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Through computational modeling we predict that small sodium ion channel clusters on small
patches of membrane can encode electric signals most efficiently at certain magic cluster sizes. We
show that this effect can be traced back to algebraic features of small integers and are universal for
channels with a simple gating dynamics. We further explore physiologic conditions under which
such effects can occur. © 2006 American Institute of Physics. �DOI: 10.1063/1.2210827�
on channel clustering is an often observed but poorly
nderstood phenomenon. Mathematical modeling is an
xcellent tool to explore the behavior of clustered ion
hannels. Clusters of excitable channels give rise to fluc-
uations in the membrane potential which are inversely
roportional to the cluster size if the clusters are com-
rised of a large—but not infinite—number of ion chan-
els. In recent literature, the relation between cluster size
nd fluctuations has led to the concept of system-size sto-
hastic resonance and coherence resonance.1–5 More re-
ent work has focused on stochastic effects in ultrasmall
hannel clusters with 1–50 channels per cluster.6 For clus-
ers of such small size exponential system-size scaling of
he fluctuations breaks down and novel entropic effects
an be observed. At certain magic cluster sizes, the spon-
aneous rate of action potentials and signal encoding ex-
ibits maxima. In this paper we extent our recent analy-
is to include a detailed discussion of the physiologic
onditions under which this effect may occur and how it
ould be implemented in a biomimetic device. We supple-
ent our simple microcanonical theory of the cluster en-

ropy with more accurate statistics and discuss issues of
istinguishability of channel proteins. We provide addi-
ional evidence that these maxima are caused by the dis-
reteness of inverse small integers and resulting algebraic
roperties. The effect is therefore universal and does not
epend on the nature of the channel and system.

. INTRODUCTION

Ion channels are devices that allow the passage of spe-
ific ions from outside the cell to inside the cell. Their abun-
ance determines the electric behavior of a membrane
nd—in the case of neurons—the cell’s capability of firing
n action potential. In some other cell types, like for ex-
mple, astrocytes, the large abundance of potassium ion
hannels renders these cells buffers for potassium ions in the
xtracellular space.

Recently, the electric behavior of neuronal membranes
ith clustered ion channels has attracted increasing attention.
his interest originates partially in the Biology community,

here ion channel clustering is observed frequently, but the
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mechanism and the functional role �if any� are poorly under-
stood. New hypotheses like impact of channel clustering on
signaling functions and information coding fall on futile
grounds. In some membranes, ion channel clustering is in
fact a dynamical phenomenon that is regulated by the state
of the channels,7 further fueling the idea that clustering of
ion channels is more than an epi-phenomenon. Physicists
have become interested since small clusters with few chan-
nels are intrinsically stochastic and provide an ideal play-
ground where novel ideas for the possible role of fluctuations
can be tested. One main line of investigation in this area
exploits the relation between channel noise and cluster size.
Hence, well-known effects such as stochastic resonance8 and
coherence resonance4,5,9 translate into system-size stochastic
and coherence resonance. More recently, in another line of
research, we demonstrated novel entropic effects in ultras-
mall, excitable ion channel clusters that are due to the dis-
crete nature of small numbers and are hence fundamental to
these systems.6 These effects surfaced in unexpected peaks
and valleys of spontaneous firing rates of action potentials at
certain cluster sizes and in the enhancement of encoding of
weak signals.

In this paper, we will give a detailed account of these
effects, discuss physiologic conditions under which they may
occur by embedding the cluster into a spatially extended
leaky membrane structure, and discuss the mathematical
structure underlying the organization of these magic cluster
sizes. In Sec. II we consider a one-dimensional infinite cable,
representing an axon or dendrite, with a cluster of sodium
channels. We solve the cable equations inside and outside the
cluster and identify the relevant length and time scales of the
system. We derive conditions under which voltage gradients
can be neglected and hence conditions under which spatially
nonexplicit models accurately describe the electric behavior
of the cluster. The same theory determines how small a patch
of membrane has to be in order for clusters with few chan-
nels can actually elicit action potentials.

In Sec. III, we place sodium channels at constant surface
density on an isolated patch of membrane and consider the

generation of action potentials and encoding of small current
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nputs in terms of action potentials. It is shown that the spon-
aneous firing rate as well as the signal encoding assumes
ultiple maxima at magic cluster sizes. Underlying theories

ased on the statistical physics of the states of the ion chan-
el clusters with distinguishable and nondistinguishable ion
hannels in microcanonical and other ensembles are dis-
ussed. All theories suggest that entropic effects are under-
ying the appearance of the magic cluster sizes.

