated even for a relatively strong coupling. This
is clearly shown in Fig. 3(a).

For the unidirectional signal coupling, feasible
values of time delay τ have to be chosen. Simula-
tion results with various values of τ are shown in
Fig. 4(a). When τ < 0.2, PS can always be found,
but at different phase transitions. An increase in
τ leads to a reduction in the phase transition. A
portrait between the coupling strength εc at PS

transition and the time delay is shown in Fig. 4(b).
With an increase of time delay, εc decreases dramat-
ically. However, too large the value of τ may reduce
the robustness of PS. For example, when τ = 0.4,
the PS is corrupted occasionally. This is shown
in the inner plot of Fig. 4(a). This implies that in
order to obtain stable PS, there are no strict lim-
its on the selection of τ provided that it is small
enough to obtain robust PS.

It is important to uncover the mechanism of
unidirectional signal coupling with which PS can
be obtained between two different oscillators. For
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(a)

 

(b)

Fig. 3. (a) Projections of the attractor of the coupled oscillators described by Eq. (1) on the (x1, x2) plane at ε = 0.4 and
τ = 0.1. (b) The mean frequency Ω in Eq. (6) versus the parameter α. 

(a)

 

(b)

Fig. 4. (a) The portraits of mean frequency difference ∆Ω versus coupling strength ε at various time delays τ . The inner plot
shows the unstable PS with a relatively large τ . These simulations are performed with the parameter ω = 0.905 in Eq. (1).
(b) The PS transition at various time delays.

τ � 1, Eq. (3) can be rewritten in the following
approximate form:

C(t) = ε tanh[q1 − q2](τ ẋ2 + ξ(t)) (5)

where ξ is a small noise perturbation obtained by

ξ(t) = x2(t) − x2(t − τ) − τ ẋ2

=
τ2

2
ẍ2 + O(τ3) (6)

Here, O(τ 3) represents the third and higher order

terms of the Taylor series expansion on x2(t − τ).
Substituting it into Eq. (1), the first formula of the
Rössler oscillators then becomes

ẋ2 = α(t)(−ωy2 − z2 + δ(t)) (7)

where

α(t) = (1 − ε tanh[q1 − q2])
−1 (8)

δ(t) = ξε tanh[q1 − q2] (9)
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(a)

 

(b)

Fig. 5. Time evolution of the coupling term C(t) in both
non-PS and PS states. (a) Non-PS state at τ = 0.1 and
ε = 0.2. (b) PS state at τ = 0.1 and ε = 0.5.

When τ � 1, the perturbation ξ shown in Eq. (6)
is so small that it can be ignored. Then we obtain

ẋ2 = α(t)(−ωy2 − z2) (10)

If α is increased from 1 to 5 in Eq. (10), Ω in-
creases almost linearly with α, i.e. α ∝ Ω. This
is shown in Fig. 3(b). Furthermore, from Eq. (8),
it is evident that ε tanh(q1 − q2) ∝ α. Therefore,
ε < tanh(q1 − q2) >∝ Ω where 〈•〉 represents mean
value. This direct proportional relationship leads to
PS in Eq. (1) and can be considered as a type of
phase locked loop control [Roland, 1997]. For ex-
ample, if Ω1 > Ω2 at a particular time, we will find
that q1 > q2 after some iterations. From Fig. 3(b), it
is found that Ω2 will increase in the subsequent it-
erations. By this means, when ε is large enough,
the mean frequencies are basically equal to each
other. On the other hand, if we select a relatively
large τ , the noise perturbation ξ increases. More-
over, with the increase of ε, the overall perturbation
ε tanh[q1 − q2]ξ is enlarged significantly. Thus, the
above explanation for Fig. 3(b) will be influenced by
the large overall perturbation and PS is corrupted

occasionally at relative large ε, as observed in the
inner plot of Fig. 4(a).

The coupling term C(t) has different charac-
teristics at non-PS and PS states. In non-PS state,
the phase difference increases with time and makes
q1 − q2 distant from zero. After a certain time in-
terval, |q1 − q2| is so large that tanh(·) → 1 or −1.
The time evolution of C(t) is mainly determined by
ε and (x2(t)− x2(t− τ)), as observed from Eq. (3).
The result is shown in Fig. 5(a). However, in PS
state, their phase difference agitates around zero.
At some duration, q1 − q2 = 0 and it indicates zero
coupling, i.e. C(t) = 0 at certain instants. By this
means, the coupling term in PS state corresponds
to intermittent coupling, as observed in Fig. 5(b).
It is mainly produced by the discrete measurement
of qi. Suppose that at a certain time, PS is obtained
with q1 − q2 = 0 and ∆φ ≈ 0. For subsequent time,
|∆φ| starts to increase as q1−q2 = 0. However, since
qi is measured only at the Poincaré surfaces, there
is a small time duration before |∆φ| is reflected by
a nonzero value of |q1 − q2|. In other words, in the
small time duration, |∆φ| increases, but |q1 − q2|
is kept zero. As a result, the intermittent coupling
phenomenon is found and |∆φ| fluctuates around
zero.

From the above discussion, it is evident that
the control scheme of unidirectional signal coupling
only utilizes the number of times the trajectory
passes through the Poincaré surface. The drive sys-
tem transmits “1” to the response one once the tra-
jectory passes through the Poincaré surface. At the
response system, the parameter q1 performs q1 + 1
at the response site after receiving the binary signal
“1”. By this means, lesser signal information is re-
quired from the drive to the response systems than
from direct signal coupling.

In conclusion, based on the dynamical proper-
ties of signal coupling, we have developed a con-
trol scheme of unidirectional signal coupling that re-
sults in PS between different oscillators, while their
amplitudes are maintained noncorrelated. After PS,
the intermittent coupling phenomenon is observed.
The dynamics of unidirectional signal coupling is
analyzed in detail. This control scheme may have
potential in applications that require PS between
two different oscillators where their amplitudes have
large mismatch, such as the output summation of
different generators with coherence in phase. It may
also be used for synchronizing analog circuits via a
digital channel with a low information rate.
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