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Entropically Enhanced Excitability in Small Systems

J.W. Shuai' and P. Jung'?
"Department of Physics and Astronomy and Quantitative Biology Institute, Ohio University, Athens, Ohio 45701, USA

Center for Theoretical Biophysics, University of California San Diego, La Jolla, California 92093, USA
(Received 28 April 2005; published 7 September 2005)

We consider the dynamics of small excitable systems, ubiquitous in physics, chemistry, and biology.
Spontaneous excitation rates induced by system-size fluctuations exhibit sharp maxima at multiple, small
system sizes at which also the system’s response to external perturbations is strongly enhanced. This novel
effect is traced back to algebraic features of small integers and thus generic.
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Excitable dynamics (for a recent review, see [1]) occurs
in a variety of systems ranging from the electric behavior
of neuronal membranes [2] over calcium-based excitability
(for a recent review, see [3]) to chemical reactions [4].
Recently, the study of system-size fluctuations in excitable
systems has led to the emergence of novel concepts such as
system-size stochastic and coherence resonance [5-8],
where system-size fluctuations are exploited to generate
coherent signals or amplify small external signals. The
mechanism for these effects is based on the relation be-
tween system size and strength of intrinsic noise that
allows for the tuning of the intrinsic noise by changing
the system size and thus exploiting stochastic and coher-
ence resonance. These effects, however, are not character-
istic to small systems and can occur on any scale.

In this Letter we report on novel phenomena that are
robust and genuine to small excitable systems subject to
system-size fluctuations. Examples of small excitable sys-
tems include small ion channel clusters [3], and chemical
reactions in nanoscale reactors [9].

We find (1) that the excitation rate induced by system-
size fluctuations exhibits sharp maxima at multiple small
system sizes and (2) that at these magic system sizes the
response to external perturbations is strongly enhanced.
These novel effects are traced back to algebraic properties
of the system’s entropy density occurring only at small
system sizes, but not in the macroscopic limit.

As a working model for an excitable system we choose a
cluster of sodium ion channels embedded in a leaky neuro-
nal membrane. Removing the potassium conductance from
the original Hodgkin-Huxley model and increasing the
leak conductance to account for the other voltage-
independent channels, we arrive at the following set of
equations

u= gNam3h(uNa —u) + gy — u) + Iy, 1)

x= ax(l - X) - Bxx:

with the conductances gy, = 120/ms, g; = 9.1/ms, and
x = m, h. The current I, represents external perturba-
tions. The voltage u is measured in mV, time ¢ in ms, and
the reversal potentials are given by uy, = 115 mV and
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u; = 10.6 mV. The rates «,,, and ,, , are given by
— ol 250 —u
" “expl(25 — u)/10.0] = 1.0°
B, = 4.0exp(—u/18.0), aj, = 0.07 exp(—u/20.0),

B, = (exp[(30 — u)/10.0] + 1.0)" . )

(o4

Although there are no potassium channels present, the
inactivation of the sodium channels renders this system
excitable and action potentials are generated (see Fig. 4).
Since the dynamics of m is much faster than that of 4, we
further reduce the model for now by replacing the variable
m by its quasi-steady state value mo, = «,,/(a,, + Bn)-
The resulting two-variable model

it = gnamso(u)h(ux, — u) + g(u; — u) = g1(u, h),
h=a,(l —h) = B,h=gy(uh)

can be analyzed in terms of null-cline analysis (see Fig. 1).
The nullclines intersect at a single point, which is a stable
fixed point rendering the system excitable. In order to fire
an action potential, the variable % has to exceed a thresh-
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FIG. 1. Null clines of the reduced model of the sodium channel
cluster [Eq. (3)]. The inset shows the excitation rate of the cluster
as a function of the number of channels (i.e., system size).
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old of about A;, = 0.24 for the parameters used here at
I, = 0. The action potentials have a maximum amplitude
of about 80 mV and all have the same amplitude regardless
of the perturbation that caused them. The above described
model is meaningful when the conductance is facilitated by
a large number of sodium channels where # is the fraction
of activated sodium channels.