I. SETTING THE STAGE: TIME SCALES
ND LENGTH SCALES

The lipid bilayer of the cell membrane can be considered
lectrically as a capacitor with a small specific capacitance of

pproximately C̄=1 �F/cm2. The conductance �per mem-
rane area� of the membrane is due to ion channels with
on-specific conductance �per membrane area� gi and a non-
pecific conductance �per membrane area� gm. We consider a
ne-dimensional infinite cable, representing a dendrite or the
xon along the x axis of a coordinate system. The membrane
otential of such a system is well-characterized by the cable
quation,10,11 i.e.,

C̄u̇�x,t� = − gm�u�x,t� − um� − �
i

gi�x,u��u�x,t� − ui�

+ �2gm
�2u�x,t�

�x2 , �1�

ith the reversal potentials um and ui. The characteristic time
cale � and length scale � are given by

� =
C̄

gm
, � =� d

4�gm
, �2�

here � denotes the specific resistance of the cable core
� cm�. Typically � is of the order of a few ms while � is of
he order of a few mm. The diameter of the cable is denoted
y d. The x dependence of the conductance gi takes into
ccount the spatial distribution of the specific ion channels.
he voltage dependence of the ionic conductance are the
ssential nonlinearities giving rise to action potentials. The
ength scale � determines the scale on which deviations from
he resting voltage of the membrane change in space and
ence presents a measure of the distance across which ion
hannels can interact through coupling by the membrane po-
ential.

We now distribute N sodium channels onto a segment of
he cable of length LNa centered around x=0 for mathemati-
al simplicity. We consider the channels to be smeared out
ontinuously along the segment. When a channel is open it
onducts sodium ions with a conductance of �=20 pS.
ence, if n of the N channels are open, the conductance

eads to a spatial sodium conduction profile of the form

gNa�x� = rect�x,LNa�
n�Na

�dLNa
�3�

ith rect�x ,L�=1 for �x � �L /2 and rect�x ,L�=0 otherwise.
he area �dLNa denotes the membrane surface area of the
on channel cluster on the cylindric axon with diameter d.
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The total conductance per axon circumference is given by
n�Na/�d.

We want to determine the spatial steady-state voltage
profile, generated if n of the N channels are open and con-
tribute to sodium conductance. The steady-state profile along
the cable �in dimensionless variables x̂=x /�� for �x �
	LNa/2 is determined by the differential equation

�2u

� x̂2 = u − um �4�

and for �x � �LNa/2 by

− �gNa + gm��u − uR� + gm
�2u

� x̂2 = 0 �5�

with

uR =
gmum + gNauNa

gm + gNa
. �6�

The solution of Eqs. �5� and �6� can be easily obtained by
solving the linear equations for the intervals �x � �LNa/2 and
�x � 	LNa/2 separately and matching the voltages and their
slopes at the interfaces x= ±LNa/2. The results are

u = uR −
�1 − 
−2��uNa − um�

cosh�l̂
� + 
 sinh�l̂
�
cosh�
x̂� for �x� � LNa/2,

�7�

u = um +
�1 − 
−2��uNa − um�

1 + 
 coth�
l̂�
exp�− ��x̂� − l̂�� for �x� 	 LNa/2,

with

l̂ =
LNa

2�
, 
 = �1 + �gNa/gm� . �8�

In the case that all sodium channels are closed, i.e., n
=0, the voltage profile becomes uniform u=um �as it obvi-
ously has to be�. For n�0, the profile decays exponentially
outside of the cluster ��x � 	LNa/2� on the length scale �
while it is more flat inside the cluster, decaying parabolically
on the length scale �
 with 
	1.

In order to analyze what these results mean for the volt-
age profile generated by the cluster of n open sodium chan-
nels along the cable, we need to insert realistic values for the
parameters. Let us assume our ion channels cluster has a
length of 1 �m and that the dendrite has a diameter of 2 �m.
With a single channel conductance of 20 pS, we find for the
sodium conductance gNa=n /�mS/cm2. A typical value for
the membrane resistivity rm=103 � cm2 leads to gm=1/rm

=1 mS/cm2. Hence, the parameter 
 which determines in
conjunction with ��1 mm the voltage profile �see Eq. �8��
is given by �for fixed cluster size�


2 = 1 +
gNa

gm
= 1 +

n

�
. �9�

For a density of sodium channels according the Hodgkin-
Huxley model, i.e., �=60/�m2, the membrane area of the
cluster is 2� �m2 and the cluster will be comprised of n
=377 sodium channels. This leads to 
=11. The voltage as-

sumes its maximum at the center of the cluster �x=0� and

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



t
�
=
c
d
a
s

c

a
d
g

a
a

p
o
t
n
a
f
t
a
a
i

l
p
v
t
d
c
h

I

c
c
t
e
i
v
p
d
t
s
d
c
E
f

026104-3 Ion channel clusters Chaos 16, 026104 �2006�

Do
hen falls off according to −cosh�x /�
�. Given that �
1 mm and 
=11, the voltage at the edge of the cluster x

0.5 �m is only 1/1000 of a percent smaller than in the
enter. For larger clusters of tens of micrometer length the
eviations of the voltage from the center are bigger but still
small fraction of a percent. Hence for not extremely large

odium channel densities, we can assume that all sodium

hannels along a cluster are on an equipotential. For l̂
�1

nd l̂
2�1, i.e., for small clusters with low density of so-
ium channels, the voltage at the center of the cluster, uc, is
iven by

uc � um +

2l̂

1 + 	 gm

gNa

 �uNa − um� �10�

nd is thus unsubstantially elevated from the base level um

nd action potentials will not be generated.
The outcome of this section is that the impedance cou-

ling of the ion channels to the cable requires a large density
f ion channels to be capable of raising the membrane po-
ential enough to trigger an action potential. Effects of small
umbers of ion channels can thus not be expected in a long
xon or dendrite �i.e., a length of more than mm�s�. In order
or small clusters with few sodium channels to generate ac-
ion potentials and hence to exploit small cluster-size effects
s we describe below, one has to place the ion channels onto
small piece of electrically isolated membrane with small

mpedance coupling to the channels.
In the opposite case of sodium channel clusters with

arge channel densities, like e.g., in the nodes of Ranvier, the
arameter 
 is larger. For a 2 �m cable and a node of Ran-
ier of 1 �m extent and 104 sodium channels, 
�56. Here,
he potential at the center is only about 40% below the so-
ium reversal potential if all channels are open. Hence, the
onductance of such a cluster is large enough to generate and
ence conduct action potentials.

II. MODELING THE SODIUM CHANNEL CLUSTER

In light of the discussion in the previous section, we
onsider small clusters of sodium channels on small, electri-
ally isolated domains. Although potassium channels con-
ribute to the shape of the action potential they are not nec-
ssary to generate an action potential since sodium channels
nactivate. The nodes of Ranvier, for example, comprise only
oltage gated sodium channels.14–16 The potassium channels
resent are not voltage-gated and thus represent leakage con-
uctance. For the voltage dependence of the sodium conduc-
ance we use a stochastic Hodgkin-Huxley model with
tripped potassium conductance but increased leakage con-
uctance. As discussed above, voltage gradients within a
luster are extremely small and can be neglected and thus
q. �1� becomes an ordinary stochastic differential equation
or the membrane potential, i.e.,

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
u̇ = −
gm

C̄
�u − um� − n

�Na

AC̄
�u − uNa� , �11�

where A denotes the area of the cluster and n the number of
open sodium channels. The sodium reversal potential and the
leakage potential are given by uNa=50 mV and um

=−54.4 mV. In order to mimic increased passive conduc-
tance, we decrease the membrane resistivity to 110 � cm2

leading to a conductance of 9.1 mS/cm2 and to C̄ /gm

=0.11 ms.
The number of open sodium channels depends on the

membrane potential. Each sodium channel has four gates that
can be open or closed. Three identical, fast activation gates
with opening and closing rates �m�u� and �m�u�

�m =
0.1�50.0 + u�

1 − exp�− �50.0 + u�/10.0�
,

�12�

�m = 4.0 exp	− u + 75

18.0

 ,

and one slow inactivation gate with opening and closing
rates �h and �h, respectively,

�h = 0.07 exp�− �u + 75�/20.0� ,

�13�

�h =
1.0

exp�− �45.0 + u�/10.0� + 1.0
,

determine the state of each channel. Note that we use the
Hodgkin-Huxley expressions for the opening and closing
rates with shifted voltages so that the resting voltage is about
−65 mV. The reversal potentials are shifted accordingly.
Only if all activation gates and the inactivation gate are open,
the channel is conducting.

A stochastic simulation of the ion channels is necessary
to determine the instantaneous number n of open sodium
channels per cluster. We simulate the switching of the gates
with Markov processes. If a gate is closed at time t, it will
open within the time interval �t , t+t� with the probability
�t and remain closed with the probability 1−�t. If a gate
is open at time t, it will close with the probability �t within
the time interval �t , t+t� and remain open with probability
1−�t. This method, although accurate, is numerically very
inefficient since many simulated transitions between channel
states have no consequences for the conductance of the clus-
ter and for large ion channel clusters better methods are ad-
visable �see, e.g., Ref. 11, and references therein�. The sto-
chastic opening and closing of sodium channels results in
fluctuations of the membrane potential and if these fluctua-
tions are large enough in spontaneous action potentials. We
are interested in how the rate of these action potentials de-
pends on the number of channels in the cluster.