When we consider small excitable systems, i.e., a cluster
of a few sodium channels only, where each sodium channel
switches between the open and the closed states due to
thermal noise, a stochastic description is necessary. To this
end, we consider the stochastic version of the reduced
model [Egs. (3)] which is obtained by replacing the vari-
able i with the discrete fraction of s-open channels, n/n,
where ng is the total number of sodium channels in the
cluster and » is the number of channels in the s-open state.
We call the channel & open as we only model the inacti-
vation process h stochastically at this point. The stochastic
differential equation for the voltage then reads

i = gnamio(n/ng)(un, — u) + g/(u; — u). 4)

Each channel can be in two states, # open, the conduct-
ing state, and & closed. The switching of each channel is
simulated by a Markov process (for a recent comparison of
algorithms see [10]) with the opening rate «;, and closing
rate 3, respectively. The fraction of s-open channels n/ny
is determined at each instant of time. The differential
equation for the voltage [Eq. (4)] is integrated with an
appropriately small time step using a first-order solver.
As a result, stochastic trains of action potentials are gen-
erated and characterized by their spiking rate r. The am-
plitudes of the action potentials vary somewhat within a
range of 80—100 mV.

In the limit of large system sizes (see inset of Fig. 1), i.e.,
for large numbers of sodium channels, the firing rate
decreases to zero exponentially, i.e., [r(ny) < exp(—kng)
with k = 0.002] (dashed line in inset) as to be expected for
an activated process where the energy fluctuations decay
inverse with the system size n,.

Most interesting are the deviations from this asymptotic
behavior as the system becomes small and peaks in the
firing rate r(ny) emerge at certain cluster sizes (see Fig. 2).
The peaks grow bigger as the sodium channel cluster
decreases in size.

While a systematic theory for those peaks is presented
below, we will present here a cartoon that better captures
the underlying mechanism. The nullclines in Fig. 1 indi-
cate that in order to fire an action potential at least a
minimal fraction A, = 0.24 of the channels need to be
h open at the resting voltage. If for instance the cluster is
comprised of ny = 3 channels, the states of the cluster with
n =1, 2, or 3 h-open channels are states that can trigger an
action potential because of n/ny > hy;, for these 3 states.
Thus 3 out of all 4 possible h-open states are associated
with an action potential. Similarly, if the cluster comprises
4 channels, 4/5 of all possible states are associated with an
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FIG. 2. The spontaneous firing rate r as a function of the
cluster size n (triangles in upper panel) is compared with the
entropy density E(ny) [Eq. (5)] (squares) and the probability
p(ng) (circle) at h;, = 0.24 (lower panel).

action potential since 1/4 > h,;,. Since there are more
states associated with the firing state (i.e., 4/5 > 3/4),
the probability of firing and thus the firing rate is increased
as ng increased from 3 to 4, as can be seen in the upper
panel of Fig. 2. If, however, the cluster comprises 5 chan-
nels only 4/6 of all h-open states are associated with an
action potential since now at least two channels need to be
h activated (2/5 > h,,;,). The fraction of the numbers of
states of the channel cluster associated with an action
potential, which we define as the entropy density of the
firing state, drops as the cluster size is increased from
4 to 5. As a consequence, the firing rate drops to a lower
level as ng increased from 4 to 5. This entropic effect is
strong enough only at small system sizes to modulate the
excitability.

This idea can be generalized for a cluster of ny sodium
channels. The entropy density E(ng, i,y,) of the firing state
is given by the ratio of the number of states that can trigger
an action potential, i.e., the entropy, and the number ny + 1
of all possible /-open states. Algebraically this boils down
to calculating the fraction of all fractions n%, 2 B
with values above the threshold A, i.e.,

1 2
ng’ng’ "7 ng

E(ng, hyin) = [no — integer(nohmyn)1/(ng + 1).  (5)

The entropy density E(ng, Ap;,) is plotted also in Fig. 2 and
shows indeed maxima at exactly those system sizes where
the rate exhibits maxima. Although the sequence of peaks
is periodic with period 1 for the particular value of the
threshold in this Letter, it can be of period /(>1) for other
values of the threshold (see Fig. 5).
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a membrane potential of u. Furthermore, u, denotes the
membrane voltage in the resting state. The constant voltage
is a good approximation as most of the (slow) inactivation
changes occur prior to the action potential where the
voltage changes are small. The probability p that the
cluster elicits an action potential is obtained by adding
the probabilities for all states that correspond to a fraction
of h-open channels larger than or equal to /,,,. This sum
has to be determined numerically and exhibits peaks at
exactly the same values of the system size as we found with
the phenomenological theory presented above (see Fig. 2).
Although this theory is accurate, it does not generate the
insight into the phenomenon as well as the phenomeno-
logical theory.

The response of the excitable system to perturbations
can be probed by a periodic current I, = —1Iy + Iy X
sin(27rvt) in Eq. (1). The modulation function is chosen
such that at the maximum amplitude of the perturbation the
excitation threshold is 0.24 (as above) and higher in be-
tween the maxima. In order to assess the response to the
periodic signal we calculate the power spectrum of the
stochastic spike train generated by the cluster, where the
spikes are approximated by & functions at the times 7, of
their occurrence, i.e.,

2

1
S(v) = T @)

Zexp(—Ziﬂ'th)

where T is the length of the spike train. The power spectra
exhibit sharp peaks at the frequency of the perturbation.
The weights of these peaks are a measure of the system’s
response to the periodic signal [11] and are plotted in Fig. 3
as a function of the cluster size for three different pertur-
bations. The response of the excitable system to the peri-
odic perturbation exhibits maxima at exactly the same
system sizes where the spontaneous excitation rate exhibits
maxima. As can be seen in Fig. 3, the optimal system sizes
are not sensitive to variations in the perturbation amplitude
I, or frequency v.

In the system we studied above, the action potentials
were almost uniform in amplitude, although there were

FIG. 3. Response amplitudes S(») [Eq. (7)] as a function of the
cluster size, for I, = 1.0, v = 0.8 Hz (triangles), I, = 2.0, v =
0.8 Hz (circles), and I, = 2.5, v = 0.4 Hz (squares).

some fluctuations due to channel noise. If we do not do the
adiabatic approximation in Eq. (1), i.e., replace the dy-
namic variable m(t) by its steady state m,,, we have to
model also the fast activation m(z) of each channel by a
Markov process similar as we did with the inactivation A(r)
above. Each ion channel has three m gates and one & gate
with opening and closing rates given in Eqs. (2). A channel
is open if all the activation gates m and the inactivation gate
h are open. The fraction of open states n/n,, determined
through simulations of Markov processes, enters in the
differential equation for the membrane potential, i.e.,

i = gna(n/no)(un, — u) + g,(u; — u), (8)

which is integrated with a first-order solver. In Fig. 4 we
show a short train of spikes with a variety of amplitudes. In
comparison to the reduced model studied above, the action
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FIG. 4. A spike train is shown generated by the stochastic
model Eq. (8) for a cluster of 20 sodium channels. Each ampli-
tude of the action potentials is associated with a certain fraction
of open channels annotated at the right end of the dashed lines.
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FIG. 5. The spontaneous firing rate of action potentials with
amplitude larger than 79.8 mV (upper panel) is compared with
the entropy density E(ng, 0.15). The inset shows the cumulative
rate of action potentials as a function of the action potential
amplitude for a cluster of 20 sodium channels.

potential amplitudes exhibit more variation. Each action
potential amplitude is associated with a unique fraction of
open sodium channels, the larger the amplitude the larger
the fraction of open channels. The relation of action po-
tential amplitude and fraction of open channels can be
found by integrating Eq. (8) at a given number of open
channels ngpe,. The horizontal, dashed lines in Fig. 4 are
drawn at the voltages obtained from this calculation.