A. Spontaneous action potentials

Denoting the number density of sodium channels by �Na,
the membrane surface area of the cluster can be expressed as
A=N /�Na, where N is the total number of sodium channels in

the cluster. Inserting this expression into Eq. �11� yields for

 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



t
�
o
d
�
�
c
fi

u

w
c

�
t
n

T

n
i
a
t
t
v
i
o
fi
c
m
a
c
t

t
a

F
b

026104-4 J.W. Shuai and P. Jung Chaos 16, 026104 �2006�

Do
he term describing sodium conductance −�n /N���Na�Na/ C̄�
�u−uNa�. The first factor �n /N� describes the fraction of

pen channels in the cluster. For now, we simplify the gating
ynamics by replacing the fraction of channels with open
fast� activation gates by their steady-state value, i.e.,
�m / ��m+�m��3 and only consider the slow opening and
losing of the inactivation gates stochastically. The simpli-
ed equation for the membrane potential reads

˙ = −
gm

C̄
�u − um� − 	 n

N

	 �m

�m + �m

3�Na�Na

C̄
�u − uNa� , �14�

here �n /N� now describes the fraction of noninactivated
hannels.

In the limit of large clusters, i.e., N→�, the fraction
n /N� assumes continuous values h on the unit interval and
he master equation governing the number of activated chan-
els n reduces to the rate equation12

ḣ = �h�1 − h� − �hh . �15�

he combination of Eqs. �14� and �15� determines the dy-

amics of the system. The null clines �u̇=0, ḣ=0� are shown
n Fig. 1. The null clines intersect at a single point which is

stable fixed point rendering the system excitable. In order
o fire an action potential, the variable h has to exceed a
hreshold, which is somewhat larger than the maximum
alue of the null cline g1�u� because the dynamics of u is not
nstantaneous. Numerical calculations yield a threshold value
f h=0.24 for the parameters used here. Hence, in order to
re an action potential a fraction of at least 24% of sodium
hannels need to be open. When the voltage reaches its
aximum, the sodium channels inactivate, the fraction of

ctivated channels drops suddenly below resting value, and
onsequently the voltage drops and the action potential is
erminated.

If the number of sodium channels per cluster decreases,
he fraction of open channels n /N can change by discrete
mounts 1 /N causing discrete, stochastic changes in the so-

IG. 1. The null clines ḣ=0 and u̇=0 are shown as a function of the mem-
rane potential.
wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
dium conductance and hence voltage fluctuations. These
fluctuations can cause action potentials by chance which can
be characterized by simple measures like the mean stochastic
firing rate or fluctuations of the time intervals in between two
subsequent spikes.

B. Stochastic spiking rate and magic cluster sizes

For large numbers of channels, i.e., weak fluctuations,
stochastic spikes occur when h exceeds a threshold. This
activation process is expected to be characterized by a spik-
ing rate r�N� that decreases exponentially with decreasing
noise strength and hence increasing system size N, i.e.,

r�N� � exp�− kN� . �16�

Simulations using the above described Markov-process
method �see Fig. 2�A�� confirms this hypothesis with an ex-
ponent of k=0.002 for large sodium channel clusters. For
small numbers of channels per cluster, however, we observe
distinct deviations from this large N asymptotics with peaks
and valleys �see Fig. 2�B��. In the following we will explore
the origin of these peaks and valleys. To this end it is instruc-
tive to plot some samples of the simulated trajectories in Fig.
3 for different cluster sizes. For N=4 �B�, there are clearly
the most spikes, more than, e.g., for N=5. However, there
are more events with two channels open for N=5 than for
N=4. This observation gives us the important clue that the
number of channels required to be open in order to generate
a spike must be different for N=4 and N=5. Given the
threshold of h=0.24 �see above�, the necessary fraction of
open channels in order to generate an action potential is in-
deed 2 for N=5 since 1/5=0.2�0.24 and 1 for N=4 since
1/4=0.25	0.24. This also explains the drop in the firing

FIG. 2. We show the rate of the action potentials of the sodium channel
cluster for a large range of cluster sizes �A�, and for small sizes �B� obtained
through Markov modeling �solid squares� and the Langevin approach �open
circles�.
rate from N=4 to N=5.
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We can now further elaborate on this idea to explain all
eaks and valleys in Fig. 2�B�. The cluster state can be char-
cterized in terms of the number of open channels, i.e., 0
hannels open, 1 channel open, 2 channels open, etc. We
urther assume that we cannot distinguish between individual
hannels and that all states have the same probability. This
atter microcanonical assumption is not correct since the

embrane voltage changes with the number of open chan-
els modifying the opening and closing rates and hence the
pening probabilities. Nevertheless this theory, although an
pproximation, captures the underlying mechanism for the
eaks and valleys very well and we present it here. If for
nstance the cluster is comprised of N=3 channels, the states
f the cluster with n�1, 2 or 3 h open channels are states that
an trigger an action potential because of n /N	0.24 for
hese three states. Thus three out of all four possible h open
tates are associated with an action potential. Similarly, if the
luster is comprised of four channels, 4 /5 of all possible
tates are associated with an action potential since 1/4

0.24. Since there are more states associated with the firing
tate �i.e., 4 /5	3/4�, the probability of firing and thus the
ring rate is increased as N increased from 3 to 4, as can be
een in the upper panel of Fig. 3. If, however, the cluster
omprises five channels only 4/6 of all h open states are
ssociated with an action potential since now at least two
hannels need to be h activated �2/5	hmin=0.24�. The frac-
ion of the numbers of states of the channel cluster associated
ith an action potential, drops as the cluster size is increased

rom 4 to 5 from 0.8 to 2/3. As a consequence, the firing rate

IG. 3. Stochastic trains of action potentials �upper panel� and the corre-
ponding number of open channels n �lower panel� are shown for N=3 �A�,
=4 �B�, and N=5�C�.
rops to a lower level as N is increased from 4 to 5.

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
If we had assumed that the channels are distinguishable
and had counted the number of ways a certain number of
channels can be open, we had arrived at 28/32 for N=3,
30/32 for N=4 and 26/32 for N=5 with a maximum at
N=4.

We now generalize this analysis for a cluster of N so-
dium channels under the microcanonical assumption and that
the channels are indistinguishable. Algebraically this boils
down to calculating the fraction of all fractions
0/N ,1 /N ,2 /N , . . . ,N /N with values above the threshold
hmin, i.e.,

E�N, hmin� = �N − integer�Nhmin��/�N + 1� , �17�

which we term the entropy density of the cluster. The en-
tropy density E�N , hmin� is plotted in Fig. 4 and indeed
shows maxima at exactly those system sizes where the rate
exhibits maxima. The entropy e=E�N , hmin��N+1� also
shown in Fig. 4 exhibits plateaus where the entropy density
exhibits peaks. If we had assumed that the channels were

FIG. 4. �A� The spontaneous firing rate r as a function of the cluster size N
of sodium channels for small clusters. The firing rate obtained with the
accurate Markov process �solid squares� are compared with those obtained
from the approximative Langevin equation �open circle�. The entropy e and
the entropy density E �B�, and the combinatorial probability � at hmin

=0.24 are shown for comparison �C�. The maxima of the firing rate coincide
well with maxima both in the entropy density and the combinatorial
probability.
distinguishable, the result would have been
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E�N, hmin� = 1 − 2−N	1 + �
k=1

int�hminN� 	N

k


 , �18�

ith peaks at the same N than in Eq. �17�.
Although the microcanonical theory presented above

aptures the observed effect of multiple peaks quite well, it is
ot entirely accurate since not all states do have the same
robability. It is, for example, less likely that all N channels
re open simultaneously then one channel or no channel is
pen �see Figs. 3�A�–3�C��. In the following we sketch a
ore accurate theory that goes beyond the microcanonical

ounting. At a given voltage u, the probability that n of the N
odium channels are activated and thus the other N−n chan-
el are inactivated is given by the binomial distribution,

P�n,N� = 	n

N

po

n�u0�pc
�N−n��u0� , �19�

here

po =
�h�u�

�h�u� + �h�u�
, pc = 1 − po. �20�

We replace the voltage u by the resting potential u0

−65 mV, obtained from Eq. �14�. The constant resting volt-
ge u0 is a good approximation as most of the slow inacti-
ation changes occur prior to the action potential where the
eviation of the voltage from the resting values are typically
mall. The sum of the probabilities P for all the states which
ssociate with an action potential, i.e., the states in which the
raction of open channels are larger than or equal to hmin, is
efined as the combinatorial probability �,

� = �
n=nmin

N

P�n,N� , �21�

ith nmin=int�hminN�+1. The combinatorial probability ��N�
s calculated numerically at hmin=0.24 as a function of clus-
er size N and plotted in Fig. 4�C�. One can see that the
ombinatorial probability exhibits peaks at exactly the same
ystem sizes as the entropy density of the microcanonical
heory and the spiking rate r. Although the combinatorial
heory is more accurate, it does not generate the insight into
he multiple peak effect as well as the phenomenological
reatment.