The consequence of the variability of amplitudes is that
the spiking rate depends on the amplitude which is chosen
as an indicator for an action potential (see inset in Fig. 5).
We therefore calculate the rate of action potentials
r(ng, Upresn) With an amplitude larger than gy, as a
function of the cluster size n at various spike amplitudes
Uresh- Similar to the reduced model above, the spiking rate
exhibits a series of peaks at multiple optimal system sizes
(see Fig. 5). These optimal system sizes, however, now
depend on the threshold amplitude ug,., since the mini-
mum fraction of open channels necessary to generate such
a spike depend on ug,y,. An action potential amplitude of
79.8 mV, for example, requires a fraction of open channels
of at least 0.15 (see Fig. 4). In Fig. 5 we compare the rate of
action potentials of amplitudes of at least 79.8 mV and the
entropy density of the clusters E(ng, fyi, = 0.15). Maxima
in the firing rate coincide well with maxima in the entropy
density E(ng, Ay, = 0.15). Similar good agreement is
found for other action potential amplitudes.

In summary, we have reported on novel effects that
occur in small excitable systems. At multiple small system
sizes, the spontaneous excitation rate as well as the sys-
tem’s response to perturbations is enhanced. This effect has
been traced back to oscillatory variations of the entropy
density of the cluster states as function of the cluster size

that only occur at small system sizes. Mathematically, the
effect boils down to arithmetic features of inverse integers
and is thus generic and independent of system details like
channel conductance as long as the cluster remains homo-
geneous and excitable. System-size stochastic resonance
[5,7] is based on exploiting stochastic resonance by tuning
the size of the system such that the internal noise strength is
at the resonant value. Such a resonance—in contrast to the
results in this Letter—can be at small and large system
sizes. It is not based on the algebraic properties of inverse
integers. Stochastic multiresonance [12]—associated with
an infinite number of peaks in the signal-to-noise ratio—is
a property of specific Langevin equations that are invariant
with respect to a stretching transformation in conjunction
with rescaling of the noise strength. No such specific
symmetries are required for the effect we are describing
here. In fact, the Fokker-Planck approach obtained by
truncating the master equation does not exhibit the small-
size peaks.

The effect we report here could be applied for the design
of small sensors by placing a precise number of ion chan-
nels onto a small patch of membrane or artificial lipid
layer. As we describe in a upcoming full-length paper,
the patch of membrane must be electrically insulated
from its environment and have a size that is adjusted to
the type of channel, and their conductances.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. IBN-0078055.

[1] B. Lindner, J. Garca-Ojalvo, A. Neiman, and
L. Schimansky-Geier, Phys. Rep. 392, 321 (2004).

[2] A.L.Hodgkin and A.F. Huxley, J. Physiol. (London) 117,
500 (1952).

[3] M. Falcke, Adv. Phys. 53, 255 (2004).

[4] Oscillations and Traveling Waves in Chemical Systems,
edited by Richard J. Field and Maria Burger (Wiley,
New York, 1985).

[5] P. Jung and J. W. Shuai, Europhys. Lett. 56, 29 (2001).

[6] G. Schmidt, I. Goytschuk, and P. Hanggi, Europhys. Lett.
56, 22 (2001).

[7] A. Pikovsky, A. Zaikin, and M. A. de la Casa, Phys. Rev.
Lett. 88, 050601 (2002); Z. Wang, Z. Hou, and H. Xin,
Chem. Phys. Lett. (to be published); H. Hong, B.J. Kim,
and M. Y. Choi, Phys. Rev. E 67, 046101 (2003).

[8] J.W. Shuai and P. Jung, Phys. Rev. Lett. 88, 068102
(2002); R. Toral, C.R. Mirasso, and J.D. Gunton,
Europhys. Lett. 61, 162 (2003); J. W. Shuai and P. Jung,
Proc. Natl. Acad. Sci. U.S.A. 100, 506 (2003); A. Zaikin,
J. Carcia-Ojalvo, R. Bscones, E. Ullner, and J. Kurths,
Phys. Rev. Lett. 90, 030601 (2003).

[9] M. Hildebrand, A.S. Mikhailov, and G. Ertl, Phys. Rev.
Lett. 81, 2602 (1998).

[10] S. Zeng and P. Jung, Phys. Rev. E 70, 011903 (2004).

[11] L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni,
Rev. Mod. Phys. 70, 223 (1998).

[12] J.M.G. Vilar and J.M. Rubi, Phys. Rev. Lett. 78, 2882
(1997).

114501-4