To further confirm our hypothesis that the observed
eaks and valleys in the spontaneous spiking rate are due to
he discrete nature of small inverse integers and not some
ther effect like stochastic resonance, we approximate the
xact Markov process describing the dynamics of the chan-
els by a Langevin equation which is continuous in the frac-
ion of open channels h. Such an approach has been put
orward by Fox and Lu13 �see also Refs. 1, 17, and 18� and

he Langevin equations read

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
du

dt
=

1

�Na
m�

3 �u�h�uNa − u� +
1

�leak
�uleak − u� ,

�22�
dh

dt
= �h�1 − h� − �hh + Gh�t� ,

where Gh�t� denotes zero-mean, uncorrelated, Gaussian
white-noise terms with

�Gh�t�Gh�t��� =
�h�1 − h� + �hh

N
�t − t�� . �23�

The Langevin approach treats the stochastic dynamics of the
clustered channels as deterministic dynamics disturbed by
Gaussian white noise. The open circles in Fig. 2�B� represent
the results obtained by simulating Eqs. �22� and �23�. Al-
though the overall behavior agrees quite well for the plotted
range of cluster sizes, it does not reproduce the peaks and
valleys.

Most of the insight into the nature of these peaks can be
obtained from the simple microcanonical counting theory. It
is the entropy density of the firing state of the ion channel
cluster, i.e., the fraction of all cluster states in which action
potentials are fired, that exhibits peaks and valleys as the
system size is increased. The key for this behavior is the
sharp firing threshold for the fraction of open channels in
conjunction with the discreteness of inverse small integers
1 /N , 2 /N , . . . . This threshold, however, is generated by the
fast gates of the sodium channels which we modeled nonsto-
chastically. It is therefore a critical question whether the fir-
ing rate exhibits peaks and valleys for a fully stochastic
model as well.

C. Stochastic spiking rate in the fully stochastic
model for the sodium channels

In the system we studied above, we only considered the
slow inactivation dynamics of the sodium channel stochasti-
cally. In a fully stochastic model for the sodium channels,
also the fast gates have to be modeled stochastically using a
Markov approach. Each channel now has four stochastic
gates with the opening and closing rates given in Eqs. �12�
and �13�. A channel is open only if all three activation gates
m and the inactivation gate h are open. The fraction of open
states n /N, calculated through simulations of Markov pro-
cesses, enters in the differential equation for the membrane
potential, i.e.,

u̇ = −
gm

C̄
�u − um� −

n

N

�Na�Na

C̄
�u − uNa� , �24�

where �n /N� denotes the fraction of open channels. In Figs.
5�A� and 5�B� we show a short train of spikes and the cor-
responding number n of open channels at a system size of
N=20. In comparison to the reduced model studied above,
the action potential amplitudes exhibit more variation al-
though in the macroscopic limit �at large system sizes� both
models behave almost identical. From Figs. 5�A� and 5�B�,
one can see that each action potential amplitude is associated
with a unique number of open sodium channels. The larger

the action amplitude, the larger the fraction of open channels
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/N. The relation of action potential amplitude and fraction
f open channels can be determined by calculating the
teady-state voltages uss of Eq. �24� for a fixed n /N �dashed
ines in Fig. 5�A��. For example, uss=5 mV is obtained for
/N=0.15.

The consequence of the variability of amplitudes is that
or different amplitude thresholds different spiking rates are

IG. 5. �A� A short spike train generated by the stochastic model described
y Eq. �24� and �B� the corresponding number of open channels are shown
or a cluster of 20 sodium channels. Each action potential amplitude is
ssociated with a certain fraction of open channels. The respective fraction
f open channels is annotated at the right end of the dashed lines. �C� The
umulative rate of action potentials as a function of the amplitude threshold

thresh for action potentials. A big drop of the spiking rate is seen at threshold
oltages that are steady-state voltages for a certain fraction of open channels
/N �annotated by the dotted arrow with the respective fraction of open
hannels�.
ound. The cumulative firing rate, i.e., the rate of action po-

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
tentials with amplitudes of at least uthresh is shown for a clus-
ter of 20 sodium channels in Fig. 5�C� as a function of uthresh.
Generally, a lower amplitude threshold corresponds to a
larger spiking rate, but Fig. 5�C� also shows that the spiking
rate changes rapidly around the steady voltages uss�n /N� at a
given fraction of open channels, but changes slowly between
two successive steady-state voltages. This observation con-
firms that the action potential amplitudes are distributed
somewhat discretely around the steady voltages uss�n /N�.
The rate of spontaneous action potentials r�N ,uthresh� with an
amplitude of at least u=uthresh=5 mV is shown as a function
of the cluster size N in Fig. 6�A�. Similar to the reduced
model above, the spiking rate exhibits a series of peaks at
multiple cluster sizes. These system sizes, however, now de-
pend on the threshold amplitude uthresh, since the minimum
fraction of open channels necessary to generate such a spike
depends on uthresh. The threshold amplitude uthresh=5 mV
represents the steady voltage determined from Eq. �24� when
15% of the channels are open �compare Fig. 5�A��. Applying
Eq. �17� with hmin=0.15 �corresponding to uthresh=5 mV� we
obtain the entropy density E shown in Fig. 6�B�. Maxima of
the firing rate coincide well with maxima in the entropy den-

FIG. 6. �A� The spontaneous spiking rate of action potentials with amplitude
larger than �or equal� 5.0 mV is compared to the entropy density
E�N ,hmin=0.15� �B� and the combinatorial probability � �C�, as a function
of system size N.
sity E�N ,hmin=0.15�.
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The combinatorial probability � Eq. �21� with P�n ,N�
iven in Eq. �19� can be determined with the modified open
robability

po =
�h�u�

�h�u� + �h�u�	 �m�u�
�m�u� + �m�u�


3

�25�

hich reflects that n /N is now the true fraction of open chan-
els and not the fraction of noninactivated channels �as in the
educed model�. We again approximate u by the resting po-
ential of −65 mV since the voltage changes are small prior
o an action potential. For a threshold of hmin=0.15, the com-
inatorial probability � is shown as a function of the cluster
ize in Fig. 6�C�. Although the absolute value of the combi-
atorial probability becomes quite small with increasing N,
he maxima in the combinatorial probability � coincide well
ith the maxima of the firing rate r.

Similarly, good agreement between the maxima of the
ring rate and those of the E and � is obtained for other
oltage thresholds. In Figs. 7�A�–7�C� we depict the firing
ate �A�, the entropy-like density E �B� and the combinatorial
robability � �C� for a voltage threshold of uthresh=15 mV,

IG. 7. �A� The spontaneous spiking rate of action potentials with amplitude
arger than �or equal� 15.0 mV is compared to the entropy density
�N ,hmin=0.249� �B� and the combinatorial probability � �C�, as a function
f the cluster size N.
orresponding to a fraction of open channels of n /N=0.25.

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
D. Entropically enhanced response
to an external signal

The response of the noisy excitable system to an external
periodic signal has been studied extensively in the context of
stochastic resonance.8 There, an optimally chosen level of
noise can enhance the coding of a weak subthreshold signal.

In this section, we will show that the response of ultras-
mall clusters of sodium channels to an external signal
shows—similar to the spontaneous firing rate—a surpris-
ingly rich structure with peaks and valleys as the cluster size
is changed. This structure—as the firing rate above—can be
traced back to the discreteness of inverse integers. The signal
is represented by an externally injected current

Istim = − I0 + I0 sin�2��0t� , �26�

added to the equation for the membrane voltage. Similar re-
sults as those we present below can be obtained if, instead of
adding a periodic current, the sodium conductance is modu-
lated periodically, mimicking periodic binding and unbinding
of neurotransmitters to receptors and subsequent opening of
sodium channels.

The modulation function is chosen such that it leaves the
minimum excitation threshold unchanged and independent of
the amplitude I0. As an example we show a train of voltage
spiked and the corresponding number of open channels in
Fig. 8 for a cluster of N=4 sodium channels, responding to a
periodic signal with an amplitude of I0=2.5 and a frequency
of � =0.4 Hz. One can see that the action potentials �Fig.

FIG. 8. Stochastic spike trains �A� and the corresponding number of open
channels �B� for a cluster of N=4 sodium channels with a periodic current
with amplitude I0=2.5 and frequency �0=0.4 Hz.
0
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�A�� are initiated most frequently when the external stimu-
us Istim�t� approaches its maximum at Istim=0 �Fig. 8�C��.

In order to assess the encoding of the periodic current we
alculate the power spectrum of the spike train generated by
he system where the spikes are approximated by  functions
t the spike times tn, i.e.,

IG. 9. The power spectra of the system responding to an external periodic
urrent are plotted at size of �A� N=3, �B� N=4, �C� N=5, �D� N=7, �E�
=8, and �F� N=9. Here I0=2.5, �=0.4 Hz for the signal. Please note that

he scales of the y axis are different for these subfigures. The peak ampli-
udes of power spectrum increase to 185 and 115 for N=4 and N=8,
espectively.

IG. 10. Encoding ability S��� of the system responding to the periodic
urrent at I0=2.5, �=0.4 Hz as a function of the system size from N=1 to
000. The results are obtained with both the Markov process �solid squares�

nd Langevin approach �open circles�.

wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
S��� = lim
T→�

1

T�0

T

�
n

�t − tn�exp�− 2i��t�dt2

= lim
T→�

1

T�n

exp�− 2i��tn�2
, �27�

where T is the total length of the spike train. We have solved
Eq. �14� for the membrane potential in conjunction with a
Markov simulation of the states of the ion channels with the
additional current in Eq. �26�. The corresponding power
spectra are shown in Fig. 9 for clusters with N
=3, 4 , 5 , 7 , 8, and 9 channels. Each power spectrum ex-
hibits a sharp peak at the frequency of the signal �see Ref. 8�,
with a weight representing the encoding of the signal in the
spike train. One can see from Fig. 9 that the signal encoding
w �weight of the signal peak in the power spectrum of the
spike train� exhibits maxima at N=4 and 8. The weight of
the signal peak at the signal frequency of �0 is plotted in Fig.
10 as a function of the cluster size obtained with both, the
Markov method and Langevin approach Eqs. �22� and �23�.
Since the signal is subthreshold it is not surprising that we
find stochastic resonance-like behavior where the cluster size
N is inversely proportional to noise strength1–3 with the

FIG. 11. Encoding ability S��� of the system responding to the periodic
current as a function of the system size from N=1 to 26, for �A� I0

=2.5, �=0.4 Hz �squares�, �B� I0=2.0, �=0.8 Hz �circles�, and �C� I0

=1.0, �=0.8 Hz �triangles�. These three curves show the peaks at the same

system sizes.
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angevin approach. What is most interesting are the addi-
ional sharp peaks in the signal encoding only obtained with
he Markov approach, indicating again that it is the discrete-
ess of inverse small integers causing these peaks. The en-
oding ability w is plotted in Fig. 11 for a range of small
luster sizes and various signal amplitudes. For all ampli-
udes, we find multiple maxima at cluster sizes which coin-
ide with those where the spontaneous firing rate in the ab-
ence of the periodic signal �see Fig. 4� showed maxima.
urthermore, Fig. 11 indicates that the peaks of the weights

are not sensitive to variations in the signal frequency �0

ither. Thus, clustered ion channels encode periodic signals
ith a wide range of frequencies and amplitudes most effi-

iently at certain specific magic cluster sizes. As shown in
ig. 8, the action potentials are induced most frequently
round the maximum of external stimulus, i.e., at Istim=0.
he encoding ability w is thus mainly determined by the
piking rate r at Istim=0 �Fig. 4�A��. The spiking rate r�N�, in
urn, shows maxima when the entropy density E�N� given in
q. �17� exhibits maxima. As a result, the peaks of the signal
ncoding w of the clustered channels �Fig. 11� is determined
y the entropy density or equivalently by the combinatorial
robability �Figs. 4�B� and 4�C��. In brief, it is the enhanced
ampling of the signal at certain cluster sizes that aids in
nhancing the encoding.

V. DISCUSSION AND CONCLUSIONS

Small clusters of sodium channels embedded in a leaky
embrane with a realistic resistivity can generate electrically

xcitable behavior if they are embedded in a small patch of
embrane. We have shown in Sec. I, that if the channels are

mbedded in an infinite cable, it requires thousands of chan-
els to provide enough current to charge the membrane ca-
acitance. Thus, effects of the smallness of an excitable sys-
em are not observable electrically unless a small patch of a
embrane is used. We also have shown that voltage gradi-

nts can be neglected within channel clusters since the typi-
al electrical length scale is of the order of hundreds of �m
nless very large densities of channels are present. We con-
ider electrically isolated sodium channel clusters with con-
tant channel densities as a function of the cluster size. The
hannel density we chose, i.e., 60/�m2 is consistent with the
odgkin-Huxley sodium conductance. Hence a cluster of 5

hannels is embedded in an membrane area of 0.0833 �m2.
wnloaded 19 Sep 2006 to 128.200.45.173. Redistribution subject to AIP
The capacitance of such a patch of membrane is about
8.3�10−4 pF and holds only about 300 singly charged ions.
To change the membrane potential by 100 mV requires mov-
ing of only about 520 singly charged ions. Given a sodium
channel conductance of about 20 pS, the current at a mem-
brane potential of 60 mV is about 1 pA. Within the time
scale of 1 ms this allows about 5000�520 singly charged
ions to pass the channels, i.e., enough to elicit an action
potential. We report that clusters of that size do exhibit some
novel features, i.e., maximal spiking rates and signal encod-
ing at specific cluster sizes, that are fundamental for the bio-
physical nature of the problem. Signals are encoded opti-
mally regardless of frequency and amplitude. An important
condition for these effects to occur is a one-to-one quasidis-
crete relation between the fraction of open channels and the
membrane potential. This limits the effect to homogeneous
channel clusters with a relatively simple gating dynamics.
The full Hodgkin-Huxley model including the potassium
channels does not exhibit peaks in the firing rate or signal
encoding since there are many configurations of open so-
dium and potassium channels with a similar membrane
potential.
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